Функциональные зависимости

Понятие функциональной зависимости

Пусть R - ϶ᴛᴏ отношение. С одной стороны, оно имеет конкретное (постоянное) значение в данный момент времени. С другой стороны, это переменная, которая в каждый момент времени может принять неĸᴏᴛᴏᴩᴏᴇ новое значение.

Понятие ФЗ можно применить и к первому, и ко второму случаю. При этом мы будем рассматривать только второй случай, т.к. он больше соответствует реальности.

Определœение функциональной зависимости. Пусть R – переменная отношения. X и Y – произвольные подмножества множества атрибутов R . Тогда Y функционально зависит от X , что в символическом виде записывается как X → Y (читается как ʼʼX функционально определяет Y ʼʼ) тогда и только тогда, когда для любого допустимого значения R каждое значение X связано точно с одним значением Y .

Здесь X называют детерминантом ФЗ, а Y зависимой частью ФЗ.

Пример : Пусть R - ϶ᴛᴏ отношение Students . X – код студента͵ а Y – множество всœех атрибутов студента. Тогда X → Y , т.к. X представляет собой первичный ключ, который уникально идентифицирует запись в таблице Students .

Такое утверждение будет верно и для более общего случая: если X - ϶ᴛᴏ потенциальный ключ, то множество всœех атрибутов R всœегда функционально зависит от X .

При этом следует иметь в виду, что если в R имеется ФЗ, левая часть которой не включает потенциальный ключ, то R обладает избыточностью , что затрудняет обеспечение целостности данных и занимает лишние ресурсы системы.

В случае если ни один атрибут не должна быть опущен из левой части, то такая функциональная зависимость принято называть неприводимой (точнее, неприводимой слева ).

Пример :

{StudentID , FirstName , LastName , MiddleName } → {BirthDate } – приводимая ФЗ.

{StudentID } → {BirthDate } – неприводимая ФЗ.

Множество функциональных зависимостей принято называть неприводимым тогда и только тогда, когда оно обладает всœеми тремя перечисленными ниже свойствами:

1. Зависимая часть каждой функциональной зависимости содержит только один атрибут.

2. Детерминант каждой функциональной зависимости является неприводимым.

3. Ни одна функциональная зависимость из множества не должна быть удалена без потери информации о связях.

Рассмотрение множества неприводимых ФЗ важно для нормализации отношений.

Выделяют два вида ФЗ:

1. Тривиальные ФЗ - ϶ᴛᴏ ФЗ, в которых правая часть (Y ) является подмножеством левой части (X ). С практической точки зрения они не представляют значительного интереса, однако с точки зрения формальной теории зависимостей крайне важно учитывать их наличие.

2. Нетривиальные ФЗ . Οʜᴎ действительно являются ограничениями целостности данных, в связи с этим в дальнейшем мы будем рассматривать именно нетривиальные ФЗ.

Для определœения того в какой нормальной форме находится отношение, требуется найти всœе ФЗ. Существуют три правила Армстронга (шведский математик), позволяющие из начального множества ФЗ вывести возможные ФЗ.

Пусть A , B , C - ϶ᴛᴏ подмножества множества атрибутов отношения R , AB – объединœение этих подмножеств.

1. Правило рефлексивности . В случае если множество B является подмножеством множества А , то А → В . (По сути, это определœение тривиальной зависимости.)

2. Правило дополнения . В случае если А → B , то АС → ВС .

3. Правило транзитивности . В случае если А → B и B→C , то А → С .

Каждое из этих правил должна быть доказано на базе определœения ФЗ.

При этом в целях упрощения получения всœех ФЗ можно вывести еще несколько дополнительных правил (пусть D - ϶ᴛᴏ еще одно произвольное подмножество множества атрибутов R ):

4. Правило самоопределœения . А → А .

5. Правило декомпозиции . В случае если А → ВС , то А → B и A → C .

6. Правило объединœения . В случае если А → В и А → С , то А → ВС .

7. Правило композиции . В случае если А → B и С → D , то АС → BD .

8. Теорема всœеобщего объединœения . В случае если А→ B и C → D , то А(С – В) → BD .

Название теоремы указывает на то, что некоторые из перечисленных выше правил бывают выведены как частные случаи этой теоремы.

При этом следует иметь в виду, что эти правила не обеспечивают чёткого алгоритма получения всœех ФЗ. Более того, такого алгоритма не существует. Единственный путь - ϶ᴛᴏ перебор всœех вариантов.

Понятие функциональной зависимости - понятие и виды. Классификация и особенности категории "Понятие функциональной зависимости" 2017, 2018.

Функциональные зависимости

Функциональная зависимость описывает связь между атрибутами и является одним из основных понятий нормализации. Предположим, что реляционная схема имеет атрибуты (A, B, C,…, Z) и вся база может быть представлена в виде одного универсального отношения R=(A, B, C,…, Z). Следовательно, каждый атрибут в базе имеет уникальное имя.

Если A и B – атрибуты некоторого отношения R, и каждое значение А связано с одним и только одним значением В (причем каждый из атрибутов может состоять из одного или нескольких атрибутов), то атрибут В функционально зависим от атрибута А (ВàА).

Функциональная зависимость, справедливая при любых условиях, называется тривиальной . Нетривиальные зависимости определяют ограничения целостности для отношений.

Транзитивная зависимость для атрибутов A, B и C некоторого отношения означает следующее: если АàВ и ВàС, то С транзитивно зависит от атрибута А через атрибут В (при условии, что А функционально не зависит от В или С).

Для исключения избыточности данных, что может привести к потере целостности, необходимо использовать минимально достаточное множество зависимостей.

Проектирование базы данных с помощью нормализации начинают с определения функциональных зависимостей, очевидных с точки зрения семантики, т.е. приведение к первой нормальной форме.

Таблица, находящаяся в первой нормальной форме, должна отвечать следующим требованиям:

1) таблица не должна иметь повторяющихся записей;

2) в таблице должны отсутствовать повторяющиеся группы полей;

3) каждое поле должно быть семантически неделимым.

Таблица, находящаяся во второй нормальной форме, должна отвечать всем требованиям 1НФ, любое неключевое поле однозначно идентифицируется полным набором ключевых полей, то есть каждый атрибут отношения находится в полной или частичной функциональной зависимости от другого атрибута.

Функциональная зависимость АàВ является полной функциональной зависимостью, если удаление какого либо атрибута из А приводит к утрате этой зависимости. Функциональная зависимость АàВ называется частичной , если в А есть некий атрибут при удалении которого эта зависимость сохраняется.

Таблица, находящаяся в третьей нормальной форме, должна отвечать всем требованиям 2НФ, ни одно из неключевых полей не идентифицируется при помощи другого неключевого поля, то есть отношение, которое находится в первой и второй нормальных формах и не имеет атрибутов, не входящих в первичный ключ атрибутов, которые находились бы в транзитивной функциональной зависимости от этого первичного ключа.

Нормальная форма Бойса-Кода (НФБК) основана на функциональных зависимостях, в которых учитываются все потенциальные ключи отношения, но с более строгими ограничениями.

Детерминантом функциональной зависимости является атрибут (или группа атрибутов), от которого полностью функционально зависит некоторый другой атрибут.

Для проверки принадлежности отношения к НФБК необходимо найти все его детерминанты и убедиться в том, что они являются потенциальными ключами.

Различие между 3НФ и НФБК заключается в том, что функциональная зависимость АàВ допускается в отношении 3НФ, если атрибут В является первичным ключом, а атрибут А не обязательно является потенциальным ключом. В отношении НФБК эта зависимость допускается только тогда, когда атрибут А является потенциальным ключом. Следовательно, НФБК является более строгой версией 3НФ, поскольку каждое отношение НФБК является 3НФ, но не всякое отношение 3НФ является НФБК.

Отношения находятся в НФБК только в том случае, если каждый его детерминант является потенциальным ключом.

Четвертая нормальная форма (4НФ) – отношение в НФБК, которое не содержит нетривиальных многозначных зависимостей.

Многозначная зависимость представляет такую зависимость между атрибутами отношения (например А, В и С), что каждое значение А представляет собой множество значений для В и множество значений для С. Однако множество значений В и С не зависят друг от друга.

Многозначная зависимость может быть дополнительно определена как тривиальная или нетривиальная. Многозначная зависимость АàВ некоторого отношения R определяется как тривиальная, если атрибут В является подмножеством атрибута А или . И наоборот, многозначная зависимость определяется как нетривиальная, если ни то ни другое условие не выполняется. Тривиальная многозначная зависимость не накладывает никаких ограничений на данное отношение, а нетривиальная – накладывает.

При разбиении отношения с помощью операции проекции используемый метод декомпозиции определяется точно. Необходимо, чтобы при обратном соединении полученных отношений можно было восстановить исходное отношение. Такая декомпозиция называется декомпозицией соединения без потерь (или беспроигрышным или неаддитивным соединением), поскольку при ее выполнении сохраняются все данные исходного отношения, а также исключается создание дополнительных фиктивных строк.

Пятая нормальная форма (5НФ), которая также называется проективно-соединительной нормальной формой, означает, что отношение в такой форме не имеет зависимостей соединения. Отношение R с подмножеством атрибутов А,В,…,Z удовлетворяет зависимости соединения, если каждое допустимое значение R равно соединению его проекций на подмножества А,В,…,Z.

Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует в точности одно значение В.

Обозначение : A → B. Это значит, что во всех кортежах с одинаковым значением атрибута А атрибут В будет иметь также одно и то же значение.

Если существует функциональная зависимость вида A→B и В→А, то между А и В имеется взаимно однозначное соответствие , или функциональная зависимость . О

Обозначение : A↔B или В↔А.

Если отношение находится в 1НФ, то все неключевые атрибуты функционально зависят от ключа с различной степенью зависимости.

Частичная зависимость (частичная функциональная зависимость) – зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость – зависимость неключевого атрибута от всего составного ключа.

Транзитивная зависимость

Атрибут С зависит от атрибута А транзитивно (существует транзитивная зависимость ), если для атрибута А, В, С выполняются условия A→B и В→С, по обратной зависимости отсутствуют.

Множественная зависимость

В отношении R атрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами R.

Обозначения : А=>B, A<=B, A<=>B.

Взаимно независимые атрибуты

Два и более атрибута называются взаимно независимыми , если ни один из этих атрибутов не является функционально зависимым от других атрибутов.

Обозначения : А →В, А=В.

Нормальные формы:

    Первая нормальная форма (1НФ). Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение).

    Вторая нормальная форма (2НФ). Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально зависит от первичного ключа (составного).

    Третья нормальная форма (3НФ). Отношение находится в 3НФ в том и только в том случае, если все атрибуты отношения взаимно независимы и полностью зависят от первичного ключа.

    Нормальная форма Бойса-Кодда (НФБК). Отношения находится в НФБК, если оно находится в 3НФ и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

    Четвертая нормальная форма (4НФ). Отношения находится в 4НФ в том и только в том случае, когда существует многозначная зависимость А=>B, а все остальные атрибуты отношения функционально зависят от А.

    Пятая нормальная форма (5НФ). Отношения находится в 5НФ, если оно находится в 4НФ и удовлетворяет зависимости по соединению относительно своих проекций.

    Шестая нормальная форма (6НФ). Отношение находится в 6НФ тогда и только тогда, когда она не может быть подвергнута дальнейшей декомпозиции без потерь.

    Обеспечение непротиворечивости и целостности данных в базе данных

Ответ :

Целостность – это свойство БД, означающее, что она содержит полную, непротиворечивую и адекватно отражающую предметную область информацию.

Различают:

    Физическую целостность – наличие физического доступа к данным и то, что данные не утрачены.

    Логическую целостность – отсутствие логических ошибок в БД, к которым относятся нарушение структуры БД или ее объектов, удаление или изменение установленных связей между объектами и т.д.

Поддержание целостности БД включает:

    Проверку (контроль) целостности

    Восстановление в случае обнаружения противоречий в базе.

Целостное состояние задается с помощью ограничений целостности (условий, которыми должны удовлетворять данные). Два типа ограничений целостности :

    Ограничение значений атрибутов отношений . Например : требование недопустимости NULL-значений, недопустимости повторяющихся значений в атрибутах, контроль принадлежности значений атрибутов заданного диапазона.

    Структурные ограничения на кортежи отношений . Определяет требования целостности сущностей и целостности ссылок .

Требование целостности сущностей состоит в том, что любой кортеж отношения должен быть отличным от любого другого кортежа этого отношения , иными словами, любое отношение должно обладать первичным ключом .

Требование целостности ссылок состоит в том, что для каждого значения внешнего ключа родительской таблицы должна найтись строка в дочерней таблице с таким же значением первичного ключа.

    Метод «сущность - связь»

Ответ :

Метод «сущность-связь» (метод «ER-диаграмм») – это метод, основанный на использование диаграмм, называемых соответственно диаграммами ER-экземпляров и диаграммами ER-типа.

Основные понятия

Сущность – это объект, информация о котором хранится в БД.

Атрибут – это свойство сущности.

Ключ сущности – это атрибут (набор атрибутов), используемый для идентификации экземпляра сущности.

Связь между сущностями – это зависимость между атрибутами этих сущностей.

Графические средства , используемые для получения наглядности и удобства проектирования:

    Диаграмма ER- экземпляров ;

    Диаграмма ER -типа или ER -диаграмма .

На основе анализа ER-диаграмм формируется отношения проектируемой БД. При этом учитывается степень связи сущностей и класс их принадлежности.

Степень связи – это характеристика связи между сущностями (1:1, 1:М; М:1; М:М).

Класс принадлежности сущности может быть: обязательным и необязательным .

Обязательный – если все экземпляры сущности обязательно участвуют в рассматриваемой связи.

Необязательный – не все экземпляры участвуют в рассматриваемой связи.

    Этапы проектирования баз данных

Ответ :

I . Концептуальное проектирование – сбор, анализ и редактирование требований к данным.

Цель : создание концептуальной модели данных, исходя из представлений пользователя о предметной области.

Процедуры :

    Определение сущностей и их документирование;

    Определение связей между сущностями и их документирование;

    Создание модели предметной области;

    Определение значений атрибутов;

    Определение первичных ключей для сущностей.

II . Логическое проектирование – на основе концептуальной модели создается структура данных.

Цель : преобразование концептуальной модели на основе выбранной модели данных в логическую модель, независимую от особенностей используемой в дальнейшем СУБД для физической реализации БД.

Процедуры :

    Выбор модели данных;

    Определение набора таблиц и их документирование;

    Нормализация таблиц;

    Определение требований к поддержке целостности данных и их документирование.

III . Физическое проектирование – определение особенностей данных и методов доступа.

Цель: описание конкретной реализации БД, размещение во внешней памяти компьютера.

Процедуры:

    Проектирование таблиц БД;

    Проектирование физической организации БД;

    Разработка стратегии защиты БД.

    Жизненный цикл базы данных

Ответ :

Жизненный цикл БД – это процесс проектирования, реализации и поддержания систем БД.

Стадии жизненного цикла БД:

    Анализ – анализ предметной области и выявление требований к ней, оценка актуальности системы.

    Проектирование – создание логической структуры БД, функциональное описание программных моделей и информационных запросов.

    Реализация – разработка ПО для БД, проводится тестирование.

    Эксплуатация и сопровождение .

Этапы жизненного цикла БД:

    Предварительное планирование – планирование БД, выполнения стратегического плана разработки БД (какие приложения используются, какие функции они выполняют, какие файлы связаны с каждым из этих приложений и какие новые файлы и приложения находятся в процессе разработки).

    Проверка осуществимости – проверка технологической, операционной и экономической осуществимостей.

    Определение требований – выбор цели БД, выявление информационных требований к БД, требования к оборудованию и к ПО, определение пользовательских требований.

    Концептуальное проектирование – создание концептуальной схемы.

    Реализация – приведение концептуальной модели ф функциональную БД.

    Выбор и приобретение необходимой СУБД.

    Преобразование концептуальной модели в логическую и физическую модели.

    На основе инфологической модели строится схема данных для конкретной СУБД.

    Определяются какие прикладные процессы необходимо реализовать как хранимые процедуры.

    Реализовать ограничения, предназначенные для обеспечения целостности данных.

    Спроектировать триггеры.

    Разработать стратегию индексирования и кластеризации, выполнить оценку размеров таблицы, кластеров и индексов.

    Определить уровни доступа пользователей, разработать и внедрить правила безопасности.

    Разработать сетевую топология БД.

    Создание словаря данных.

    Заполнение БД.

    Создание прикладного ПО, контроль управления.

    Обучение пользователя.

    Оценка и усовершенствование схемы БД .

    Правила формирования отношений

Ответ :

Правила формирования отношений основываются на учете следующего:

    Степень связи между сущностями (1:1, 1:М, М:1, М:М);

    Класса принадлежности экземпляров сущностей (обязательный и необязательный).

Функциональная взаимозависимость. Если существует функциональная зависимость вида А->В и В->А, то между А и В имеется взаимно однозначное соответствие, или функциональная взаимозависимость, обозначаемая как А<->В или В<->А.

Если отношение находится в 1НФ, то все неключевые атрибуты функцио­нально зависят от ключа с различной степенью зависимости.

Частичной функцио­ нальной зависимостью (частичной ФЗ) называется зависимость неключевого атрибута от части составного ключа. В рассматриваемом отношении атрибут Должн находится в функциональной зависимости от атрибута ФИО, являющегося частью ключа. Тем самым атрибут Должн находится в частичной зависимости от ключа отношения.

Альтернативным вариантом является полная функциональная зависи­ мость неключевого атрибута от всего составного ключа. В нашем примере атрибут ВидЗан находится в полной функциональной зависимости от составного ключа.

Атрибут С зависит от атрибута А транзитивно (существует транзитив ная зависимость), если для атрибутов А, В, С выполняются условия А->В и В->С, но обратная зависимость отсутствует. В отношении на рис. 4.4 транзитивной зависимостью связаны атрибуты:

Ф И О ->Д олжн -> Оклад

Между атрибутами может иметь место многозначная зависимость.

В отношении R атрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами из R,

Многозначные зависимости могут быть «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: А=>Б, А<=Би А<=>Б.

Например, пусть преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет местозависимость ФИО<=>Предмет. Так, из таблицы, приведенной на рис. 4.4, видно, что преподаватель Иванов И.М. ведет занятия по двум предметам, а дисциплина СУБД - читается двумя преподавателями: Ивановым И.М. и Петровым М.И.

Замечание . В общем случае между двумя атрибутами одного отношения могут существовать зависимости: 1:1, 1:М, М:1 и М:М. Поскольку зависимость между атрибутами является причиной аномалий, стараются расчленить отношения с зависимостями атрибутов на несколько отношений. В результате образуется совокупность связанных отношений (таблиц) со связями вида 1:1, 1:М, М:1 и М:М (подраздел 3.2). Связи между таблицами отражают зависимости между атрибутами различных отношений.

Взаимно независимые атрибуты. Два или более атрибута называютсявзаимно независимыми, если ни один из этих атрибутов не является функционально зависимым от других атрибутов. В случае двух атрибутов отсутствие зависимости атрибута А от атрибута В можно обозначить так: A¬->B. Случай, когда A¬->В и B¬->A, можно обо­значить А¬<->В.

4.3.3 Аксиомы Армстронга

Чтобы определить ключи и понять логические следствия функциональных зависимостей в общем случае, необходимо вычислить замыкание F + изF или по крайней мере знать для заданногоF и функциональной зависимостиX Y , содержится лиX Y вF + . Для этого необходимо иметь правила вывода, которые указывают, как из одной или более зависимостей выводить другие зависимости.

Множество таких правил называют аксиомами Армстронга . Предположим, что задана некоторая схема отношения с множеством атрибутовМ, универсальным множеством атрибутов, и множество функциональных зависимостейF , связывающих только атрибуты, принадлежащиеМ. Тогда имеем следующие правила вывода (аксиомы):

А1: (рефлексивность). ЕслиY X М, то X Y логически следует изF . Заметим, что это правило даеттривиальные зависимости, т. е. зависимости, правая часть которых содержится в левой части. Его использование не зависит отF .

А2: (пополнение). ЕслиX Y иZ≤ М , тоX UZ Y UZ . Важно напомнить, что данная зависимостьX Y либо принадлежитF , либо может быть выведена из принадлежащихF зависимостей с использованием описываемых аксиом.

A3:(транзитивность). ЕслиX Y иY Z, тоX Z .

Относительно легко доказывается, что аксиомы Армстронга являются надежными, т. е. приводят только к истинным заключениям. Это означает, что используя их, мы не можем вывести из F какую-либо зависимость, которая не принадлежитF + . Более сложно доказать их полноту, означающую, что эти аксиомы могут быть использованы для получения каждого справедливого следствия из зависимостей. Это означает, что при заданном множестве зависимостейF правила позволяют нам вывести все зависимости, принадлежащиеF + .

Из аксиом Армстронга выводятся еще 5 аксиом (расширения, продолжения, псевдотранзитивности, объединения и декомпозиции), используемых для построенияполного семейства ФЗ.

Функциональная зависимость.

Атрибут В функционально зависит от атрибута А, если одно значение А определяет точно одно значение В.

В том случае, если для данного отношения все его атрибуты функционально зависят от одного атрибута, то этот атрибут – потенциальный простой ключ, если его значения в пределах отношения уникальны. Какой-то из потенциальных ключей назначается ключом отношения.

В отношении иногда можно выделить совокупность нескольких атрибутов, от которой функционально зависят все остальные атрибуты. Если ее значения уникальны в совокупности в пределах отношения, то эта совокупность – сверхключ отношения ,

Если атрибут В функционально зависит от сверхключа, но нет функциональной зависимости от любого подмножества сверхключа, то имеет место полная функциональная зависимость В от сверхключа.

Если все атрибуты одного отношения функционально зависят от данного сверхключа, но нет функциональной зависимости от любого подмножества этого сверхключа, то сверхключ является потенциальным ключом .

Составной ключ отношения выбирается из потенциальных ключей.

Обратите внимание, что термин функциональная зависимость соответствует понятию функции в математике. Если неключевой атрибут зависит от всего составного ключа и не зависит от его частей, то говорят о полной функциональной зависимости атрибута от составного ключа.

Если атрибут А зависит от атрибута В, а В зависит от атрибута С, но обратная зависимость отсутствует, то говорят, что атрибут С зависит от А транзитивно.

Типы связей в реляционных базах

Связываются на самом деле записи разных отношений БД, однако принято говорить о связывании этих отношений. При связывании устанавливаются ссылки кортежей одного отношения на кортежи другого отношения, принадлежащих одной БД.

Всего поддерживается четыре типа связей (ссылок): «один к одному», «много к одному», «один ко многим», «много ко многим».

Связь «один ко многим»

ОтношениеХ связано с отношением У «один ко многим», если каждому кортежу из Х соответствует несколько кортежей из У . При этом указывается, на какое поле х из Х ссылается поле у из У .

Чтобы ссылки установить, в СУБД существует режим проектирования связей. Чтобы со связанной БД корректно работала СУБД, связи должны удовлетворять условиям, которые защищают целостность БД. Ограничения устанавливаются на свойства связываемых полей. В данном случае, в отношении Х (со стороны «один») связующее поле х должно обладать уникальностью значений, а поле у из У не должно содержать значений, отсутствующих в х . Поле х называется первичным ключом , а поле у внешним ключом . В этой связи отношение Х , в котором размещен первичный ключ, называется главным отношением , а отношениеУ , в котором находится внешний ключ, называется подчиненным отношением .



Пример связей «один ко многим»:

отношение «Заказы» (подчиненная) и отношение «Товары» (главная);

отношение «Заказы» (подчиненная) и отношение «Клиенты» (главная).

В отношении ЗАКАЗЫ внешние ключи для связи с отношениями ТОВАРЫ и КЛИЕНТЫ:Товар_зак и Клиент_зак. В отношенияхТОВАРЫ и КЛИЕНТЫ первичные ключи Товар_код и Клиент_код, на которые внешние ключи ссылаются.

Связь «один к одному»

Если в связи «один ко многим»внешний ключ у содержит только уникальные значения, то это тип связи «один к одному» - каждой записи в У соответствует одна запись в Х и каждой записи в Х соответствует не более одной записи в У . При этом внешний ключ у не является, как х , первичным ключом связи, так как в поле х могут быть значения, которых нет в у . А в поле у таких значений, которых нет в поле х , быть не может. В отношениях Х и У может быть разное число кортежей.

Связь «много к одному»

Определяется как связь «один ко многим», но отношения Х и У в определении меняются местами.

Связь «много ко многим»

Устанавливается между двумя отношениями Х и У, еслив каждом из них расположен первичный ключ связи с третьим отношением С, в котором размещены два внешних ключа связей «один ко многим» между Х иС и«один ко многим» между С иУ. ОтношениеС называют связующим. В отношении С нужно назначать составной ключ (а не простой). В этот составной ключ должны входить внешние ключи двух связей (или большего числа, если таких пар, как Х и У, связываемых черезС, имеется несколько).

Фиксируются два базовых требования (ограничения) для сохранения целостности. Ограничения целостности по сущностям и по ссылкам должны поддерживаться реляционной СУБД.

Первое целостности сущностей . Объекту предметной области (или сущности в модели предметной области) в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого же отношения. Другими словами: любое отношение должно обладать ключом. Это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.

Для соблюдения целостности по сущностям достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением ключа .

Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что сложные сущности модели предметной области представляются в реляционной БД в виде нескольких кортежей нескольких связанных отношений.

Требование целостности по ссылкам, или требование внешнего ключа, состоит в том, что для каждого значения внешнего ключа подчиненного отношения, в главном отношении должен найтись кортеж с этим значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (ни на что не указывать). Для примера связей записей отношений сотрудники и отделы это означает, что если для сотрудника в отношении сотрудник в поле отдел указан номер отдела, то этот отдел должен существовать в отношении отделы.

При обновлении подчиненного отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) СУБД достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа (те значения, которых нет в поле первичного ключа главного отношения). При удалении кортежа из главного отношения, если на него ссылается подчиненное отношение, в СУБД есть несколько следующих приемов, каждый из которых поддерживает целостность по ссылкам.

1) Запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа).

2) При удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным.

3) Создается каскадное удаление, состоящее в том, что при удалении кортежа из главного отношения, из подчиненного отношения автоматически удаляются все ссылающиеся кортежи.

В развитых реляционных СУБД можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации. Для принятия решения необходимо анализировать требования конкретной предметной области.

Проектирование реляционных баз данных. Нормализация.

Понятие нормализации

Будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений.

Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится преобразование исходной схемы отношений в некоторый набор, обладающий лучшими свойствами.

Процесс проектирования представляет собой процесс нормализации схем отношений , приведение отношений к «нормальным формам», причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая. Реально процесс нормализации осуществляется через декомпозицию отношений, следуя определенным правилам, которые будут рассмотрены ниже. Именно декомпозиция приводит отношение к очередной нормальной форме.

Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений.

Требование первой нормальной формы является общим базовым требованием классической реляционной модели данных. Существенное ограничение первой нормальной формы - атрибуты отношения атомарны, то есть атрибуты не являются сами отношениями, далее не делятся (как атомы).

В теории реляционных баз данных известно теоретически 7 нормальных форм, здесь выделяется следующая последовательность 6 нормальных форм:

· первая нормальная форма (1NF);

· вторая нормальная форма (2NF);

· третья нормальная форма (3NF);

· нормальная форма Бойса-Кодда (BCNF);

· четвертая нормальная форма (4NF);

· пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).

Практическое значение имеют первые три нормальные формы.

Основные свойства нормальных форм

В основе процесса проектирования лежит метод декомпозиции отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы.

Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Это понятие было рассмотрено в лекции №4. Уточним определения, распространяя их на наборы полей.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: