Курсовая работа: Современные системы передачи данных. Классификация систем передачи и методов коммутации

По виду передаваемых сообщений различают:

1) телеграфию (передача текста),

2) телефонию (передача речи),

3) фототелеграфию (передача неподвижных изображений),

4) телевидение (передача подвижных изображений),

5) телеметрию (передача результатов измерений),

6) телеуправление (передача управляющих команд),

7) передачу данных (в вычислительных системах и АСУ).

По диапазону частот – в соответствии с декадным делением диапазонов электромагнитных волн от мириаметровых (3÷30) кГц до децимиллиметровых (300÷3000) ГГц.

По назначению – вещательные (высококачественная передача речи, музыки, видео от малого числа источников сообщений большому количеству их получателей) и профессиональные (связные), в которых число источников и получателей сообщений одного порядка.

Различают следующие режимы работы СС:

1) симплексный (передача сигналов в одном направлении),

2) дуплексный (одновременная передача сигналов в прямом и обратном направлениях),

3) полудуплексный (поочередная передача сигналов в прямом и обратном направлениях).

Каналом связи называется комплекс радиотехнических устройств, при помощи которых передается и принимается информация, плюс среда между ними. В зависимости от вида сигналов на входе и выходе различают каналы: непрерывные; дискретные; дискретно-непрерывные; непрерывно-дискретные.

Каналы связи можно характеризовать по аналогии с сигналами следующими тремя параметрами:

– временем доступа Тк,

– шириной полосы пропускания ΔFк,

– динамическим диапазоном [дБ],

где Pк.доп. – максимально допустимая мощность сигнала в канале,

Pш – мощность собственных шумов канала.

Обобщенным параметром канала является его емкость

Очевидным необходимым условием согласования сигнала и канала является выполнение неравенства Vc

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 1.3. Классификация систем связи:

  1. Белоус И.А.. ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ И СИСТЕМ СВЯЗИ. Практикум, 2016
  2. 22.7. Пропускная способность каналов радиотехнической системы связи
  3. 22.1. Тактико-технические параметры радиотехнической системы связи
  4. Исследование связи синусового узла с вегетативной нервной системой
  5. 22.4. Количество информации при приёме дискретных сигналов радиотехнической системы связи
  6. Правовые системы и теоретические проблемы их классификации § 1. Правовая система общества: понятие, элементы, функции

Любой сигнал занимает определенную полосу частот, существует некоторое время, обладает ограниченной энергией и распространяется в определенной области пространства. В соответствии с этим выделяют четыре вида ресурса канала: частотный, временной, энергетический и пространственный.

Проблема эффективного использования ресурса общего канала особенно обострилась из-за необходимости организации оперативного обмена данными и обеспечения связи с объектами в информационных системах различного назначения в условиях неравномерности и непредсказуемости запросов потребителей во времени. При решении проблемы распределения ресурса общего канала применяются методы мультиплексирования и множественного доступа (multiple access). Понятия «мультиплексирование» и «множественного доступа» сходны тем, что они предполагают распределение ресурса между пользователями. В то же время между ними есть и существенные различия. Так при мультиплексировании ресурс канала связи распределяется через общее оконечное оборудование, формирующие групповой сигнал . При множественном доступе, образуется в результате сложения сигналов пользователей непосредственно в канале (рис. 8.1, где ИС – источник сообщения, ПРД - передатчик, ПРМ - приемник, ПС – получатель сообщения). Множественный доступ характерен для спутниковых каналов, радиоканалов, каналов мобильной связи .

Принято считать, что мультиплексирование основано на общем аппаратурном обеспечении, в то время как множественный доступ (МД) использует определенные процедуры (протоколы), реализуемые с помощью программного обеспечения, хранящегося в памяти каждого терминала.

На рис. 8.2 представлены методы мультиплексирования.

Рис. 8.2. Методы мультиплексирования

В большинстве случаев для осуществления операции уплотнения канала источнику сообщений выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал . Если операция объединения линейна, то будет линейным групповым сигналом. Он, как правило, образуется линейным суммированием промодулированных канальных сигналов.

В системах так называемого комбинационного уплотнения групповой сигнал формируется посредством определенной логической (нелинейной) обработки, в результате которой каждый элемент сформированного сигнала отображает информацию (комбинацию символов) от всех ИС. Классическим примером такой системы является система двукратного частотного телеграфирования. Для передачи четырех комбинаций символов двух каналов используется четыре частоты: .

Устройство разделения линейного группового сигнала представляет собой набор линейных избирательных цепей, каждая из которых выделяет только свой канальный сигнал и в идеальном случае совсем не реагирует на другие канальные сигналы. Для осуществления подобного идеального разделения необходимо и достаточно, чтобы промодулированные канальные сигналы составляли ансамбль линейно независимых сигналов. В качестве таких сигналов обычно используют ансамбли ортогональных сигналов.

В классе линейного уплотнения по виду отличительного признака канального сигнала различают временное разделение каналов (ВРК), частотное (ЧРК) и разделение каналов по форме сигналов, называемое кодовым разделением каналов (КРК). Вместо термина «разделение» применяют и термин «уплотнение». При ЧРК полоса частот общего канала разделяется на несколько более узких полос , каждая из которых образует канал ИС. При ВРК вся полоса предоставляется поочередно через определенные интервалы времени различным источникам для передачи сообщений. При КРК нет деления общего канала между ИС ни по частоте, ни по времени. Канальные сигналы различных ИС, перекрываясь по времени и частоте, остаются ортогональными за счет различия формы, что и обеспечивает их разделение.

Возможны варианты комбинирования указанных методов. Так, в мобильной связи в качестве метода МД широко используются комбинации ЧРК и ВРК, ВРК и КРК. В первой комбинации каждый частотный канал предоставляется нескольким пользователям на определенные промежутки времени. При второй комбинации в полосе частот формируют каналы с временным разделением, которые предоставляются нескольким пользователям на принципах КРК.

При организации многоканальной передачи информации, применяемые для уплотнения канальные сигналы могут быть заранее определенным образом распределены между источниками сообщений. Такое уплотнение называется уплотнением с закрепленными каналами. Соответствующая ему многоканальная система передачи также будет называться системой с закрепленными каналами. Возможна и такая организация многоканальной передачи информации, когда канальные сигналы не распределяются заранее между источниками, а выделяются каждому источнику по мере необходимости. Такое уплотнение называется уплотнением с незакрепленными каналами. Очевидно, для правильного разделения каналов в системах с незакрепленными каналами необходимо каким-либо образом передать на приемную сторону адресную информацию.

Основные понятия и определения, введенные для многоканальных систем, применимы и для систем МД. К настоящему времени изучено и предложено большое число разнообразных методов МД. Они различаются способом распределения коллективного ресурса канала (фиксированный или динамический), природой процессов принятия решения (централизованные или распределенные), а также степенью адаптации режима доступа к изменяющимся условиям.

Множественный доступ характерен для спутниковых каналов (в этом случае применяют термин «многостанционный доступ»), радиоканалов (пакетная радиосвязь), каналов мобильной связи, а также для многоточечных телефонных линий, локальных сетей.

Все существующие методы МД можно сгруппировать и выбрать в качестве основания классификации способ управления распределением ресурса общего канала (рис.8.3).

Рис. 8.3. Методы множественного доступа

Протоколы случайного доступа.При случайном МД весь ресурс канала связи представляется как один канал, доступ в который происходит случайно, в результате чего возможно столкновение пакетов передаваемой информации. Корреспондентам предлагается совершить определенную последовательность действий с целью разрешения конфликта. Каждый пользователь при необходимости может передавать данные в канал, не выполняя явного согласования с другими пользователями. Наличие обратной связи позволяет взаимодействующим корреспондентам контролировать прохождение передаваемой информации.

Возможны два варианта реализации стратегии случайного доступа: без контроля несущей и с контролем несущей.

Случайный доступ без контроля несущей состоит в том, что при необходимости передать данные, терминал пользователя сразу начинает передачу пакетов. Поскольку пакеты передаются без синхронизации между собой, возможно их наложение, что вызывает взаимные помехи. При возникновении такого конфликта, подтвержденного сигналом обратной связи, терминалы повторяют передачу искаженных пакетов. Во избежании повторения конфликтов промежутки времени до начала повторной передачи на каждом терминале выбираются случайно.

Случайный доступ с контролем несущей предполагает возможность контролировать наличие передачи информации другими корреспондентами. В случае отсутствия передачи данных незанятые временные промежутки имеются для передачи своей информации. В случае столкновения пользователи задерживают передачу пакетов на интервал времени . В настоящее время существуют две разновидности протокола: настойчивый и ненастойчивый. Различие заключается в том, что в первом случае пользователи подвижных объектов, обнаруживая столкновения, начинают передачу сразу, а при втором через определенный интервал времени.

Протоколы фиксированного закрепления ресурса канала обеспечивают статическое распределение ресурса канала между пользователями. Наиболее типичными представителями протоколов данного типа являются многостанционный доступ с частотным разделением (FDMA), многостанционный доступ с временным разделением (TDMA), многостанционный доступ с кодовым разделением (CDMA).

Фиксированное закрепление ресурса канала не может обеспечить динамически изменяющиеся требования пользователей сети, т.е. имеет жесткое управление.

Методы назначения ресурса по требованию позволяют избавиться от недостатков, присущих вышеперечисленным методам, но предполагают подробную и четкую информацию о требованиях пользователей сети.

По природе процессов принятия решения методы назначения ресурса по требованию подразделяют на централизованные и распределенные.

Централизованные методы назначения ресурса по требованию, характеризуются наличием запросов на передачу со стороны терминалов источника сообщения. Принятие решения о предоставлении ресурса осуществляется центральной станцией.

Соответствующие протоколы отличаются наличием жестко закрепленных за каждым подвижным объектом каналов резервирования и наличием центральной станции управления. Протоколы характеризуются высоким значением коэффициента использования пропускной способности базовой станции, однако критичны к нарушениям функционирования системы управления.

По способу резервирования, определяющему действия центральной станции пользователей сети, существует два метода назначения ресурса по требованию с централизованным управлением.

Распределенные методы назначения ресурса по требованию отличаются тем, что все пользователи производят одни и те же операции, не прибегая к помощи центральной станции, и используют дополнительную служебную информацию, которой обмениваются друг с другом. Все алгоритмы с распределенным управлением требуют обмена управляющей информацией между пользователями. Протоколы характеризуются жестким закреплением каналов резервирования за подвижным объектом. При этом на каждом объекте имеется таблица закрепления запросных каналов, следовательно, любой подвижный объект в любой момент времени имеет информацию о состоянии всей сети.

Комбинированные методыпредставляют собой комбинации предыдущих методов распределения ресурса, и реализуют стратегии, в которых выбор метода является адаптивным для различных пользователей с целью получения характеристик используемого ресурса канала, близких к оптимальным. В качестве критерия оптимальности, как правило, принимается коэффициент использования пропускной способности канала. На основе протоколов данного типа осуществляется подстройка параметров под конкретную обстановку в сети.

Таким образом, каждый из рассмотренных способов распределения ресурса обладает достоинствами и недостатками. На практике целесообразно иметь всю совокупность методов и осуществлять адаптивный переход от одного метода к другому при определенных изменениях рабочих условий.

Чтобы передать информацию из одного пункта и получить ее в другом, телекоммуникационной системе нужно выполнить некоторые операции, которые главным образом скрыты от пользователей. Прежде чем телекоммуникационная система передаст информацию, ей необходимо установить соединение между передающей (sender) и принимающей (receiver) сторонами, рассчитать оптимальный маршрут передачи данных, выполнить первичную обработку передаваемой информации и преобразовать скорость передачи компьютера или иного цифрового устройства системы в скорость, поддерживаемую линией связи. Наконец, телекоммуникационная система управляет потоком передаваемой информации (трафиком).

Рисунок 1.2- Структурная схема простейшей системы передачи информации

Основными элементами такой системы являются:

Источник сообщения (ИС);

Кодирующее устройство (КУ) формирует из сообщения «А» сигнал;

Передатчик-модулятор (ПМ) нужен для преобразования сигнала в вид, удобный для передачи по линии связи;

Линия связи (ЛС) – физическая среда, по которой передаются сигналы;

Приёмник-демодулятор (ПД) – преобразует принятый сигнал в первоначальный вид;

Декодирующее устройство (ДУ), которое формирует из полученного сигнала первоначальное сообщение;

Формирователь сигнала реализации (ФСР) необходим для формирования сигнала управления в зависимости от принятого сигнала;

Исполнительное устройство.

Системы передачи информации бывают одноканальные и многоканальные . На рис. 1.2 приведена одноканальная система. Многоканальная система показана на рис. 1.3.

Рисунок 1.3 – Многоканальная система связи

В многоканальной системе реализация сообщений каждого источника

а 1 (t), а 2 (t),...,а N (t) с помощью индивидуальных передатчиков (модуляторов) М 1 , М 2 , ..., М N преобразуются в соответствующие канальные сигналы s 1 (t), s 2 (t),...,s N (t). Совокупность канальных сигналов на выходе суммирующего устройства S образует групповой сигнал s(t ). Наконец, в групповом передатчике М сигнал s(t) преобразуется в линейный сигнал s Л (t), который и поступает в линию связи ЛС .

Допустим, что линия пропускает сигнал практически без искажений и не вносит шумов. Тогда на приемном конце линии связи линейный сигнал s Л (t) с помощью группового приемника П может быть вновь преобразован в групповой сигнал s(t). Канальными или индивидуальными приемниками П 1 , П 2 , ..., П N из группового сигнала s(t) выделяются соответствующие канальные сигналы s 1 (t), s 2 (t), ...,s N (t) и затем преобразуются в предназначенные получателям сообщения а 1 (t), a 2 (t), ..., a N (t).

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М , линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи.



Индивидуальные приемники системы многоканальной связи ПK наряду с выполнением обычной операции преобразования сигналов s K (t) в соответствующие сообщения а K (t) должны обеспечить выделение сигналов s K (t ) из группового сигнала s(t ). Иначе говоря, в составе технических устройств на передающей стороне многоканальной системы должна быть предусмотрена аппаратура объединения, а на приемной стороне - аппаратура разделения.

В общем случае групповой сигнал может формироваться не только простейшим суммированием канальных сигналов, но также и определенной логической обработкой, в результате которой каждый элемент группового сигнала несет информацию о сообщениях источников. Это так называемые системы с комбинационным разделением.

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и др. Об этом мы будем подробнее говорить позже.

Классификация систем электросвязи весьма разнообразна. В основном тип (вид) системы определяется каналом связи . Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Примеры типов связи

Радиосвязь - для передачи используются радиоволны.

ДВ -, СВ -, КВ - и УКВ - радиосвязь связь без применения ретрансляторов

Спутниковая связь - связь с применением космического ретранслятора (ов)

Радиорелейная связь - связь с применением наземного ретранслятора (ов)

Сотовая связь - связь с использованием сети наземных базовых станций

Волоконно-оптическая связь

Рис. 42. Классификация

телекоммуникационных систем передачи

Системы передачи различаются в зависимости от˸

Места использования на сети (магистральные, зоновые, местные),

Числа организуемых каналов ТЧ, т.е. емкости системы (К-3600, ИКМ – 480 и т.д.),

Способа передачи сигналов электросвязи (ЧМ, ВМ),

Способа построения аппаратуры (однополосная, двухполюсная, однокабельная, двухкабельная СП);

Среды распространения (проводные - кабельные, воздушные; радиосистемы - радиорелейные, тропосферные, космические - спутниковые, беспроводного радиодоступа - сотовые, транкинговые); оптические.

В проводной системе передачи сигналы электросвязи распространяются в пространстве вдоль непрерывной направляющей среды, способной передать сигналы в заданном направлении.

Классификация проводных систем ˸

В однополосной СП используется одна и та же полоса частот для передачи сигналов электросвязи в противоположных направлениях;

В двухполосной СП для передачи сигналов электросвязи в противоположных направлениях используются две неперекрывающихся полосы частот, т.е. передача и прием ведутся на разных частотах;

Однокабельная СП - передача и прием сигналов осуществляется по парам одного и того же кабеля;

В двухкабельной СП передача сигналов организуется по парам одного кабеля, а для приема сигналов используются пары другого кабеля.

На рис. 42 приведена классификация современных телекоммуникационных систем передачи.

СП состоит из комплекса оборудования, в состав которого входит аппаратура оконечных (ОП), промежуточных обслуживаемых (ОУП – для аналоговых систем, ОРП – для цифровых систем) и необслуживаемых усилительных и регенерационных пунктов (НУП - для аналоговых систем, НРП – для цифровых систем) и непрерывной направляющей среды (рис. 43).

На оконечных пунктах ОП устанавливается оконечная аппаратура, предназначенная для преобразования сигналов отдельных КТЧ в групповой, а затем в общий многоканальный линейный сигнал и обратного преобразования, а также оборудование служебной связи, оборудование дистанционного питания НУП (ОРП), оборудование транзита и др.

Промежуточное оборудование устанавливается на обслуживаемых усилительных пунктах ОУП или необслуживаемых – НУП (в аналоговых системах). В цифровых системах такие станции называются обслуживаемые регенерационные пункты ОРП или необслуживаемые – НРП. Дальность передачи сигналов по физическим цепям определяется затуханием (ослаблением) сигнала из-за того, что в цепи теряется часть энергии передаваемого сигнала. Изменение уровней сигнала вдоль магистрали описывается диаграммой уровня (рис. 25). Поэтому на усилительных пунктах ОУП многоканальный аналоговый сигнал усиливается, компенсируется затухание прилегающего участка, поддерживается постоянство уровней, корректируются амплитудно – частотные, фазочастотные и частотные характеристики линейного тракта. Часть канала между соседними промежуточными пунктами называется усилительным участком . Аппаратура ОРП, НРП предназначена для восстановления амплитуды, длительности и временного интервала между импульсами сигналов цифровых систем.

Классификация систем передачи - понятие и виды. Классификация и особенности категории "Классификация систем передачи" 2015, 2017-2018.

2. Классификация видов информации, способов передачи и коммутации. Мультисервисные сети связи

2. Классификация видов информации, способов передачи и коммутации

2.1. Классификация видов информации

  • пользовательская (группа "U ser");
  • управления (группа "C ontrol");
  • административного управления (группа "M anagement").

К пользовательской информации (U ) относятся, например, те виды, которые приведены в таблице 2.1.

Для обмена этими видами информации используются информационные протоколы прикладного уровня, например, SMTP, H.323, HTTP, FTP, T.120 и др.

Большинство видов информации, приведенных в таблице 2.1, чувствительно к задержке при передаче по каналам телекоммуникационных сетей. Переход к сетям, основанным на концепции NGN, требует учета разнообразия характеристик различных видов информации.

Характеристики телефаксов:

1. Факс гр. 3: 203x98 точек/дюйм;

2. Факс гр. 4: 400x400 точек/дюйм.

К виду C относятся :

  • процессов установления и разъединения соединения между сетевыми объектами;
  • информация, обеспечивающая поддержку процессов предоставления интеллектуальных услуг ;
  • информация, обеспечивающая поддержку процессов роуминга в сотовых сетях мобильной связи.

Для обмена этими видами информации используются сигнальные протоколы:

  • Q.931 (протокол уровня 3 стека DSS1);
  • ISUP (протокол уровня 7 стека CCS7 N-ISDN);
  • B-ISUP (протокол уровня 7 стека CCS7 B-ISDN);
  • SIP (протокол уровня 7, используемый в NGN) и др.

К виду M относятся :

  • информация административного управления (O&M – эксплуатации и технического обслуживания);
  • информация управления сетями связи (TMN).

В процессе решения этих задач обеспечивается обмен данными:

Об авариях;

О результатах измерений характеристик управляемых объектов;

О статистике;

О начислении платы за предоставляемые ресурсы и др.

Таблица 2.1. Виды и характеристики информации пользователей

информации

Диапазон частот (D F). Скорость передачи (V). Динамический диапазон уровней (D)

Чувствительность:

T - к задержке;

L (loss) - к потере информации

Службы связи (сéти)

0,3-3,4 кГц; D£ 40дБ

0,02 –20 кГц;

Радиовещания

TV (подвижное изображение)

D F кан £ 6 МГц

Цифровая ТЛФ

6,5 - 64 Кбит/c

Цифровое TV

2 - 25 Мбит/c

Телеграфная

50 Бит/с-2400 Бит/с

Данные (ПЭВМ)

9,6 Кбит/с – 34 Мбит/с

ПД (X.25,FR,ATM)

Факс (гр. 3, 4)

2,4 Кбит/с – 64 Кбит/с

ФАКСИМИЛЕ

Видеотекст,

телетекст

Видеотекс;

телетекс

9,6 Кбит/с – 64 Кбит/с

FR, Internet (E-mail), ATM

14 Кбит/с – 64 Кбит/с

FR, Internet, TЛФ

Видео почта

(64 – 128) Кбит/с

ТЛФ, FR, Internet, ATM

Телеметрия

(2,4 – 128) Кбит/с

Доступ к Internet

(19,2-2048) Кбит/с

(2,4 - 56) Кбит/с

ТЛФ, Internet, ATM

ТV по запросу

(2,0 – 8,0) Мбит/с

TV, КТВ, ATM, Internet

Видеоте-лефония

ТЛФ, Internet, ATM

Видеоконфе-ренция

(384 – 512) Кбит/с

ТЛФ, Internet, ATM

Для обмена этими видами информации используются протоколы управления сетью, например, SNMP, CMIP, ILMI, OMAP, FTAM и др.

Службы, функционирующие в МСС, характеризуются следующими атрибутами:

  • скорость передачи информации;
  • способ установления соединения (коммутируемое, полупостоянное или постоянное);
  • метод коммутации (КК или КП);
  • конфигурация связи (“точка-точка”, “многоточечная”, “широковещательная”);
  • принцип установления связи (по запросу, с предварительным резервированием на заданное время, постоянная связь);
  • протокол доступа.

В рекомендации ITU-T I.211 все услуги МСС предлагается делить на интерактивные и вещательные . К интерактивным услугам относятся: диалоговые (интерактивные), почтовые, "по запросу". К вещательным услугам относятся: трансляционные без влияния пользователя и с возможностью активного управления со стороны пользователя. Примеры диалоговых услуг приведены в таблице 2.2.

Таблица 2.2. Примеры диалоговых услуг, предоставляемых службами МСС

Тип информации

Широкополосная услуга

Область применения

1. Подвижные изображения и звук

Видеотелефония

Системы связи для передачи речи, неподвижных и подвижных изображений между двумя пользователями

Видеоконференции

Системы связи для передачи речи, документов, неподвижных и подвижных изображений между двумя или большим количеством пользователей

Видеонаблюдение

Системы охраны и мониторинга (технологических процессов, дорожного движения и др.)

Передача видео- и аудиоинформации

Передачи ТВ, работа с БД мультимедиа

Передача множества звуковых каналов

Передача нескольких радиопрограмм, информац. каналы на нескольких языках одновременно

Высокоскоростная передача информации в цифровой форме

Передача данных при взаимодействии:

  • распределённых сетей,
  • локальных и распределенных сетей АТМ,
  • компьютеров,
    1. Передача видеоинформации и неподвижных изображений.
    2. Распределённая интерактивная компьютерная обработка.
    3. Распределенные системы автоматизации производства с обменом в интерактивном режиме.

Высокоскоростное телеуправление

  • Системы сигнализации,
  • Телеметрия,
  • Системы контроля в реальном времени.

4. Документы

Высокоскоростной телефакс

Передача изображений, текста, рисунков

Передача видео высокого разрешения

  • Передача видео с проф. качеством,
  • Передача изображений из операционных (мед.),
  • Компьютерные игры с удалёнными абонентами.

Обмен документами

Передача смешанных документов.

2.2. Классификация способов коммутации и передачи

На рисунке 2.1 приведена классификация способов коммутации и передачи

Рисунок 2.1. Классификация способов коммутации и передачи

В таблице 2.2 приведены достоинства и недостатки способов коммутации и передачи.

Таблица 2.2. Достоинства и недостатки способов коммутации и передачи

коммутации

Достоинства

Недостатки

Коммутация каналов (КК)

1) не требуются ресурсы сети для обработки сообщений;

2) задержка доставки сообщений минимальна (она равна времени установления соединения tус).

1) невозможно изменение полосы пропускания канала;

2) невозможна интеграция в одной сети видов служб с разными скоро-стями передачи;

3) низкое использование полосы пропускания канала.

Многоскоростная коммутация (МСКК)

1) возможность изменения полосы пропускания канала;

2) задержка доставки минималь-на;

1) низкое использование канала при пачечном трафике (Кп = Тс/Тпер>1);

2) высокая сложность системы синхронизации;

3) необходимость выделения большого количества каналов с базовой полосой пропускания (Vбаз) для высокоскоростных служб;

4) необходимость выбора низкой базовой полосы пропускания канала.

Быстрая коммутация каналов (БКК)

1) возможность передачи пакетов данных в паузах речевого сигнала;

2) улучшенное использование полосы канала при трафике пачечного типа (Кп >1);

3) задержка доставки пакетов мала.

1) при перегрузках быстро растут потери;

2) при перегрузках часть речевых отрезков

теряется;

3) после передачи каждого пакета (в паузах речевого обмена) необходимо восстанавливать соединение между пользователями за время tус £ 140 мс, чтобы задержки “из конца в конец” не превышали 240 мс.

Быстрая коммутация пакетов (БКП)

1) динамическое изменение скорости передачи (полосы пропускания канала);

2) малая вероятность ошибки;

3) простота протоколов звена данных и сетевого уровней в узлах сети;

4) малая величина задержки;

5) хорошее использование ресурсов сети при пачечном трафике;

6) гибкость в условиях перегрузки.

а) потери скорости передачи из-за необходи-мости включения адреса в каждый пакет;

б) усложнение коммутационных полей коммутаторов.

Коммутация пакетов (КП)

1) динамическое изменение скорости передачи;

2) высокое использование ресурсов сети при пачечном трафике.

а) задержка для пакетов с речевой информацией может быть недопустимо большой;

б) высокая сложность протоколов звеньевого и сетевого уровней;

в) большая зависимость задержки сообщений от поступающей нагрузки.

Первый проект сети с коммутацией пакетов был обнародован в 1974 г. Основа концепции такой сети – отказ от жесткой связи между канальным интервалом (TIME SLOT) и соединением в первичных цифровых синхронных сетях . В то время (70-е годы 20-го века) качество каналов сетей связи было низким. Поэтому для обеспечения приемлемой семантической прозрачности сквозного соединения в сети потребовалось использование сложных протоколов уровня звена данных, позволивших обеспечить разграничение кадров и защиту от ошибок .

Пакетная коммутация ориентирована на предоставление виртуальных каналов , которые существуют лишь как временнóе подмножество ресурса физической цепи.

Это временнóе подмножество пользователь ощущает как реальный канал. При этом в одном физическом канале осуществляется мультиплексирование потоков пакетов многих пользователей и служб.

Пропускная способность физического канала считается достаточной, если ни один из пользователей не замечает понижения качества услуг при параллельном использовании общего ресурса с другими пользователями.

Различают два вида соединений в пакетных сетях:

  • виртуальный канал (аналогичен коммутируемому соединению, устанавливаемому на время сеанса);
  • постоянный виртуальный канал (аналогичен выделенной линии, кроссируемой по определенному маршруту “из конца в конец”).

При объединении потоков нескольких источников в одном канале могут использоваться статическое или статистическое мультиплексирование.

Алгоритм статического мультиплексирования потоков широко используется в современных сетях, поскольку позволяет относительно экономно расходовать пропускную способность магистральных каналов. Простейший пример передачи информации многих источников по одному каналу магистральной сети: за каждым из источников закрепляется определенная часть ресурса магистрального канала (например, своя полоса частот). В этом случае каждый источник может использовать только ту часть ресурса, которая ему отведена (рисунок 2.2, слева).

Рисунок 2.2. Сравнение эффективности использования сетевых ресурсов при статическом (слева) и статистическом (справа) мультиплексировании потоков

Слева на рисунке 2.2 показаны потоки трех отдельных источников при жестком разделении полосы магистрали (статическое мультиплексирование) между ними. Справа – потоки тех же источников в магистральном канале при работе алгоритма статистического мультиплексирования.

Принцип статистического мультиплексирования состоит в том, что потоки отдельных источников складываются (агрегируются) в магистральном канале с экономией пропускной способности (рисунок 2.2, справа).

На рисунке 2.3 отражены требования к качеству доставки информации “из конца в конец” между интерфейсами “пользователь-сеть” (UNI).

Оборудование потребителя включает оконечное оборудование (TE), например, хост и какой-либо маршрутизатор или, если имеется, ЛВС. Граничные маршрутизаторы (ER), к которым подключается оконечное оборудование, могут называться шлюзами доступа (Access Gateway, AGW). Эталонные каналы (ресурсы) сетей имеют следующие атрибуты:

1) область сети IP может поддерживать виртуальные соединения “пользователь-пользователь”, “пользователь-хост” и другие варианты соединения конечных точек;

2) сетевые сегменты могут быть представлены как области с маршрутизаторами на их границах и неопределенным количеством внутренних маршрутизаторов с различными ролями в процессе доставки потоков информации;

3) количество сетевых сегментов в заданном пути может зависеть от предлагаемого класса

обслуживания (CoS), сложности и географической протяженности каждого сетевого сегмента;

5) сетевые сегменты , поддерживающие передачу пакетов в потоке, могут изменяться во время его существования ;

6) возможность соединения по протоколу IP простирается за международные границы, но не следует соглашениям о коммутации каналов (например, на международной границе могут отсутствовать идентифицируемые шлюзы, если один и тот же сетевой сегмент используется по обе стороны границы).

В таблице 2.3 приведены показатели качества доставки информации в МСС с пакетной коммутацией (Рекомендация ITU-T Y.1541) .

Таблица 2.3. Показатели качества доставки информации в МСС с пакетной коммутацией

Класс качества доставки

(T з - задержка IP-пакета)

(джиттер)

(доля потерь)

(доля искаженных IP-пакетов)

(приоритет 1)

50 мс. 3)

10 -3 . 4)

10 -4 . 5)

(приоритет 1)

50 мс. 3)

10 -3 . 4)

(приоритет 2)

(приоритет 2)

(приоритет 3)

(приоритет 3)

Примечания:

1) При большом времени распространения сигналов могут возникать сложности для классов "0" и "2" с соблюдением норм на среднее значение времени задержки IP пакетов. Величина IPTD определена для максимальной длины информационного поля пакета 1500 байтов.

2) Величина вариации задержки IP-пакетов (IPDV) определяется разницей между верхней и нижней границей задержки, измеренной в течение интервала оценки . В качестве длительности этого интервала предлагается выбирать одну минуту. Все эти соображения ITU-T считает предварительными и требующими дополнительного изучения.

3) Эта величина зависит от скорости в тракте обмена пакетами. Приемлемая величина вариации задержки достигается при использовании трактов со скоростью 2048 Кбит/с и более, а также при длине информационного поля пакетов менее 1500 октетов.

4) Требование для классов "0" и "1" отчасти основано на исследованиях, показывающих, что высококачественные голосовые приложения (и соответствующие кодеки) весьма эффективны при значениях IPLR менее 10 -3 .

5) Эта величина (IREP=10 -4) гарантирует то, что потери пакетов будут компенсированы вышестоящими уровнями и допустимы при использовании связки технологий IP/ATM.

Класс "0 " предназначен для обмена информацией в реальном времени (в частности, для телефонной связи с высоким качеством при использовании IP технологии). Он предусматривает создание отдельной очереди с приоритетной обработкой пакетов (высший приоритет ). Для класса "0 " характерны ограничения на способы маршрутизации (максимальное число транзитов) и допустимое расстояние между взаимодействующими терминалами (время распространения сигналов).

Класс "1" также предназначен для обмена информацией в реальном времени, но с менее жесткими требованиями (VoIP, VTC).

Предусматривается создание отдельной очереди с приоритетной обработкой пакетов. Класс "1" обеспечивает хорошее качество телефонной связи .

Класс "2" ориентирован на обмен данными с высокой степенью интерактивности. К этому классу относится, в частности, сигнальная информация . Очереди на обработку присвоен второй приоритет.

Пакеты классов "0" и "1" имеют преимущество на обработку, по сравнению с пакетами других классов.

Классу "3", предназначенному для обмена с менее высоким уровнем интерактивности, присущи те же ограничения на принципы маршрутизации и время распространения сигналов, что и классу "1". Обслуживание пакетов этого класса должно осуществляться со вторым приоритетом. Этот класс считается приемлемым для интерактивного обмена данными .

Класс "4" предназначен для обмена различной информацией с низкой вероятностью потери (короткие транзакции , потоковое видео или видео в реальном (масштабе) времени, "живое" видео и др.). Допускаются длинные очереди пакетов на обработку, которая осуществляется с третьим приоритетом. Никакие ограничения на маршрутизацию и время доставки сообщений не накладываются.

Класс "5" ориентирован на те IP приложения, которые не требуют высоких показателей качества доставки информации. Соответствующие пакеты формируют отдельную очередь; обслуживание осуществляется с самым низким приоритетом (третий приоритет). Никакие ограничения на маршрутизацию и время доставки сообщений не накладываются. Типичным примером услуг, поддерживаемых с классом "5", можно считать "электронную почту".

Символ "U" (первая буква в слове "U nspecified") указывает на то, что показатель для данного класса обслуживания не нормируется. Джиттер (jtter) – флуктуации задержки.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: