Альтернативные интерфейсы человек-компьютер: тактильная связь. Спасение от стресса. Применение тактильных технологий

  • 2.3.1. Способы отображения
  • 4.3.2. Классы и примеры устройств отображения
  • 2.3.2. Передвижение в виртуальном пространстве
  • 2.3.3. Способы подачи команд
  • 2.3.4. Сенсорная перчатка и тактильная обратная связь
  • 2.3.5. Звуковая поддержка вр
  • 2.3.6. Обобщенный вариант состава аппаратуры для поддержки вр
  • 2.4. Системы вр vfx 1 и vfx 3d
  • 2.5. Рабочая станция Haptic Workstation
  • 2.6. Сферы и перспективы применения сред вр
  • 2.7. Комбинированные информационные среды с расширенными возможностями
  • 2.7.1. Интерактивные интеллектуальные игры
  • 4.6.2. Перфоманс-анимация
  • 4.6.3. Моделирование и синтез визуальных динамических образов виртуальных людей
  • 4.6.4. Интерактивные интеллектуальные действа с альтернативными сценариями
  • 2.8. Контрольные вопросы
  • Глава 3. Создание мультимедиа продуктов цели
  • 3.1. Классификация и области применения мультимедиа приложений
  • 3.1.1. Классификация мультимедиа приложений
  • 3.1.2. Области применения мультимедиа приложений
  • 3.2. Программные средства для создания и редактирования элементов мультимедиа
  • 3.2.1. Программы создания и редактирования текста и гипертекста
  • 3.2.2. Программы создания и редактирования графики
  • 3.2.3. Программы создания и редактирования звука
  • 3.2.4. Программы создания и редактирования трехмерной графики и анимации
  • 3.2.5. Программы создания и редактирования видео
  • 3.2.6. Программы создания и редактирования интерактивных трехмерных представлений
  • 3.3. Этапы и технологии создания мультимедиа продуктов
  • 3.3.1. Основные этапы и стадии разработки мм продуктов
  • 3.3.2. Технологии поддержки текста и гипертекста ум
  • 3.3.3. Технологии использования графики
  • 3.3.4. Технологии использования звуковых компонентов
  • 3.3.5. Технологии поддержки анимации и трехмерной графики
  • 3.3.6. Технологии создания и поддержки видео
  • 3.3.7. Технологии создания и поддержки интерактивных трехмерных представлений
  • 3.4. Мультимедиа издания наCd-roMиDvd-rom
  • 3.5. Инструментальные интегрированные среды разработчика мультимедиа продуктов
  • 3.5.1. Типы программных средств разработки мм продуктов
  • 3.5.2. Специализированные программы
  • 3.5.3. Авторские системы
  • 3.5.4. Инструментальные среды поддержки языков программирования
  • 3.5.5. Проблемы создания мм ксо
  • 3.5.6. Направления и средства адаптации мм ксо к возможностям и особенностям пользователя
  • 3.6. Контрольные вопросы
  • Глава 4. Применение мультимедиа технологий в образовании цели
  • 4.1. Образовательная среда и ее ресурсы
  • 4.1.1. Основные понятия образовательной среды
  • 4.1.2. Классификация образовательных ресурсов
  • 4.1.3. Классификация электронных образовательных ресурсов
  • 4.1.4. Классификация программных средств компьютерного обучения
  • 4.2. Особенности применения мультимедиа технологий в обучающих системах
  • 4.2.1. Новые способы работы с информацией
  • 4.2.2. Расширение возможностей иллюстраций
  • 4.2.3. Интерактивность
  • 4.2.4. Избирательность восприятия и обучения
  • 4.2.5. Активизация обучаемых
  • 4.2.6. Интенсификация процессов обучения.
  • 4.3. Примеры реализации обучающих систем с использованием средств мм технологий
  • 4.4. Контрольные вопросы
  • Глоссарий к модулю 2
  • Заключение
  • Список сокращений
  • Библиографический список
  • Оглавление
  • Глава 2. Виртуальная реальность и другие комбинированные среды 7
  • Глава 3. Создание мультимедиа продуктов 77
  • Глава 4. Применение мультимедиа технологий в образовании 137
  • Часть 2. Виртуальная реальность, создание мультимедиа продуктов, применение мультимедиа технологий в образовании
  • 2.3.3. Способы подачи команд

    Кроме задания положения объекта в трехмерном пространстве желательно также иметь возможность подавать команды , которые должны быть выполнены в определенных его точках. Для подачи команд проще всего использовать обычную клавиатуру компьютера и привычную систему экранных меню, но лучше использовать набор кнопок на позиционном датчике типа «плавающая мышь».

    Микрофон и наушники видеошлема могут быть подключены к звукогенератору и к системе распознавания и синтеза речи. В среде синтетической реальности, в принципе, даже можно использовать виртуальную клавиатуру и управлять всем процессом работы через нее с помощью сенсорной перчатки. Но человеку все же легче и проще для подачи команд использовать свой речевой канал, а компьютерную систему речевого ввода сегодня уже можно «обучить» распознаванию десятков тысяч слов с достаточно высокой надежностью .

    2.3.4. Сенсорная перчатка и тактильная обратная связь

    Сенсорная перчатка . Непосредственное отслеживание движений руки давно вызвало большой интерес у многих разработчиков. Например, в 1983 г. было запатентовано устройство Digital Entry Glove. Но настоящим прорывом стала сенсорная перчатка DataGlove, разработанная в Исследовательском центре имени Джозефа Эймса NASA, а затем усовершенствованная и выпущенная на рынок компанией VPL Research (рис.2.20).

    Для определения величины углов сгиба пальцев в перчатке VPL DataGlove были использованы эластичные оптические волокна (световоды). Сгибание пальцев обнаруживается с помощью набора из десяти оптоволоконных датчиков, которые вшиты в перчатку над каждым суставом пальцев. Работа датчиков основана на том, что, если оптоволокно сгибается, то переданный по нему свет ослабевает пропорционально изгибу. Каждый датчик состоит из источника света на одном конце оптоволокна и детектора на другом. Микропроцессор последовательно сканирует все сенсоры и вычисляет угол сгиба каждого сустава пальцев, используя определенную модель строения человеческой кисти. Перчатка подключается к ПК с помощью стандартного последовательного интерфейса RS-232 .

    Рис.2.20. Сенсорная перчатка VPL DataGlove

    Разработано несколько конкурирующих сенсорных перчаток, самая известная из которых – недорогая перчатка Nintendo PowerGlove (рис.2.21, слева), предназначенная для использования в видеоиграх. Перчатки со световыми сенсорами разработала калифорнийская фирма Virtual Technologies, например, самые простые варежки CyberGlove. Существует также 18-сенсорная модель, отслеживающая движения пальцев (рис.2.21, в центре), и 22-сенсорная, способная еще и уловить сгибание-разгибание всех пальцев, кроме большого.Эти перчатки дают ошибку лишь на 0,5-1°. 22-сенсорная модель снимает показания 149 раз в секунду, а 18-сенсорная – 112 раз в секунду. Компания Computers & more выпускает перчатку 5 th Glove (рис.2.68, справа) .

    В других моделях, в частности, Virtex CyberGlove, для определения величины углов сгиба пальцев применяются датчики натяжения. Для некоторых задач точность (порядка ±10º) и повторяемость показаний таких датчиков могут быть недостаточны. Более точный метод измерения дает устройство Dexterous Handmaster компании Exos, имеющее наружный скелет, закрепляемый на суставах пальцев, и датчики, использующие эффект Холла. Датчики позволяют определять углы сгиба пальцев с точностью ±0,5º. Однако, не вполне ясно, можно ли извлечь какую-либо пользу из такой точности, и вполне может оказаться, что четырех уровней данных, которые дает перчатка Nintendo PowerGlove, фактически достаточно для большинства задач .

    Рис.2.21. Сенсорные перчатки: Nintendo PowerGlove; 18-сенсорная модель фирмы Virtual Technologies; 5 th Glove

    Есть и технология с механическими датчиками, но она тяжела и несовершенна .

    Следящая система переводит в цифровую форму также и положения руки . Аэрокосмическая корпорация МсDonnell Douglas разработала систему Polyhemus, которая встраивается в перчатку DataGlove и служит для определения положения руки .

    Упоминавшиеся видеошлем VIEW и перчатка DataGlove используют систему датчиков, чувствительных к электромагнитному полю. Точность определения положения порядка двух миллиметров. Перчатка может находиться в любой точке условного шара диаметром в 1 м .

    Более современная перчатка P5 американской фирмы Essential Realityпоказана на рис. 2.22. Базовая станция включается в порт USB и не требует внешнего питания, перчатка включается проводом в базовую станцию. На тыльной стороне «ладони» расположено 8 инфракрасных светодиодов, которые позволяют базовой станции отслеживать перемещения руки в пространстве. В базовой станции, находятся 2 инфракрасные камеры, что позволяет более надежно следить за перчаткой и точно определять расстояние до нее.

    Рис.2.22. Базовая станция и перчатка P5

    Зона видимости базовой станции составляет 45° по вертикали и горизонтали и около 1,5 м в «глубину». В этом конусе P5 может отслеживать координаты руки по 3 осям с точностью до 0,6 см (в 60 см от базы), а также поворот и наклон ладони с точностью до 2°. Опрос координат происходит с частотой 40 Гц (задержка составляет 12 мс). Кроме светодиодов системы слежения, в перчатке имеется 5 резиновых «пальцев» с датчиками изгиба. К пальцам пользователя они крепятся пластиковыми кольцами и меряют изгиб с точностью в 1,5°. Еще на тыльной стороне перчатки имеется 4 кнопки, одна из которых программируется (остальные служат для калибровки, включения/выключения и переключения режимов работы). Таким образом, в терминах джойстика P5 имеет 11 аналоговых осей и 1 кнопку .

    Тактильная обратная связь (Forced Feedback) используется в сенсорных перчатках для имитации прикосновения руки к объекту. Тактильную обратную связь наиболее просто реализует небольшой динамик на ладони , поскольку рука хорошо чувствует щелчок, издаваемый динамиком в ответ на какое-либо событие. Но это лишь сигнал о событиях, а хотелось бы получить ощущение прикосновения к виртуальным объектам . Такое ощущение можно имитировать разными способами.

    Для имитации ощущения прикосновения с помощью давления часто используют воздушные надувные баллончики , с помощью которых регулируется сила или жесткость давления перчатки на пальцы. Делались попытки применить пьезоэлектрические кристаллы , которые при вибрации создают ощущение давления, а также сплавы с памятью формы , которые можно заставить изогнуться, пропуская слабый электрический ток. Подобное устройство Portable Dexterous Master (рис.2.23), состоящее из перчатки VPL DataGlove, снабженной тремя пневматическими приводами, было разработано изобретателем Григором Бердиа из Университета Рутгерса .

    Рис.2.23. Устройство Portable Dextrous Master

    Кроме ощущения давления важна и имитация ощущения сопротивления при попытке сдвинуть виртуальный объект. Для этой цели может использоваться миниатюрный робот-манипулятор , закрепляемый на руке . Например, более поздние модели перчатки DataGlove уже включали пьезоэлектрические датчики на кончиках пальцев, чтобы обеспечить некоторый уровень тактильной обратной связи. Когда пользователь берет в руку виртуальный объект, то ощущает давление от соприкосновения его пальцев с поверхностью объекта. Еще позднее перчатка была снабжена специальным робототехническим экзоскелетом , позволяющим создавать ощущения веса и силы .

    «Силовая» обратная связь может быть реализована и без сенсорных перчаток. Простое устройство «силовой» обратной связи было разработано компанией Digital. Это рукоятка , подобная ручке газа на мотоцикле, которая может менять силу своего сопротивления повороту . Группа специалистов из компании UNC для создания «силовой» обратной связи применила электромеханический манипулятор.

    Тактильная обратная связь весьма чувствительна к характеристикам контуров обратной связи: пользователь подсознательно мгновенно реагирует на импульсы от системы и корректирует свою реакцию до того, как система успеет отработать предыдущие реакции. Считается, что для создания надежной иллюзии ощущения объекта тактильная система должна иметь скорость обновления информации 300-1000 Гц, что как минимум на порядок выше, чем скорость обновления визуальной информации .

    Компания Virtual Technologies разработала устройство CyberGrasp с обратным тактильным воздействием, предоставляя пользователю возможность почувствовать виртуальный мир своими руками (рис. 2.24).

    Специальные крючья одеваются поверх перчаток и при необходимости препятствуют сжиманию кисти с силой до 12 Н (Ньютон) на каждый палец (силу в 1 Н надо приложить, чтобы телу весом 1 Кг изменить ускорение на 1 м/с; или это сила тяготения, действующая на 1/9,8 Кг). Максимальное воздействие CyberGrasp сравнимо с тем, которое можно испытать, подвесив по 1,2 Кг на каждый палец при прямом локтевом суставе, плюс сама лапка весит еще 350 г.

    Компания Virtual Technologies изобрела и устройство CyberTouch с обратным тактильным воздействием (рис.2.25). Это устройство небольших размеров надевается на кончики пальцев и передает им разного рода вибрацию. Крепится оно поверх VR-перчаток.

    Рис.2.24. Устройство CyberGrasp

    Рис.2.25. Устройство CyberTouch

    Англичане придумали перчатки с системой шариков и компрессором для нагревания воздуха, в которых можно почувствовать не только неровности виртуальных объектов, но и их температуру. Такое устройство наиболее полно передает тактильное воздействие на руки.

    Датчики кисти руки предназначены для слежения за ее перемещениями. В самые простые датчики встроен только Position Tracker, отслеживающий перемещения небольшого кубика в руке пользователя. Производством таких датчиков занимается компания Ascension Technology Corporation. Например, датчик MibiBird (рис. 2.26, слева) способен отслеживать кисть при вращении ±180° по вертикали и горизонтали, а также ±90° вокруг своей оси с ошибкой на 0,1-0,5°. Приспособление Motion Star (рис. 2.26, справа) более массового характера схоже с MibiBird. Существуют и более чувствительные подобные приборы .

    Тренажеры и симуляторы . Многие ремесела основаны на тонком моторном контроле и координации рук человека. Изучение и подготовка в некоторых профессиях требует большой практики, а достижение определенного мастерства может занимать годы (например, каллиграфия). Тренажеры, симуляторы и системы имитации предназначены для повышения эффективности обучения. Использование устройств с тактильной обратной связью позволяет проводить процесс обучения более эффективно, особенно когда руку обучаемого ведет электронный эксперт – устройство с тактильной обратной связью.

    Телеуправление (дистанционное управление) и микро-манипуляции, робототехника .Работа с недоступным или опасным материалом требует телеприсутсвия оператора. Использование устройств с осязательной обратной связью позволяет повысить качество дистанционного управления роботами и различными исполняющими устройствами за счет передачи дополнительной интуитивно понятной оператору осязательной информации. К сожалению, стандартные джойстики не позволяют использовать данный канал восприятия информации человека.

    Использование устройств с обратной тактильной связью оправданно в ответственных операциях с дистанционным управлением роботами, когда операторы могут мгновенно чувствовать реакцию и различные ограничения манипулятора (динамика, ограничения рабочего пространства и т.д.).

    Микро-манипуляторы – маленькие роботы, построенные, чтобы выполнять различные задачи с объектами, часто более тонкими, чем человеческие волосы. Соответственно, использование устройств с тактильной обратной связью позволяет оператору манипулировать микро-роботами интуитивно понятным и привычным способом.

    Медицина . Большое число высокотехнологичных устройств для медицины часто ограничивается первичным инструментом хирурга, а именно их руками. Соответственно, использование систем с обратной тактильной связью в медицинских тренажерах и реальных медицинских роботах позволяет передавать хирургу осязательную информацию, что позволяет сделать все манипуляции в привычной и интуитивно понятной форме .

    • Перевод

    Обратная тактильная связь присутствует в гаджетах уже весьма продолжительное время. Чаще всего она представлена в смартфонах и джойстиках игровых приставок в форме «виброзвонков» и ответной вибрации в ответ на действия пользователя. Дублирование входящих вызовов, напоминания и дрожание при стрельбе и взрывах, вот наиболее распространённые варианты использования тактильной функции. И подавляющее большинство пользователей не представляет себе иных способов применения этого канала связи.

    Однако существует несколько направлений использования этого метода взаимодействия и получения информации от устройств. Точнее, этих направлений три. И их широкое применение в массовой электронике даст пользователям качественно новый опыт использования привычных, казалось бы, гаджетов. Это ознаменует начало нового этапа в развитии потребительских устройств, метко названного «неосенсорной эрой ».

    Первый способ применения обратной тактильной связи - расширение спектра тактильных ощущений от использования гаджетов. Второй способ - передача специфической шаблонной информации. Третий способ - общение. Рассмотрим каждый из них подробнее.

    Расширение спектра тактильных ощущений

    На днях Amazon выпустил пять новых устройств, две читалки на электронных чернилах три планшета. И самым интересным устройством является читалка премиум-класса Kindle Voyage.

    Чем она примечательна? По обеим сторонам экрана, чья поверхность текстурой напоминает бумагу, расположены сенсорные зоны для перелистывания страниц. При этом само перелистывание инициируется не привычным касанием или жестом скольжения, а лёгким сжатием этих сенсорных зон. Когда «переворачивается» страница, устройство сопровождает это вибрацией, похожей на ту, что возникает при скольжении бумажных страниц друг по другу.

    Кстати, в первом YotaPhone мы тоже экспериментировали с тактильной отдачей при пользовании сенсорной зоны под вторым экраном. При перелистывании страниц жестом скольжения смартфон приятно вибрирует. Во втором YotaPhone будет полностью сенсорный второй экран, что даёт гораздо больше возможностей. Поэтому разработали совершенно новые сценарии использования второго экрана, о которых вы узнаете после презентации смартфона.

    Ещё один пример нового подхода к использованию тактильной связи демонстрируют Apple iWatch, которые поступят в продажу в следующем году. В них интегрирован так называемый «Taptic engine» (комбинация слов tap (касание) и haptic (тактильный)), своеобразная система физического реагирования на действия пользователя. Например, когда вы поворачиваете головку «завода», то сразу ощущаете специфическую вибрацию, словно танцующую по вашему запястью, добавляющую необычные ощущения при использовании этого механического органа управления. Когда вы проводите пальцем по экрану, нажимаете кнопку рядом с головкой или выполняете какие-то другие действия, Taptic engine генерирует специфические ответные тактильные реакции, сопровождая на уровне ощущений .

    Не остался в стороне от нового направления и заклятый друг Apple, Samsung. Корейцы недавно представили серию многофункциональных принтеров Smart MultiXpress , оснащённых «планшетным» интерфейсом с разнообразной тактильной связью.

    Все эти вышеупомянутые устройства используют преимущества нового направления в инженерии, получившего название haptography (haptic + photography , можно перевести как «тактилография»). Оно подразумевает регистрацию и запись физических ощущений с последующим воспроизведением. По сути, это направление находится в самом начале своего становления. С его дальнейшим развитием, пользователям станет доступно новое измерение во взаимодействии с гаджетами. Например, мы сможем ощущать текстуру поверхности предметов, которые видим на экране или слышим из динамиков. Современные безжизненные дисплеи смартфонов и планшетов оживут, станут в буквальном смысле реагировать на прикосновения. Все виды интерфейсов, от приборных панелей автомобилей до дверей холодильников и пультов дистанционного управления, станут «касаться в ответ» на наши прикосновения. И эта тактильная «отзывчивость» будет практически завораживать.

    Передача специфической шаблонной информации

    В часах Apple iWatch также реализован механизм передачи специфической шаблонной информации. Например, если вы идёте по маршруту, проложенному в картографическом приложении, часы будут предупреждать вас о необходимости повернуть, вибрируя правой или левой стороной, так что вам даже не придётся смотреть на экран.

    Новый гибридный автомобиль Mersedes S550 будет передавать тактильную информацию с помощью вибрации пола под ногами водителя. Например, таким образом машина будет подсказывать о необходимости сбавить газ, чтобы экономить топливо или заряд аккумулятора. Другим видом вибрации водителя известят о переключении с электромотора на ДВС.

    Носимые устройства вроде умных очков (которые, в отличие от изделия Google, будут выглядеть как обычные очки) будут слабо вибрировать, предупреждая пользователя о попадании в поле зрения какой-либо специфической информации.

    Общение

    Пожалуй, общение с людьми - это один из наиболее интересных способов применения обратной тактильной связи. И тут мы снова должны упомянуть Apple iWatch. Если вы выбираете чей-то контакт из списка избранных и потом касаетесь экрана, тот этот человек будет ощущать это касание через специфическую вибрацию своего экземпляра Apple iWatch. Можно даже отправить другому человеку своё сердцебиение, при этом отправитель и получатель увидят на экранах пульсирующее сердце, и оба будут ощущать его ритм на своих запястьях. Кстати, возможно, в русском языке со временем появится такой словарный оборот, как «часами чую».

    Эту идею используют и во многих стартапах, например, в браслете Tactilu , который передаёт «прикосновение» от одного пользователя другому.

    Конечно, вскоре это свойство внедрят и в смартфоны. Возможно, дойдёт даже до стандартизации некоего «тактильного протокола». Наверняка появятся кастомные вибросхемы, по аналогии с мелодиями для звонков и SMS, так что можно будет понять, кто вам звонит, просто по специфической вибрации, выбранной для этого контакта.

    Самое удивительное в этой перспективе заключается вовсе не потакании ленивым пользователям, не желающим даже смотреть на экран телефона, а в новом психологическом опыте, чем-то напоминающем телепатию, когда вы, в первые мгновения даже неосознанно, вдруг «почувствуете» внимание другого человека.

    Как обратная тактильная связь улучшает пользовательский опыт

    Мы сейчас стоим у самого начала «неосенсорной эры». Весьма вероятно, что уже через пару лет в подавляющем большинстве гаджетов будет встроена функция крайне правдоподобной обратной тактильной связи. Мы окажемся в ситуации, когда ожидания пользователей будут побуждать производителей интегрировать высококачественные тактильные интерфейсы во все новые гаджеты.

    Особенно ярко новая тенденция будет проявляться в носимых гаджетах. Не исключено, что появятся устройства, у которых вообще не будет иного интерфейса, кроме тактильного - ни сенсорно-графического, ни механического. Подобные интерфейсы добавят своеобразной глубины, завершённости и, в буквальном смысле, хорошего ощущения компьютерам, телефонам, планшетам и носимым устройствам, включая автомобили и различные бытовые приборы. Отчасти это даст чисто утилитарные преимущества, но в основном нас будет привлекать именно психологический, эстетический момент.

    А если ко всевозможным видам вибрации добавить изменение текстуры поверхности гаджета ? Вы сможете не просто получить какую-то активную реакцию на свои действия, это уже в полной мере можно охарактеризовать как «ощущаю кожей».
    Пожалуй, наибольшее разнообразие применений тактильной обратной связи будет наблюдаться именно в смартфонах, просто по причине их универсальности и постоянной востребованности пользователями.

    Представьте, вы смотрите фильм, сцена в пустыне, и ваш смартфон становится словно сделан из прессованного песка. Или ваш любимый человек напишет вам, что прикоснулся к стеклу окна, и вы начинаете ощущать гладкость и твёрдость его поверхности. Бумага, древесина, стекло, бетон, песок, всё это можно будет не просто «потрогать», наш мозг будет получать гораздо больше информации о ситуации, и почти на бессознательном уровне мы гораздо глубже понимать и сопереживать другим людям, сюжетам книг, фильмов, игр, телевизионных новостей, даже песен.

    Интересные перспективы открываются для пользователей, ведущих активную переписку на смартфонах. Для разных пользователей в списке контактов, в соцсетях и мессенджерах можно будет настроить не только разные вибросхемы, но и изменения текстуры поверхности. И набирая кому-то сообщение, вам не придётся отвлекаться, чтобы посмотреть, кто вам уже написал. Разные тактильные схемы можно будет создать даже для разных смайликов, передавая таким образом ощущения улыбки, смеха, грусти, злости и множества других эмоций.

    Весьма вероятно, что могут появиться сменные панели для смартфонов, жёсткие или в виде мягких тонких облегающих чехлов, способные по другому менять текстуру своей поверхности. Естественно, для YotaPhone они будут совершенно прозрачными, позволяя работать с сенсорными экранами. При этом вибросхемы могут быть разными в зависимости от того, с каким экраном YotaPhone вы работаете в данный момент. Настоящее раздолье для кинестетиков-гурманов.

    Появятся программы, позволяющие создавать собственные вибросхемы и алгоритмы изменения текстуры. И если сегодня мы показываем друг другу фотографии, снятые на смартфон, то не исключено, что лет через 15 будем предлагать друг другу просто подержать их.

    Не удивимся, если многие пользователи подсознательно станут воспринимать свои смартфоны как живых питомцев, ведь они будут не только чутко реагировать на наши действия, но и проявлять «собственные эмоции».

    Мы считаем, что через два десятка лет большинство гаджетов и устройств будут оснащены тактильными пользовательскими интерфейсами. По крайне мере, мы очень на это надеемся.

    Производители компьютерной техники сосредоточились на совершенствовании дисплеев и аудиосистем, поскольку большую часть информации человек воспринимает визуально или на слух. Между тем тактильный канал связи остаётся практически незадействованным. Вибрация игрового руля и джойстиков не в счёт. Исправить досадное упущение решили исследователи из Массачусетского технологического института. Разрабатываемый ими “тактильный дисплей” может изменить представления о способах взаимодействия с компьютером.

    Матрица такого “дисплея” способна задействовать многочисленные рецепторы кожи, общая площадь поверхности которой у взрослого человека составляет около двух квадратных метров. Основные варианты крепления – на спине (корсет) и на запястье, в виде браслета.

    Активные элементы “дисплея” в зависимости от сценария применения могут быть представлены вибромоторами или накожными электродами. Вариант с размещением на спине довольно оригинален. Пожалуй, ранее никто не пытался подключить человека к компьютеру задом наперёд. Пользователи получают бесплатный массаж и профилактику утомляемости мышц спины, а игроки научатся буквально чувствовать противника спиной… или тем местом, на которое решатся закрепить устройство.

    Среднее количество рецепторов на разных участках поверхности тела сильно отличается. Больше всего их на ладонях, губах и языке (именно поэтому дети хватают всё руками и тянут в рот, познавая окружающий мир). Немного меньше их на подошвах и совсем мало на передней, задней и боковых поверхностях туловища. Все вместе они образуют группу рецептивных полей, отражённую в соматосенсорной коре больших полушарий головного мозга. Общую картину часто представляют в виде сенсорного гомункулуса, у которого размеры разных анатомических областей пропорциональны числу рецепторов в них.

    Невысокая плотность расположения тактильных рецепторов на спине компенсируется большой площадью и легкодоступностью этой области. Вибромоторчики или накожные электроды можно сделать сравнительно крупными, а корсет с ними не будет мешать двигаться и легко скроется под одеждой.

    Старший научный сотрудник отдела приборостроения в Массачусетском технологическом институте Линетт Джонс (Lynette Jones) в качестве основного применения данной разработки видит системы навигации с тактильной обратной связью. В отличие от традиционных вариантов, они не будут отвлекать водителя, так как не требуют смотреть на экран и не надоедают голосовыми подсказками. Их работу вообще не видно со стороны, а для пассажира останется загадкой, как водитель так ловко ориентируется в незнакомом месте. Ранее более простой вариант в виде вибронасадок на руль был предложен исследователями из университета штата Юта.

    Упрощённый вариант такой навигации с тактильными подсказками безо всякой электроники можно было наблюдать ранее на армейских учениях. Наспех обученному водителю в БМП и БТР крайне тяжело ориентироваться из-за ограниченной видимости. Поэтому ему на плечи ставил ноги сослуживец, выглядывавший из люка. Когда надо было повернуть направо, он просто пинал водителя правой ногой тем сильнее, чем резче требовался поворот. По сравнению с GPS-навигатором его голосовые подсказки отличались исключительной выразительностью и своевременностью.

    Помимо поворотов водителю требуется сообщать и другую информацию, для кодирования которой “тактильной азбукой” потребуется более двух источников сигнала. Одним из ранее реализованных вариантов стал тактический пояс оператора-робота, позволяющий “чувствовать” его за счёт восьми вибромоторов.

    Для изучения оптимальной схемы расположения активных элементов Линетт Джонс сделала несколько вариантов из массива акселерометров и вибромоторчиков от сотовых телефонов. Они закреплялись на спине, бёдрах и предплечьях на разном расстоянии.

    В ходе эксперимента испытуемым предлагалось указать, от какого количества источников и где именно они чувствуют воздействие. По этим данным оценивалось, насколько хорошо люди способны распознавать точную локализацию и каково оптимальное число активных элементов.

    Наиболее точно при испытаниях указывалась вибрация краевых моторчиков, а область запястья предсказуемо оказалась самой чувствительной. По данным от акселерометров, вибрация кожи затухала в радиусе восьми миллиметров от зоны воздействия, но сами испытуемые часто ощущали её втрое дальше.

    Это говорит о том, что уменьшать габариты устройства нет смысла. Если между двумя тактильными импульсами будет менее двух с половиной сантиметров, то большинство пользователей будут ошибаться при определении их локализации.

    Помимо плотности расположения рецепторов характеристики “тактильного дисплея” ограничивает демпфирующая способность кожи, зависящая главным образом от количества подкожной жировой клетчатки. В районе предплечий её выраженность обычно минимальна, поэтому браслеты показали в целом более высокие результаты.

    Простейший вариант в виде двух браслетов уже даёт как минимум четыре точки воздействия – на внутренней и внешней стороне запястья. Добавьте к этому вибрацию с разной силой и частотой, и получится своеобразная система кодирования. Подобные разработки ранее проводились в Германии.

    При подключении “тактильного дисплея” к смартфону по Bluetooth упрощается как его использование, так и пеший туризм. К примеру, направление на выбранный объект легко задавать, просто меняя уровень сигнала на двух руках. Параллельно появляется возможность более гибко оповещать о входящих звонках и сообщениях. Вы ставите индивидуальные мелодии на каждый контакт или группу? Теперь то же самое можно будет делать и с вибрацией.

    По мнению профессора психологии из университета Карнеги-Меллона Роберты Клацки (Roberta Klatzky), работа Линетт имеет шансы на развитие целой системы тактильной азбуки, которая станет отличным дополнением к шрифту Брайля для слепых людей. В будущем носимые “тактильные дисплеи” легко адаптировать для использования как с большинством устройств, так и в паре с бионическими глазами.

    • Перевод

    Обратная тактильная связь присутствует в гаджетах уже весьма продолжительное время. Чаще всего она представлена в смартфонах и джойстиках игровых приставок в форме «виброзвонков» и ответной вибрации в ответ на действия пользователя. Дублирование входящих вызовов, напоминания и дрожание при стрельбе и взрывах, вот наиболее распространённые варианты использования тактильной функции. И подавляющее большинство пользователей не представляет себе иных способов применения этого канала связи.

    Однако существует несколько направлений использования этого метода взаимодействия и получения информации от устройств. Точнее, этих направлений три. И их широкое применение в массовой электронике даст пользователям качественно новый опыт использования привычных, казалось бы, гаджетов. Это ознаменует начало нового этапа в развитии потребительских устройств, метко названного «неосенсорной эрой ».

    Первый способ применения обратной тактильной связи - расширение спектра тактильных ощущений от использования гаджетов. Второй способ - передача специфической шаблонной информации. Третий способ - общение. Рассмотрим каждый из них подробнее.

    Расширение спектра тактильных ощущений

    На днях Amazon выпустил пять новых устройств, две читалки на электронных чернилах три планшета. И самым интересным устройством является читалка премиум-класса Kindle Voyage.

    Чем она примечательна? По обеим сторонам экрана, чья поверхность текстурой напоминает бумагу, расположены сенсорные зоны для перелистывания страниц. При этом само перелистывание инициируется не привычным касанием или жестом скольжения, а лёгким сжатием этих сенсорных зон. Когда «переворачивается» страница, устройство сопровождает это вибрацией, похожей на ту, что возникает при скольжении бумажных страниц друг по другу.

    Кстати, в первом YotaPhone мы тоже экспериментировали с тактильной отдачей при пользовании сенсорной зоны под вторым экраном. При перелистывании страниц жестом скольжения смартфон приятно вибрирует. Во втором YotaPhone будет полностью сенсорный второй экран, что даёт гораздо больше возможностей. Поэтому разработали совершенно новые сценарии использования второго экрана, о которых вы узнаете после презентации смартфона.

    Ещё один пример нового подхода к использованию тактильной связи демонстрируют Apple iWatch, которые поступят в продажу в следующем году. В них интегрирован так называемый «Taptic engine» (комбинация слов tap (касание) и haptic (тактильный)), своеобразная система физического реагирования на действия пользователя. Например, когда вы поворачиваете головку «завода», то сразу ощущаете специфическую вибрацию, словно танцующую по вашему запястью, добавляющую необычные ощущения при использовании этого механического органа управления. Когда вы проводите пальцем по экрану, нажимаете кнопку рядом с головкой или выполняете какие-то другие действия, Taptic engine генерирует специфические ответные тактильные реакции, сопровождая на уровне ощущений .

    Не остался в стороне от нового направления и заклятый друг Apple, Samsung. Корейцы недавно представили серию многофункциональных принтеров Smart MultiXpress , оснащённых «планшетным» интерфейсом с разнообразной тактильной связью.

    Все эти вышеупомянутые устройства используют преимущества нового направления в инженерии, получившего название haptography (haptic + photography , можно перевести как «тактилография»). Оно подразумевает регистрацию и запись физических ощущений с последующим воспроизведением. По сути, это направление находится в самом начале своего становления. С его дальнейшим развитием, пользователям станет доступно новое измерение во взаимодействии с гаджетами. Например, мы сможем ощущать текстуру поверхности предметов, которые видим на экране или слышим из динамиков. Современные безжизненные дисплеи смартфонов и планшетов оживут, станут в буквальном смысле реагировать на прикосновения. Все виды интерфейсов, от приборных панелей автомобилей до дверей холодильников и пультов дистанционного управления, станут «касаться в ответ» на наши прикосновения. И эта тактильная «отзывчивость» будет практически завораживать.

    Передача специфической шаблонной информации

    В часах Apple iWatch также реализован механизм передачи специфической шаблонной информации. Например, если вы идёте по маршруту, проложенному в картографическом приложении, часы будут предупреждать вас о необходимости повернуть, вибрируя правой или левой стороной, так что вам даже не придётся смотреть на экран.

    Новый гибридный автомобиль Mersedes S550 будет передавать тактильную информацию с помощью вибрации пола под ногами водителя. Например, таким образом машина будет подсказывать о необходимости сбавить газ, чтобы экономить топливо или заряд аккумулятора. Другим видом вибрации водителя известят о переключении с электромотора на ДВС.

    Носимые устройства вроде умных очков (которые, в отличие от изделия Google, будут выглядеть как обычные очки) будут слабо вибрировать, предупреждая пользователя о попадании в поле зрения какой-либо специфической информации.

    Общение

    Пожалуй, общение с людьми - это один из наиболее интересных способов применения обратной тактильной связи. И тут мы снова должны упомянуть Apple iWatch. Если вы выбираете чей-то контакт из списка избранных и потом касаетесь экрана, тот этот человек будет ощущать это касание через специфическую вибрацию своего экземпляра Apple iWatch. Можно даже отправить другому человеку своё сердцебиение, при этом отправитель и получатель увидят на экранах пульсирующее сердце, и оба будут ощущать его ритм на своих запястьях. Кстати, возможно, в русском языке со временем появится такой словарный оборот, как «часами чую».

    Эту идею используют и во многих стартапах, например, в браслете Tactilu , который передаёт «прикосновение» от одного пользователя другому.

    Конечно, вскоре это свойство внедрят и в смартфоны. Возможно, дойдёт даже до стандартизации некоего «тактильного протокола». Наверняка появятся кастомные вибросхемы, по аналогии с мелодиями для звонков и SMS, так что можно будет понять, кто вам звонит, просто по специфической вибрации, выбранной для этого контакта.

    Самое удивительное в этой перспективе заключается вовсе не потакании ленивым пользователям, не желающим даже смотреть на экран телефона, а в новом психологическом опыте, чем-то напоминающем телепатию, когда вы, в первые мгновения даже неосознанно, вдруг «почувствуете» внимание другого человека.

    Как обратная тактильная связь улучшает пользовательский опыт

    Мы сейчас стоим у самого начала «неосенсорной эры». Весьма вероятно, что уже через пару лет в подавляющем большинстве гаджетов будет встроена функция крайне правдоподобной обратной тактильной связи. Мы окажемся в ситуации, когда ожидания пользователей будут побуждать производителей интегрировать высококачественные тактильные интерфейсы во все новые гаджеты.

    Особенно ярко новая тенденция будет проявляться в носимых гаджетах. Не исключено, что появятся устройства, у которых вообще не будет иного интерфейса, кроме тактильного - ни сенсорно-графического, ни механического. Подобные интерфейсы добавят своеобразной глубины, завершённости и, в буквальном смысле, хорошего ощущения компьютерам, телефонам, планшетам и носимым устройствам, включая автомобили и различные бытовые приборы. Отчасти это даст чисто утилитарные преимущества, но в основном нас будет привлекать именно психологический, эстетический момент.

    А если ко всевозможным видам вибрации добавить изменение текстуры поверхности гаджета ? Вы сможете не просто получить какую-то активную реакцию на свои действия, это уже в полной мере можно охарактеризовать как «ощущаю кожей».
    Пожалуй, наибольшее разнообразие применений тактильной обратной связи будет наблюдаться именно в смартфонах, просто по причине их универсальности и постоянной востребованности пользователями.

    Представьте, вы смотрите фильм, сцена в пустыне, и ваш смартфон становится словно сделан из прессованного песка. Или ваш любимый человек напишет вам, что прикоснулся к стеклу окна, и вы начинаете ощущать гладкость и твёрдость его поверхности. Бумага, древесина, стекло, бетон, песок, всё это можно будет не просто «потрогать», наш мозг будет получать гораздо больше информации о ситуации, и почти на бессознательном уровне мы гораздо глубже понимать и сопереживать другим людям, сюжетам книг, фильмов, игр, телевизионных новостей, даже песен.

    Интересные перспективы открываются для пользователей, ведущих активную переписку на смартфонах. Для разных пользователей в списке контактов, в соцсетях и мессенджерах можно будет настроить не только разные вибросхемы, но и изменения текстуры поверхности. И набирая кому-то сообщение, вам не придётся отвлекаться, чтобы посмотреть, кто вам уже написал. Разные тактильные схемы можно будет создать даже для разных смайликов, передавая таким образом ощущения улыбки, смеха, грусти, злости и множества других эмоций.

    Весьма вероятно, что могут появиться сменные панели для смартфонов, жёсткие или в виде мягких тонких облегающих чехлов, способные по другому менять текстуру своей поверхности. Естественно, для YotaPhone они будут совершенно прозрачными, позволяя работать с сенсорными экранами. При этом вибросхемы могут быть разными в зависимости от того, с каким экраном YotaPhone вы работаете в данный момент. Настоящее раздолье для кинестетиков-гурманов.

    Появятся программы, позволяющие создавать собственные вибросхемы и алгоритмы изменения текстуры. И если сегодня мы показываем друг другу фотографии, снятые на смартфон, то не исключено, что лет через 15 будем предлагать друг другу просто подержать их.

    Не удивимся, если многие пользователи подсознательно станут воспринимать свои смартфоны как живых питомцев, ведь они будут не только чутко реагировать на наши действия, но и проявлять «собственные эмоции».

    Мы считаем, что через два десятка лет большинство гаджетов и устройств будут оснащены тактильными пользовательскими интерфейсами. По крайне мере, мы очень на это надеемся.

    Android является отличной ОС во всех смыслах, полностью настраиваемая, имеющая миллионы бесплатных и платных приложений, множество ланчеров и наличие множества игр — вот некоторые из преимуществ. Единственный недостаток, который можно найти в Android — это потребление энергии батареи. По сравнению с другими операционными системами, вы можете почувствовать, что Android телефоны расходуют емкость аккумулятора быстрее. Таким образом, чтобы решить эту проблему, у нас есть несколько советов для экономии батареи на вашем телефоне.

    1. Дисплей потребляет большую часть энергии

    Экран вашего мобильного устройства потребляет намного больше энергии, чем любое другое приложение/процесс. Постарайтесь, чтобы дисплей не включался когда аккумулятор разряжен, это продлит работу устройства.

    2. Уменьшите яркость экрана

    Так как экран потребляет много энергии, вы должны выставить яркость по минимальному уровню, комфортному для восприятия.

    3. Отключите беспроводную связь

    Включайте мобильную передачу данных, Wi-Fi, NFC, Bluetooth и GPS только тогда, когда вы в них нуждаетесь. Все это потребляет много энергии и не должно использоваться все время.

    4. Отдайте предпочтение WiFi

    Если вы можете иметь доступ к сети Wi-Fi, то вы должны использовать его вместо мобильной передачи данных. Мобильная передаяа данных потребляет гораздо больше энергии, чем Wi-Fi и, следовательно, должны быть полностью исключена если это возможно.

    5. Выключите автоматическую синхронизацию

    Большинство приложений, которые вы устанавливаете синхронизируют файлы с серверами после заданного интервала. Процесс синхронизации должен быть запущен вручную и только для тех приложений, для которых вы хотите синхронизировать данные.

    6. Используйте минимальное количество виджетов

    Виджеты используют энергию, чтобы обновлять данные и для отображения изменений. Они всегда работают в фоновом режиме. Вы не должны использовать много виджетов одновременно.

    7. Не используйте живые обои

    Живые обои очень энергоемкие и могут разрядить аккумулятор вашего Android очень быстро. Вы должны отключить их, когда хотите выжать максимальное время работы от батареи, или лучше, не используйте их вообще.

    8. Закрывайте приложения вручную или с помощью специальных утилит

    Когда вы закрываете программу, она продолжает работать в фоновом режиме. Это делается, чтобы уменьшить время, необходимое для запуска, и сделать приложение более отзывчивым. Но, будучи в оперативной памяти все, они потребляют энергию батареи. Либо останавливайте их с помощью диспетчер задач в телефоне, либо используйте сторонние приложения.

    9. Используйте черный фон

    Если ваш телефон имеет AMOLED экран, то вы должны использовать черное изображение в качестве фона. Это позволит снизить потребление энергии аккумулятора для отображения содержимого экрана. Также выберите темную тему, если это возможно.

    10. Установите тайм-аут экрана на наименьшее значение

    Тайм-аут экрана определяет время, после которого подсветка вашего экрана гаснет если устройство не используется. Установка в меньшего значения спасет батарею вашего телефона.

    11. Выключите тактильную обратную связь

    Виброотклик это опция, с помощью которой ваш телефон дает сигнал обратной связи в виде вибрации при нажатии на экран. Хотя он полезен во время набора текста, но он потребляет много ресурсов. Вы должны выключить его для экономии заряда батареи вашего телефона.

    12. Переключитесь на режим полета

    Когда вы в самолете, вам нужно перевести свой мобильный телефон в режим полета. Поскольку у вас нет подключения к сети, передатчик вашего телефона будет продолжать пытаться найти сеть. Это просто разрядить аккумулятор и больше ничего. Поэтому, переключайтесь в режим полета, когда вы находитесь на борту самолета. Вы также можете отключить его, если вы не хотите использовать радиомодуль телефона.

    13. Включите режим экономии энергии

    Режим энергосбережения по умолчанию ограничивает использование процессора, уменьшается яркость экрана, отключает модуль для передачи данных, когда экран выключен и выключает тактильную обратную связь. Возможно, это самый эффективный способ сохранить аккумулятор вашего телефона Android.

    14. Ограничение передачи данных

    Многие приложения, такие как Gmail, Google Play Store и многие другие собирают и передают данные на свои сервера в фоновом режиме. Это разряжает батарею очень быстро. Чтобы остановить это, вы можете ограничить использование данных, зайдите я в Настройки — Использование данных и выберите вариант «Ограничить фоновую передачу данных».

    И кстати, если вы рассылаете много СМС сообщений, возможно, имеет смысл использовать sms шлюз — это будет и дешевле и эффективней, позволяя рассылать сообщения значительному количеству мобильных абонентов.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: