Технология Ethernet и кабельные сети

Рис. 1. Формат кадра Ethernet DIX (II)

Первые два поля заголовка отведены под адреса:

DA (Destination Address) - МАС-адрес узла назначения;

SA (Source Address) - МАС-адрес узла отправителя. Для доставки кадра достаточно одного адреса - адреса назначения; адрес источника помещается в кадр для того, чтобы узел, получивший кадр, знал, от кого пришел кадр и кому нужно на него ответить. Принятие решения об ответе не входит в компетенцию протокола Ethernet, это дело протоколов верхних уровней. Ethernet же только выполнит такое действие, если с сетевого уровня поступит соответствующее указание.

Поле Т (Туре, или EtherType) содержит условный код протокола верхнего уровня, данные которого находятся в поле данных кадра, например шестнадцатеричное значение 08-00 соответствует протоколу IP. Это поле требуется для поддержки интерфейсных функций мультиплексирования и демультиплексирования кадров при взаимодействии с протоколами верхних уровней.

Поле данных может содержать от 46 до 1500 байт. Если длина пользовательских данных меньше 46 байт, то это поле дополняется до минимального размера байтами заполнения. Эта операция требуется для корректной работы метода доступа Ethernet (он рассматривается в следующем разделе).

Поле контрольной последовательности кадра (Frame Check Sequence, FCS) состоит из 4 байт контрольной суммы. Это значение вычисляется по алгоритму CRC-32.

Кад р Ethernet DIX (II) не отражает разделения канального уровня Ethernet на уровень MAC и уровень LLC: его поля поддерживают функции обоих уровней, например интерфейсные функции поля Г относятся к функциям уровня LLC, в то время как все остальные поля поддерживают функции уровня MAC.

Существуют еще три стандартных формата кадра Ethernet:

  • Кадр 802.3/LLC является стандартом комитета IEEE 802 и построен в соответствии с принятым разбиением функций канального уровня на уровень MAC и уровень LLC. Поэтому результирующий кадр является вложением кадра LLC, определяемого стандартом 802.2, в кадр MAC, определяемого стандартом 802.3.
  • Кадр Raw 802.3, или Novell 802.3, появился в результате усилий компании Novell по ускорению разработки своего стека протоколов в сетях Ethernet.
  • Кадр Ethernet SNAP стал результатом деятельности комитета 802.2 по приведениюпредыдущих форматов кадров к некоторому общему стандарту и приданию кадру необходимой гибкости для учета в будущем возможностей добавления полей или изменения их назначения.

Как уже было сказано, в настоящее время оборудованием Ethernet используются только кадры Ethernet DIX (II). Остальные форматы кадров, в том числе кадр 802.3/LLC, попрежнему формально являющийся стандартным, вышли из употребления из-за более сложного формата, который оказался не нужен в условиях существования единой технологии канального уровня.

Статья получилась довольно объёмная, рассмотренные темы - форматы Ethenet фреймов, границы размеров L3 Payload, эволюция размеров Ethernet заголовков, Jumbo Frame, Baby-Giant, и много чего задето вскользь. Что-то вы уже встречали в обзорной литературе по сетям передачи данных, но со многим, однозначно, не сталкивались, если глубоко не занимались изысканиями.

Начнём с рассмотрения форматов заголовков Ethernet фреймов в очереди их появления на свет.

Форматы Ehternet фреймов.

1) Ethernet II

Рис. 1

Preamble – последовательность бит, по сути, не являющаяся частью ETH заголовка определяющая начало Ethernet фрейма.

DA (Destination Address) – MAC адрес назначения, может быть юникастом, мультикастом, бродкастом.

SA (Source Address) – MAC адрес отправителя. Всегда юникаст.

E-TYPE (EtherType) – Идентифицирует L3 протокол (к примеру 0x0800 – Ipv4, 0x86DD – IPv6, 0x8100- указывает что фрейм тегирован заголовком 802.1q, и т.д. Список всех EtherType - standards.ieee.org/develop/regauth/ethertype/eth.txt)

Payload – L3 пакет размером от 46 до 1500 байт

FCS (Frame Check Sequences) – 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным.

Данный формат был создан в сотрудничестве 3-х компаний – DEC, Intel и Xerox. В связи с этим, стандарт также носит название DIX Ethernet standard . Данная версия стандарта была опубликована в 1982г (первая версия, Ehernet I – в 1980г. Различия в версиях небольшие, формат в целом остался неизменным). В 1997г. году данный стандарт был добавлен IEEE к стандарту 802.3, и на данный момент, подавляющее большинство пакетов в Ethernet сетях инкапсулированы согласно этого стандарта.

2) Ethernet_802.3/802.2 (802.3 with LLC header)


Рис. 2

Как вы понимаете, комитет IEEE не мог смотреть спокойно, как власть, деньги и женщины буквально ускользают из рук. Поэтому, занятый более насущными проблемами, за стандартизацию технологии Ethernet взялся с некоторым опозданием (в 1980 взялись за дело, в 1983 дали миру драфт, а в 1985 сам стандарт), но большим воодушевлением. Провозгласив инновации и оптимизацию своими главными принципами, комитет выдал следующий формат фрейма, который вы можете наблюдать на Рисунке 2.

Первым делом обращаем внимание на то, что “ненужное” поле E-TYPE преобразовано в поле Length, которое указывало на количество байт следующее за этим полем и до поля FCS. Теперь, понять у кого длинее можно было уже на втором уровне системы OSI. Жить стало лучше. Жить стало веселее.

Но, указатель на тип протокола 3его уровня был нужен, и IEEE дало миру следующую инновацию - два поля по 1 байту - Source Service Access Point(SSAP ) и Destination Service Access Point (DSAP ). Цель, таже самая, – идентифицировать вышестоящий протокол, но какова реализация! Теперь, благодаря наличию двух полей в рамках одной сессии пакет мог передаваться между разными протоколами, либо же один и тот же протокол мог по разному называться на двух концах одной сессии. А? Каково? Где ваше Сколково?

Замечание: В жизни же это мало пригодилось и SSAP/DSAP значения обычно совпадают. К примеру SAP для IP – 6, для STP - 42 (полный список значений - standards.ieee.org/develop/regauth/llc/public.html)

Не давая себе передышки, в IEEE зарезервировали по 1 биту в SSAP и DSAP. В SSAP под указание command или response пакета, в DSAP под указание группового или индивидуального адреса (см. Рис. 6). В Ethernet сетях эти вещи распространения не получили, но количество бит в полях SAP сократилось до 7, что оставило лишь 128 возможных номера под указание вышестоящего протокола. Запоминаем этот факт, к нему мы ещё вернёмся.

Было уже сложно остановиться в своём стремлении сделать лучший формат фрейма на земле, и в IEEE фрейм формате появляется 1 байтное поле Control . Отвечающее, не много, не мало, за Connection-less или же Connection-oriented соединение!

Выдохнув и осмотрев своё детище, в IEEE решили взять паузу.

Замечание : Рассматриваемые 3 поля - DSAP, SNAP и Control и являются LLC заголовком.

3) «Raw» 802.3


Рис. 3

Данный «недостандарт» явил в мир Novell. Это были лихие 80-ые, все выживали, как могли, и Novell не был исключением. Заполучив ещё в процессе разработки спецификации стандарта 802.3/802.2, и лёгким движением руки выкинув LLC заголовок, в Novell получили вполне себе неплохой фрейм формат (с возможность измерения длины на втором уровне!), но одним существенным недостатком – отсутствием возможности указания вышестоящего протокола. Но, как вы уже могли догадаться, работали там ребята не глупые, и по здравому размышлению выработали решение – «а обратим ка мы свои недостатки в свои же достоинства», и ограничили этот фрейм-формат исключительно IPX протоколом, который сами же и поддерживали. И задумка хорошая, и план был стратегически верный, но, как показала история, не фортануло.

4) 802.3 with SNAP Header.
Время шло. В комитет IEEE приходило осознание того, что номера протоколов и деньги кончаются. Благодарные пользователи засыпали редакцию письмами, где 3-х байтный LLC заголовок ставился в один ряд с такими великими инновациями человечества, как оборудование собаки 5ой ногой, или же с рукавом, который можно использовать для оптимизации женской анатомии. Выжидать дальше было нельзя, настало время заявить о себе миру повторно.


Рис. 4

И в помощь страждущим от нехватки номеров протоколов (их всего могло быть 128 – мы упоминали), IEEE вводит новый стандарт фрейма Ethernet SNAP (Рис. 4). Основное нововведение - добавление 5-ти байтного поля Subnetwork Access Protocol (SNAP), которое в свою очередь состоит из двух частей – 3х байтного поля Organizationally Unique Identifier (OUI) и 2х байтного Protocol ID (PID) - Рис. 5.


Рис. 5

OUI или же vendor code – позволяет идентифицировать пропиетарные протоколы указанием вендора. К примеру, если вы отловите WireShark`ом пакет PVST+, то в поле OUI увидите код 0x00000c, который является идентификатором Cisco Systems (Рис. 6).


Рис. 6

Замечание: Встретить пакет с инкапсуляцией в формат фрейма 802.3 SNAP довольно легко и сейчас – это все протоколы семейства STP, протоколы CDP, VTP, DTP.

Поле PID это, по сути, то же поле EtherType из DIX Ethernet II - 2 байта под указание протокола вышестоящего уровня. Так как ранее, для этого использовались DSAP и SSAP поля LLC заголовка, то для указания того, что тип вышестоящего протокола нужно смотреть в поле SNAP, поля DSAP и SSAP принимают фиксированное значение 0xAA (также видно на Рис. 6)

Замечание: При использовании для переноса IP пакетов формата фрейма LLC/SNAP, IP MTU снижается с 1500 до 1497 и 1492 байт соответственно.

По заголовкам в формате фрейма в принципе всё. Хотел бы обратить внимание на ещё один момент в формате фрейма – размер payload. Откуда взялся этот диапазон - от 46 до 1500 байт?

Размер L3 Payload.

Откуда взялось нижнее ограничение, знает, пожалуй, каждый, кто хотя бы читал первый курикулум CCNA. Данное ограничение является следствием ограничения в размер фрейма в 64 байта (64 байта – 14 байт L2 заголовок - 4 байта FCS = 46 байт) накладываемого методом CSMA/CD – время требуемое на передачу 64 байт сетевым интерфейсом является необходимым и достаточным для определения коллизии в среде Ethernet.
Замечание: В современных сетях, где возникновение коллизий исключено, данное ограничение уже не актуально, но требование сохраняется. Это не единственный «аппендикс» оставшийся с тех времен, но о них поговорим в другой статье.

А вот откуда взялись эти пресловутые 1500 байт, вопрос сложнее. Я нашел следующее объяснение - предпосылок на введение верхнего ограничения размера фрейма было несколько:

  • Задержка при передаче – чем больше фрейм, тем дольше длится передача. Для ранних сетей, где Collision домен не ограничивался портом, и все станции должны были ждать завершения передачи, это было серьёзной проблемой.
  • Чем больше фрейм, тем больше вероятность того что фрейм при передаче будет поврежден, что приведет к необходимости повторной передачи, и все устройства в collision домене будут вынуждены опять ожидать.
  • Ограничения, накладываемые памятью используемой под интерфейс буферы – на тот момент (1979г) увеличение буферов значительно удорожало стоимость интерфейса.
  • Ограничение, вносимое полем Length/Type – в стандарте закреплено, что все значения выше 1536 (от 05-DD до 05-FF.) указывают на EtherType, соответственно длина должна быть меньше 05-DC. (У меня правда есть подозрение, что это скорее следствие, чем предпосылка, но вроде инфа от разработчиков стандарта 802.3)
Итого, в стандарте 802.3 размер фрейма ограничивался 1518 байтами сверху, а payload 1500 байтами (отсюда и дефолтный размер MTU для Ethernet интерфейса).

Замечание: Фреймы меньше 64 байт называются Runts, фреймы больше 1518 байт называются Giants. Просмотреть кол-во таких фреймов полученных на интерфейсе можно командой show interface gigabitEthernet module/number и show interface gigabitEthernet module/number counters errors. Причём до IOS 12.1(19) в счётчики шли как фреймы с неверным, так и верным CRS (хотя вторые не всегда дропались – зависит от платформы и условий). А вот начиная с 12.1.(19) отображаются в этих счётчиках только те runt и giant фреймы, которые имеют неверный CRS, фреймы меньше 64 байт, но с верным CRS (причина возникновения обычно связана с детегированием 802.1Q или источником фреймов, а не проблемами физического уровня) с этой версии попадают в счётчик Undersize, дропаются они, или же форвардятся дальше, зависит от платформы.

Эволюция размеров Ethernet заголовков.
С развитием технологий и спецификаций линейки IEEE 802 претерпевал изменения и размер фрейма. Основные дальнейшее изменения размера фрейма (не MTU!):
  • 802.3AC - увеличивает максимальный размер фрейма до 1522 – добавляется Q-tag – несущий информацию о 802.1Q (VLAN tag) и 802.1p (биты под COS)
  • 802.1AD - увеличивает максимальный размер фрейма до 1526, поддержка QinQ
  • 802.1AH (MIM) – Provider Bridge Backbone Mac in Mac + 30 байт к размеру фрейма
  • MPLS – увеличиваем размер фрейма на стек меток 1518 + n*4, где n – количество меток в стеке.
  • 802.1AE – Mac Security, к стандартным полям добавляются поля Security Tag и Message Authentication Code + 68 байт к размеру фрейма.

Все эти фреймы увеличенного размера группируются под одни именем – Baby-Giant frames. Негласное верхнее ограничение по размерам для Baby-Giant – это 1600 байт. Современные сетевые интерфейсы будут форвардить эти фреймы, зачастую, даже без изменения значения HW MTU.

Отдельно обратим внимание на спецификации 802.3AS - увеличивает максимальный размер фрейма до 2000 (но сохраняет размер MTU в 1500 байт!). Увеличение приходится на заголовок и трейлер. Изначально увеличение планировалось на 128 байт – для нативной поддержки стандартом 802.3 вышеперечисленных расширений, но в итоге сошлись на 2х тысячах, видимо, чтобы два раза не собираться (или как говорят в IEEE – this frame size will support encapsulation requirements of the foreseeable future). Стандарт утвержден в 2006 году, но кроме как на презентациях IEEE, я его не встречал. Если у кого есть что добавить здесь (и не только здесь) – добро пожаловать в комменты. В целом тенденция увеличения размера фрейма при сохранении размера PAYLOAD, порождает у меня в голове смутные сомнения в правильности выбранного направления движения.

Замечание: Немного в стороне от перечисленного обосновался FCoE фрейм – размер фрейма до 2500 байт, зачастую, эти фреймы называются mini-jumbo. Для их саппорта необходимо включать поддержку jumbo-frame.

И последний «бастард» Ethernet это Jumbo Frame (хотя если перевести Jumbo, то вырисовывается скорее Ходор – отсылка к Game of Thrones). Под это описание попадают все фреймы превосходящие размером стандарт в 1518 байт, за исключением рассмотренных выше. Jumbo пакеты никак не отражены в спецификациях 802.3 и поэтому реализация остаётся на совести каждого конкретного вендора. Тем не менее, Jumbo фреймы существуют столько же, сколько существует Ethernet. Определено это следующим:

  1. Выгода соотношения Payload к заголовкам. Чем больше это соотношение, тем эффективней мы можем использовать линии связи. Конечно здесь разрыв будет не такой как в сравнении с использованием пакетов в 64 байт и 1518 байт для TCP сессий. Но свои 3-8 процентов, в зависимости от типа трафика выиграть можно.
  2. Значительно меньшее количество заголовков генерирует меньшую нагрузку на Forwading Engine, также и на сервисные Engine. К примеру, frame rate для 10G линка загруженного фреймами по 1500 байт равен 812 744 фреймов в секунду, а тот же линк загруженный Jumbo фреймами в 9000 байт генерирует фрейм рейт всего лишь в 138 587 фрейм в секунду. На рисунке 7 приведены график из отчёта Alteon Networks (ссылка будет внизу статьи) утилизации CPU и гигабитного линка, в зависимости от типа используемого размера фрейма.
  3. Увеличение TCP Throughput при изменении размера MTU -

Поля кадра Преамбула (7 байтов) и Начальный разграничитель кадров (SFD) (1 байт) в Ethernet используются для синхронизации между передающим и принимающим устройствами. Эти первые восемь байтов фрейма используются, чтобы привлечь внимание узлов получения. По существу первые несколько байтов говорят получателям подготовиться принимать новый кадр.

Поле MAC-адрес Назначения

Поле MAC Адрес Назначения (6 байтов) является идентификатором для предполагаемого получателя. Как Вы можете вспомнить, этот адрес используется Уровнем 2, чтобы помочь устройствам в определении, адресуется ли им данный фрейм. Адрес во фрейме сравнивается с MAC-адресом устройства. Если адреса совпадают, устройство принимает фрейм.

Поле MAC-адрес Источника

Поле MAC Адрес Назначения (6 байтов) идентифицирует отправляющий NIC или интерфейс фрейма. Коммутаторы также используют этот адрес, чтобы добавить его к своим таблицам сопоставления. Роль коммутаторов будет обсуждаться позже в этой рубрике.

Поле Длина/Тип

Для любого стандарта IEEE 802.3, более раннего 1997 года, поле Длина определяет точную длину поля данных фрейма. Это позже используется позже в качестве части FCS, чтобы гарантировать, что сообщение было получено корректно. Если цель поля состоит в том, чтобы определить тип, как в Ethernet II, поле Тип описывает, какой реализуется протокол.

Эти два применения поля были официально объединены в 1997 в стандарте IEEE 802.3x, потому что оба применения были распространены. Поле Тип Ethernet II включается в текущее определение фрейма 802.3. Когда узел принимает кадр, он должен исследовать поле Длина, чтобы определить, какой протокол более высокого уровня в нем присутствует. Если значение двух октетов больше или равно, чем шестнадцатеричное число 0x0600 или десятичное число 1536, то содержимое поля Данные декодируется согласно обозначенному типу протокола. Если значение поля меньше или равно, чем шестнадцатеричное число 0x05DC или десятичное число 1500, поле Длина используется для указания использования формата кадра IEEE 802.3. Таким образом различаются кадры Ethernet II и 802.3.

Поля Данные и Набивка

Поля Данные и Набивка (46 - 1500 байтов) содержат инкапсулированные данные от более высокого уровня, который является типичным PDU Уровня 3, обычно, пакетом IPv4. Все фреймы должны быть по крайней мере 64 байта длиной. Если инкапсулируется пакет меньшего размера, используется Набивка, чтобы увеличить размер кадра до этого минимального размера.

IEEE поддерживает список общего назначения типов Ethernet II.

  • Сетевые технологии
  • Статья получилась довольно объёмная, рассмотренные темы - форматы Ethenet фреймов, границы размеров L3 Payload, эволюция размеров Ethernet заголовков, Jumbo Frame, Baby-Giant, и много чего задето вскользь. Что-то вы уже встречали в обзорной литературе по сетям передачи данных, но со многим, однозначно, не сталкивались, если глубоко не занимались изысканиями.

    Начнём с рассмотрения форматов заголовков Ethernet фреймов в очереди их появления на свет.

    Форматы Ehternet фреймов.

    1) Ethernet II

    Рис. 1

    Preamble – последовательность бит, по сути, не являющаяся частью ETH заголовка определяющая начало Ethernet фрейма.

    DA (Destination Address) – MAC адрес назначения, может быть юникастом, мультикастом, бродкастом.

    SA (Source Address) – MAC адрес отправителя. Всегда юникаст.

    E-TYPE (EtherType) – Идентифицирует L3 протокол (к примеру 0x0800 – Ipv4, 0x86DD – IPv6, 0x8100- указывает что фрейм тегирован заголовком 802.1q, и т.д. Список всех EtherType - standards.ieee.org/develop/regauth/ethertype/eth.txt)

    Payload – L3 пакет размером от 46 до 1500 байт

    FCS (Frame Check Sequences) – 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным.

    Данный формат был создан в сотрудничестве 3-х компаний – DEC, Intel и Xerox. В связи с этим, стандарт также носит название DIX Ethernet standard . Данная версия стандарта была опубликована в 1982г (первая версия, Ehernet I – в 1980г. Различия в версиях небольшие, формат в целом остался неизменным). В 1997г. году данный стандарт был добавлен IEEE к стандарту 802.3, и на данный момент, подавляющее большинство пакетов в Ethernet сетях инкапсулированы согласно этого стандарта.

    2) Ethernet_802.3/802.2 (802.3 with LLC header)


    Рис. 2

    Как вы понимаете, комитет IEEE не мог смотреть спокойно, как власть, деньги и женщины буквально ускользают из рук. Поэтому, занятый более насущными проблемами, за стандартизацию технологии Ethernet взялся с некоторым опозданием (в 1980 взялись за дело, в 1983 дали миру драфт, а в 1985 сам стандарт), но большим воодушевлением. Провозгласив инновации и оптимизацию своими главными принципами, комитет выдал следующий формат фрейма, который вы можете наблюдать на Рисунке 2.

    Первым делом обращаем внимание на то, что “ненужное” поле E-TYPE преобразовано в поле Length, которое указывало на количество байт следующее за этим полем и до поля FCS. Теперь, понять у кого длинее можно было уже на втором уровне системы OSI. Жить стало лучше. Жить стало веселее.

    Но, указатель на тип протокола 3его уровня был нужен, и IEEE дало миру следующую инновацию - два поля по 1 байту - Source Service Access Point(SSAP ) и Destination Service Access Point (DSAP ). Цель, таже самая, – идентифицировать вышестоящий протокол, но какова реализация! Теперь, благодаря наличию двух полей в рамках одной сессии пакет мог передаваться между разными протоколами, либо же один и тот же протокол мог по разному называться на двух концах одной сессии. А? Каково? Где ваше Сколково?

    Замечание: В жизни же это мало пригодилось и SSAP/DSAP значения обычно совпадают. К примеру SAP для IP – 6, для STP - 42 (полный список значений - standards.ieee.org/develop/regauth/llc/public.html)

    Не давая себе передышки, в IEEE зарезервировали по 1 биту в SSAP и DSAP. В SSAP под указание command или response пакета, в DSAP под указание группового или индивидуального адреса (см. Рис. 6). В Ethernet сетях эти вещи распространения не получили, но количество бит в полях SAP сократилось до 7, что оставило лишь 128 возможных номера под указание вышестоящего протокола. Запоминаем этот факт, к нему мы ещё вернёмся.

    Было уже сложно остановиться в своём стремлении сделать лучший формат фрейма на земле, и в IEEE фрейм формате появляется 1 байтное поле Control . Отвечающее, не много, не мало, за Connection-less или же Connection-oriented соединение!

    Выдохнув и осмотрев своё детище, в IEEE решили взять паузу.

    Замечание : Рассматриваемые 3 поля - DSAP, SNAP и Control и являются LLC заголовком.

    3) «Raw» 802.3


    Рис. 3

    Данный «недостандарт» явил в мир Novell. Это были лихие 80-ые, все выживали, как могли, и Novell не был исключением. Заполучив ещё в процессе разработки спецификации стандарта 802.3/802.2, и лёгким движением руки выкинув LLC заголовок, в Novell получили вполне себе неплохой фрейм формат (с возможность измерения длины на втором уровне!), но одним существенным недостатком – отсутствием возможности указания вышестоящего протокола. Но, как вы уже могли догадаться, работали там ребята не глупые, и по здравому размышлению выработали решение – «а обратим ка мы свои недостатки в свои же достоинства», и ограничили этот фрейм-формат исключительно IPX протоколом, который сами же и поддерживали. И задумка хорошая, и план был стратегически верный, но, как показала история, не фортануло.

    4) 802.3 with SNAP Header.
    Время шло. В комитет IEEE приходило осознание того, что номера протоколов и деньги кончаются. Благодарные пользователи засыпали редакцию письмами, где 3-х байтный LLC заголовок ставился в один ряд с такими великими инновациями человечества, как оборудование собаки 5ой ногой, или же с рукавом, который можно использовать для оптимизации женской анатомии. Выжидать дальше было нельзя, настало время заявить о себе миру повторно.


    Рис. 4

    И в помощь страждущим от нехватки номеров протоколов (их всего могло быть 128 – мы упоминали), IEEE вводит новый стандарт фрейма Ethernet SNAP (Рис. 4). Основное нововведение - добавление 5-ти байтного поля Subnetwork Access Protocol (SNAP), которое в свою очередь состоит из двух частей – 3х байтного поля Organizationally Unique Identifier (OUI) и 2х байтного Protocol ID (PID) - Рис. 5.


    Рис. 5

    OUI или же vendor code – позволяет идентифицировать пропиетарные протоколы указанием вендора. К примеру, если вы отловите WireShark`ом пакет PVST+, то в поле OUI увидите код 0x00000c, который является идентификатором Cisco Systems (Рис. 6).


    Рис. 6

    Замечание: Встретить пакет с инкапсуляцией в формат фрейма 802.3 SNAP довольно легко и сейчас – это все протоколы семейства STP, протоколы CDP, VTP, DTP.

    Поле PID это, по сути, то же поле EtherType из DIX Ethernet II - 2 байта под указание протокола вышестоящего уровня. Так как ранее, для этого использовались DSAP и SSAP поля LLC заголовка, то для указания того, что тип вышестоящего протокола нужно смотреть в поле SNAP, поля DSAP и SSAP принимают фиксированное значение 0xAA (также видно на Рис. 6)

    Замечание: При использовании для переноса IP пакетов формата фрейма LLC/SNAP, IP MTU снижается с 1500 до 1497 и 1492 байт соответственно.

    По заголовкам в формате фрейма в принципе всё. Хотел бы обратить внимание на ещё один момент в формате фрейма – размер payload. Откуда взялся этот диапазон - от 46 до 1500 байт?

    Размер L3 Payload.

    Откуда взялось нижнее ограничение, знает, пожалуй, каждый, кто хотя бы читал первый курикулум CCNA. Данное ограничение является следствием ограничения в размер фрейма в 64 байта (64 байта – 14 байт L2 заголовок - 4 байта FCS = 46 байт) накладываемого методом CSMA/CD – время требуемое на передачу 64 байт сетевым интерфейсом является необходимым и достаточным для определения коллизии в среде Ethernet.
    Замечание: В современных сетях, где возникновение коллизий исключено, данное ограничение уже не актуально, но требование сохраняется. Это не единственный «аппендикс» оставшийся с тех времен, но о них поговорим в другой статье.

    А вот откуда взялись эти пресловутые 1500 байт, вопрос сложнее. Я нашел следующее объяснение - предпосылок на введение верхнего ограничения размера фрейма было несколько:

    • Задержка при передаче – чем больше фрейм, тем дольше длится передача. Для ранних сетей, где Collision домен не ограничивался портом, и все станции должны были ждать завершения передачи, это было серьёзной проблемой.
    • Чем больше фрейм, тем больше вероятность того что фрейм при передаче будет поврежден, что приведет к необходимости повторной передачи, и все устройства в collision домене будут вынуждены опять ожидать.
    • Ограничения, накладываемые памятью используемой под интерфейс буферы – на тот момент (1979г) увеличение буферов значительно удорожало стоимость интерфейса.
    • Ограничение, вносимое полем Length/Type – в стандарте закреплено, что все значения выше 1536 (от 05-DD до 05-FF.) указывают на EtherType, соответственно длина должна быть меньше 05-DC. (У меня правда есть подозрение, что это скорее следствие, чем предпосылка, но вроде инфа от разработчиков стандарта 802.3)
    Итого, в стандарте 802.3 размер фрейма ограничивался 1518 байтами сверху, а payload 1500 байтами (отсюда и дефолтный размер MTU для Ethernet интерфейса).

    Замечание: Фреймы меньше 64 байт называются Runts, фреймы больше 1518 байт называются Giants. Просмотреть кол-во таких фреймов полученных на интерфейсе можно командой show interface gigabitEthernet module/number и show interface gigabitEthernet module/number counters errors. Причём до IOS 12.1(19) в счётчики шли как фреймы с неверным, так и верным CRS (хотя вторые не всегда дропались – зависит от платформы и условий). А вот начиная с 12.1.(19) отображаются в этих счётчиках только те runt и giant фреймы, которые имеют неверный CRS, фреймы меньше 64 байт, но с верным CRS (причина возникновения обычно связана с детегированием 802.1Q или источником фреймов, а не проблемами физического уровня) с этой версии попадают в счётчик Undersize, дропаются они, или же форвардятся дальше, зависит от платформы.

    Эволюция размеров Ethernet заголовков.
    С развитием технологий и спецификаций линейки IEEE 802 претерпевал изменения и размер фрейма. Основные дальнейшее изменения размера фрейма (не MTU!):
    • 802.3AC - увеличивает максимальный размер фрейма до 1522 – добавляется Q-tag – несущий информацию о 802.1Q (VLAN tag) и 802.1p (биты под COS)
    • 802.1AD - увеличивает максимальный размер фрейма до 1526, поддержка QinQ
    • 802.1AH (MIM) – Provider Bridge Backbone Mac in Mac + 30 байт к размеру фрейма
    • MPLS – увеличиваем размер фрейма на стек меток 1518 + n*4, где n – количество меток в стеке.
    • 802.1AE – Mac Security, к стандартным полям добавляются поля Security Tag и Message Authentication Code + 68 байт к размеру фрейма.

    Все эти фреймы увеличенного размера группируются под одни именем – Baby-Giant frames. Негласное верхнее ограничение по размерам для Baby-Giant – это 1600 байт. Современные сетевые интерфейсы будут форвардить эти фреймы, зачастую, даже без изменения значения HW MTU.

    Отдельно обратим внимание на спецификации 802.3AS - увеличивает максимальный размер фрейма до 2000 (но сохраняет размер MTU в 1500 байт!). Увеличение приходится на заголовок и трейлер. Изначально увеличение планировалось на 128 байт – для нативной поддержки стандартом 802.3 вышеперечисленных расширений, но в итоге сошлись на 2х тысячах, видимо, чтобы два раза не собираться (или как говорят в IEEE – this frame size will support encapsulation requirements of the foreseeable future). Стандарт утвержден в 2006 году, но кроме как на презентациях IEEE, я его не встречал. Если у кого есть что добавить здесь (и не только здесь) – добро пожаловать в комменты. В целом тенденция увеличения размера фрейма при сохранении размера PAYLOAD, порождает у меня в голове смутные сомнения в правильности выбранного направления движения.

    Замечание: Немного в стороне от перечисленного обосновался FCoE фрейм – размер фрейма до 2500 байт, зачастую, эти фреймы называются mini-jumbo. Для их саппорта необходимо включать поддержку jumbo-frame.

    И последний «бастард» Ethernet это Jumbo Frame (хотя если перевести Jumbo, то вырисовывается скорее Ходор – отсылка к Game of Thrones). Под это описание попадают все фреймы превосходящие размером стандарт в 1518 байт, за исключением рассмотренных выше. Jumbo пакеты никак не отражены в спецификациях 802.3 и поэтому реализация остаётся на совести каждого конкретного вендора. Тем не менее, Jumbo фреймы существуют столько же, сколько существует Ethernet. Определено это следующим:

    1. Выгода соотношения Payload к заголовкам. Чем больше это соотношение, тем эффективней мы можем использовать линии связи. Конечно здесь разрыв будет не такой как в сравнении с использованием пакетов в 64 байт и 1518 байт для TCP сессий. Но свои 3-8 процентов, в зависимости от типа трафика выиграть можно.
    2. Значительно меньшее количество заголовков генерирует меньшую нагрузку на Forwading Engine, также и на сервисные Engine. К примеру, frame rate для 10G линка загруженного фреймами по 1500 байт равен 812 744 фреймов в секунду, а тот же линк загруженный Jumbo фреймами в 9000 байт генерирует фрейм рейт всего лишь в 138 587 фрейм в секунду. На рисунке 7 приведены график из отчёта Alteon Networks (ссылка будет внизу статьи) утилизации CPU и гигабитного линка, в зависимости от типа используемого размера фрейма.
    3. Увеличение TCP Throughput при изменении размера MTU -

    Данные, передаваемые в сети Ethernet, разбиты на кадры. Напомним, что практически каждой сетевой технологии (независимо от ее уровня) соответствует единица передачи данных: Ethernet-кадр, АТМ-ячейка, IP-дейтаграмма и т. д. Данные по сети в чистом виде не передаются. Как правило, к единице данных «пристраивается» заголовок. В некоторых сетевых технологиях добавляется также окончание. Заголовок и окончание несут служебную информацию и состоят из определенных полей.

    Так как существует несколько типов кадров, для того, чтобы понять друг друга, отправитель и получатель должны использовать один и тот же тип кадров. Кадры могут быть четырех разных форматов, несколько отличающихся друг от друга. Базовых форматов кадров (raw formats) существует всего два - Ethernet II и Ethernet 802.3. Эти форматы отличаются назначением всего одного поля.

    Для успешной доставки информации получателю каждый кадр должен кроме данных содержать дополнительную служебную информацию: длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т. д.

    Большинство сетевых администраторов не уделяет должного внимания типам кадров Ethernet, а это может явиться источником проблем. Например, если клиентское сетевое программное обеспечение настроено на неверный тип кадра, то пользователь не сможет взаимодействовать с сервером. За типом кадра приходится особенно внимательно следить в сетях Novell NetWare, так как в новых версиях этой операционной системы тип кадра по умолчанию был изменен с 802.3 на 802.2. Кроме того, в корпоративных сетях применяются устройства от нескольких поставщиков, базирующихся на разных протоколах взаимодействия и использующих различные типы кадров.

    Для того чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существуют четыре основных разновидности кадров Ethernet:

    Ethernet Type II

    q Ethernet 802.2

    Ethernet SNAP (SubNetwork Access Protocol).

    Рассмотрим поля, общие для всех четырех типов кадров (рис. 3.1).

    Рис. 3.1 Общий формат кадров Ethernet

    Поля в кадре имеют следующие значения:

    Поля «Преамбула» и «Признак начала кадра» предназначены для синхронизации отправителя и получателя. Преамбула представляет собой 7-байтовую последовательность единиц и нулей. Поле признака начала кадра имеет размер 1 байт. Эти поля не принимаются в расчет при вычислении длины кадра.

    Поле «Адрес получателя» состоит из 6 байт и содержит физический адрес устройства в сети, которому адресован данный кадр. Значения этого и следующего поля являются уникальными. Каждому производителю адаптеровEthernet назначаются первые три байта адреса, а оставшиеся три байта определяются непосредственно самим производителем. Например, для адаптеров фирмы 3Com физические адреса будут начинаться с 0020AF. Первый бит адреса получателя имеет специальное значение. Если он равен 0, то это адрес конкретного устройства (только в этом случае первые три байта служат для идентификации производителя сетевой платы), а если 1 - широковещательный. Обычно в широковещательном адресе все оставшиеся биты тоже устанавливаются равными единице (FF FF FF FF FF FF).

    Поле «Адрес отправителя» состоит из 6 байт и содержит физический адрес устройства в сети, которое отправило данный кадр. Первый бит адреса отправителя всегда равен нулю.

    Поле «Длина/тип» может содержать длину или тип кадра в зависимости от используемого кадра Ethernet. Если поле задает длину, она указывается в двух байтах. Если тип - то содержимое поля указывает на тип протокола верхнего уровня, которому принадлежит данный кадр. Например, при использовании протокола IPX поле имеет значение 8137, а для протокола IP - 0800.

    Поле «Данные» содержит данные кадра. Чаще всего - это информация, нужная протоколам верхнего уровня. Данное поле не имеет фиксированной длины.

    Поле «Контрольная сумма» содержит результат вычисления контрольной суммы всех полей за исключением преамбулы, признака начала кадра и самой контрольной суммы. Вычисление выполняется отправителем и добавляется в кадр. Аналогичная процедура вычисления выполняется и на устройстве получателя. В случае, если результат вычисления не совпадает со значением данного поля, предполагается, что произошла ошибка при передаче. В этом случае кадр считается испорченным и игнорируется.

    Следует отметить, что минимальная допустимая длина для всех четырех типов кадров Ethernet составляет 64 байта, а максимальная - 1518 байт. Так как на служебную информацию в кадре отводится 18 байт, то поле «Данные» может иметь длину от 46 до 1500 байт. Если передаваемые по сети данные меньше допустимой минимальной длины, кадр будет автоматически дополняться до 46 байт. Столь жесткие ограничения на минимальную длину кадра введены для обеспечения нормальной работы механизма обнаружения коллизий.

    Рассмотрим более подробно форматы кадров разных типов. Тип кадра Ethernet II используется многими протоколами верхнего уровня, такими как TCP/IP, IPX и AppleTalk. Данный тип кадра был разработан фирмамиDEC, Intel и Xerox. Необходимо учитывать, что хотя данный тип кадра является наиболее широко используемым, он не одобрен организациями IEEE и ISO. Формат данного типа кадра отличается от рассмотренного выше только тем, что в поле «Длина/тип» всегда указывается тип протокола.

    Сетевые операционные системы Novell NetWare 2.х и З.х (за исключением 3.12) по умолчанию используют кадрыEthernet 802.3. Хотя в названии этого типа кадра есть упоминание комитета IEEE, последний не имел никакого отношения к его разработке.

    Данный тип кадра не содержит никакой информации о протоколе. Поле «Длина/тип» всегда указывает длину кадра. В результате нет стандартных методов идентификации сетевого протокола, которому принадлежит данный кадр. Однако в соответствии с концепцией фирмы Novell, только протокол IPX может использоваться с данным типом кадров. Разработана специальная последовательность действий для определения того, что именно протоколIPX был инкапсулирован в кадр данного типа.

    Проверяется поле «Длина/тип». Если оно содержит значение между 0 и 1518 (05ЕЕ), то данное поле определяет длину кадра, а не тип протокола (то есть это кадр 802.3, в противном случае - кадр Ethernet II).

    Проверяются следующие два байта за полем «Длина/тип». Если они содержат FFFF, это означает, что кадр принадлежит протоколу IPX, так как заголовок этого протокола всегда начинается с FFFF.

    В результате стандартизации сетей Ethernet подкомитетом IEEE 802.3 появился кадр Ethernet 802.2. Этот кадр является базовым для операционных систем Novell Netware версий 3.12 и 4-х. В данном типе кадра сразу за адресом отправителя следует поле длины, имеющее такое же назначение. Кроме того, этот тип кадра содержит несколько дополнительных полей, рекомендованных подкомитетом IEEE 802.3 Эти поля располагаются за полем «Длина/тип» и имеют следующее назначение:

    Поле «DSAP» указывает на используемый получателем протокол сетевого уровня. Размер поля составляет 1 байт (один бит в нем зарезервирован). Для протокола IPX значение поля равно Е0, для протоколов IP - 06, дляNetBIOS – F0.

    Поле «SSAP» указывает на используемый отправителем протокол сетевого уровня. Размер данного поля составляет 1 байт (один бит зарезервирован). Обычно значение данного поля совпадает со значением поля DSAP.

    Поле «Контроль» указывает на тип сервиса, требуемый для сетевого протокола. Размер данного поля составляет 1 байт. Сетевая операционная система Novell NetWare устанавливает значение данного поля в 03.

    Формат кадра Ethernet 802.2 имеет некоторые недостатки, в частности он содержит нечетное число байтов служебной информации. Это не совсем удобно для работы большинства сетевых устройств. Кроме того, для идентификации протокола сетевого уровня отводится 7 бит, что позволяет поддерживать «всего» 128 различных протоколов. Кадр Ethernet SNAP, являющийся дальнейшим развитием Ethernet 802.2, содержит следующие дополнительные поля (рис. 1.6):

    Поле «Код организации» имеет длину три байта и указывает на код организации (фирмы), которая присвоила значения поля «Идентификатор протокола». Если значение поля равно 000000 (а это так практически всегда, за исключением сетей AplleTalk), то поле «Идентификатор протокола» содержит значение, которое обычно помещается в поле «Длина/ тип», то есть идентификатор протокола верхнего уровня.

    Поле «Идентификатор протокола» имеет длину два байта и идентифицирует протокол верхнего уровня, инкапсулированный в поле «Данные» кадра. При использовании протокола IPX это поле содержит значение 8137.

    В большинстве локальных и глобальных сетей есть ограничение на максимальный размер кадра. Эту величину называют максимальной единицей передачи (MTU- maximum Transmission Unit).

    В совокупности эти два поля составляют дополнительное пятибайтовое поле для идентификации протокола. Это было сделано для увеличения числа поддерживаемых протоколов.

    Рис.3.2 Формат кадра Ethernet SNAP

    Нужно отметить, что сетевой протокол IPX может использовать любой из рассмотренных выше четырех типов кадров, чего нельзя сказать об остальных сетевых протоколах. В таблице 3.1. приводятся протоколы, которые могут быть использованы с тем или иным типом кадра.

    Таблица 3.1.

    Совместимость кадров Ethernet с протоколами верхних уровней

    Дальнейшее развитие технологии Ethernet

    В настоящее время самой распространенной сетевой технологией является именно Ethernet. По данным IDC, в 1997 году более 80 % всех сетей были построены на базе Ethernet. Все популярные операционные системы и стеки протоколов (TCP/IP, IPX, DECNet и т. д.) поддерживают Ethernet. Причинами такого господства Ethernet в сетевом мире являются высокая надежность, доступность инструментов управления, масштабируемость, гибкость, низкая стоимость и легкость внедрения.

    Технология Ethernet достаточно бурно эволюционировала с момента своего зарождения. В табл. 3.2 показана шкала эволюционного развития, представленная в формате nBASE-X (n - номинальная скорость передачи информации в Мбит/с, а Х - среда передачи). В табл. 3.3 также приведена максимально допустимая длина кабеля.

    Таблица 3.3.4.

    Технологии и соответствующие скорости передачи

    Тип Скорость передачи Длина
    10BASE-5 10 Мбит/с, толстый коаксиал 500м
    10BASE-2 10 Мбит/с, тонкий коаксиал 185м
    10BASE-T 10 Мбит/с, неэкранированная витая пара 100м
    10BASE-FL 10 Мбит/с, оптоволоконный кабель 2км
    100BASE-TX 100 Мбит/с, неэкранированная витая пара (2 пары) 100м
    100BASE-T4 100 Мбит/с, неэкранированная витая пара (4 пары) 100м
    100BASE-FX 100 Мбит/с, оптоволоконный кабель 412 м/2 км
    1000BASE-SX* 260м
    1000BASE-SX 500м
    1000BASE-LX 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (62.5/125 мкм) 400м
    1000BASE-LX 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (50/125 мкм) 550м
    1000BASE-LX 1000 Мбит/с (1 Гбит/с), одномодовый оптоволоконный кабель (9/126 мкм) 5000м
    1000BASE-CX 1000 Мбит/с, экранированный сбалансированный медный кабель 25м

    Протяженность кабеля для скоростей 1 Гбит/с приведена из текущего стандарта IEEE 802.3z, находящегося в стадии утверждения.

    Изначально технология Ethernet была ограничена тем, что множество пользователей конкурировали за одну полосу пропускания в 10 Мбит/с. Однако со временем были найдены интересные решения, частично снимающие эту проблему. В их основе лежит использование коммутаторов, которые в отличие от традиционных мостов имеют большое количество портов и обеспечивают передачу кадров между несколькими портами одновременно. Это позволяет эффективно применять коммутаторы и для таких сетей, в которых трафик между сегментами практически не отличался от трафика, циркулирующего в самих сегментах. Технология Ethernet после появления коммутаторов перестала казаться совершенно бесперспективной, так как появилась возможность соединить низкую стоимость устройств Ethernet с высокой производительностью сетей, построенных на основе коммутаторов. Используя технологию коммутируемого Ethernet, каждое устройство получает выделенный канал между собой и портом коммутатора. Технология коммутации прижилась в сетях очень быстро. Обеспечивая передачу данных со скоростью канала связи между различными сегментами локальной сети (иными словами, между портами коммутатора), коммутация позволяет создавать крупные сети с эффективной системой управления. Кроме того, эта технология стала толчком к созданию концепции виртуальных локальных вычислительных сетей (ВЛВС).

    Однако необходимость организации магистрали сети, к которой подключаются отдельные коммутаторы, не отпала. Если множество сегментов сети работают на скорости 10 Мбит/с, то магистраль должна иметь скорость значительно большую.

    В начале 90-х годов начала ощущаться недостаточная пропускная способность Ethernet. Для компьютеров на процессорах Intel 80286 или 80386 с шинами ISA (8 Мбайт/с) или EISA (32 Мбайт/с) пропускная способность сегмента Ethernet составляла 1/8 или 1/32 часть канала «память-диск» и хорошо согласовывалась с соотношением между объемом локальных и внешних данных, циркулирующих в компьютере. Теперь же у мощных клиентских станций с процессорами Pentium или Pentium Pro и шиной PCI (133 Мбайт/с) эта доля упала до 1/133, что явно недостаточно. Поэтому многие сегменты Ethernet на 10 Мбит/с стали перегруженными, время реакции серверов и частота возникновения коллизий в таких сегментах значительно возросли, еще более снижая реальную пропускную способность. В ответ на эти требования была разработана технология Fast Ethernet, являющаяся 100-мегабитной версией Ethernet.

    Следует отметить, что увеличение скорости в 10 раз приводит к уменьшению максимального расстояния между узлами. Сначала было предложено простое решение задачи построения магистрали - несколько коммутаторовEthernet связывались вместе по витой паре или волоконно-оптическому кабелю - так называемая коллапсированная магистраль. Но возникла проблема, когда потре­бовалось связать коммутаторы, находящиеся на больших расстояниях. Она была решена с помощью организации выделенного, свободного от коллизий оптово­локонного канала связи. В этом случае коммутаторы могли связываться напрямую на расстояния до 2 км. Как видно, технология Fast Ethernet обеспечила достаточно всеобъемлющее решение для построения сетей масштаба одного или нескольких зданий. Одобрение стандарта на технологию Fast Ethernet в 1995 году стало важным событием для сообщества производителей сетевого оборудования, так как появилась гибкая, быстрая и масштабируемая технология передачи данных.

    До разработки технологий коммутации и Fast Ethernet среди специалистов по сетевым технологиям господствовало мнение, что технологии ATM и FDDI будут оптимальным решением для организации магистрали сети. Однако в настоящее время технология Fast Ethernet часто конкурирует с упомянутыми технологиями в этой области. Кроме того, активно разрабатывается и внедряется технология Gigabit Ethernet.

    Fast Ethernet

    Идея технологии Fast Ethernet родилась в 1992 году. В августе следующего года группа производителей объединилась в организацию, названную Альянсом Fast Ethernet (Fast Ethernet Alliance - FEA). Цель этого альянса заключалась в скорейшем одобрении стандарта Fast Ethernet комитетом IEEE. В июне 1995 года все процедуры стандартизации были успешно завершены, и технология Fast Ethernet была стандартизирована в документе 802.3и.

    При рассмотрении стандарта много времени уделялось сохранению метода доступа CSMA/CD. Все предложенные решения опирались на этот метод, что вполне естественно, так как он позволяет сохранить преемственность с сетями l0Base-T и l00Base-T. CSMA/CD определяет способ передачи данных по сети от одного узла к другому через кабельную систему. В модели OSI протокол CSMA/CD является частью уровня управления доступом к среде (Media Access Control, MAC). На этом уровне определяется формат, в котором информация передается по сети, и способ получения доступа сетевого устройства к сети для передачи данных. Компании HP и AT&T предложили совершенно отличный от CSMA/CD метод доступа, который был назван Demand Priority. Однако он был поддержан гораздо меньшим числом сетевых производителей. Для его стандартизации был организован новый комитет IEEE 802.12.

    Стандарт Fast Ethernet определяет три модификации для работы с разными видами кабелей: 100BaseTX, 100BaseT4 и 100BaseFX. Модификации 100BaseTX и 100BaseT4 рассчитаны на витую пару, а 100BaseFX был разработан для оптического кабеля.

    Стандарт 100BaseTX требует применения двух пар неэкранированных или экранированных витых пар. Одна пара служит для передачи, другая - для приема. Этим требованиям отвечают два основных кабельных стандарта: на неэкраниро­ванную витую пару категории 5 и экранированную витую пару типа 1 от IBM.

    Стандарт 100BaseT4 имеет менее ограничительные требования к кабелю, так как в нем задействуются все четыре пары восьмижильного кабеля: одна пара для передачи, другая для приема, а оставшиеся две пары работают как на передачу, так и на прием. В результате в стандарте 100BaseT4 и прием, и передача данных могут осуществляться по трем парам. Для реализации сетей 100BaseT4 подойдут кабели с неэкранированной витой парой категорий 3-5 и экранированный типа 1.

    Технология Fast Ethernet включает в себя также стандарт для работы с многомодовым оптоволоконным кабелем. Этот стандарт (100BaseFX) ориентирован, в основном, на применение в магистрали сети или для организации связи удаленных объектов.

    Преемственность технологий Fast Ethernet и Ethernet позволяет легко выработать рекомендации по применению:Fast Ethernet целесообразно применять в тех организациях, которые широко использовали классический Ethernet, но сегодня испытывают потребность в увеличении пропускной способности. При этом сохраняется весь накопленный опыт работы с Ethernet и, частично, сетевая инфраструктура.

    Хотя Fast Ethernet и является развитием стандарта Ethernet, переход к 100BaseT требует некоторого изменения в топологии сети. Теоретический предел диаметра сегмента сети Fast Ethernet составляет 250 м. Это ограничение определено самой природой метода доступа CSMA/CD и скоростью передачи в 100 Мбит/с.

    Для классического Ethernet время прослушивания сети определяется макси­мальным расстоянием, которое 512-битный кадр может пройти по сети за время, равное времени обработки этого кадра на рабочей станции. Для сетиEthernet это расстояние равно 2500 м. В сети Fast Ethernet этот же самый 512-битный кадр за время, необходимое на его обработку рабочей станцией, пройдет всего 250 м. Если принимающая станция будет удалена от передающей на расстояние свыше 250 м, то кадр может вступить в конфликт с другим кадром на линии, а передающая станция, завершив передачу, уже опоздала бы с реакцией на этот конфликт. Поэтому максимальный диаметр сети 100BaseT составляет 250 м.

    Для увеличения допустимой дистанции необходимо использовать два повто­рителя для соединения всех узлов. В соответствии со стандартом Fast Ethernet расстояние между концентратором и рабочей станцией не должно превышать 100 м. Для установки Fast Ethernet потребуются сетевые адаптеры для рабочих станций и серверов, концентраторы 100BaseT и, возможно, некоторое количество коммутаторов 100BaseT. К моменту появления стандарта Fast Ethernet в построении локальных сетей масштаба здания сложился следующий подход - магистраль крупной сети строилась на технологии FDDI (высокоскоростной и отказоустойчивой, но весьма дорогой), а сети рабочих групп и отделов использовали Ethernet или Token Ring.

    Основная область использования Fast Ethernet сегодня - это сети рабочих групп и отделов. Целесообразно совершать переход к Fast Ethernet постепенно, оставляя Ethernet там, где он хорошо справляется с поставленными задачами. Одним из очевидных случаев, когда Ethernet не следует заменять технологией Fast Ethernet, является подключение к сети старых персональных компьютеров с шиной ISA.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: