Тип системы охлаждения пассивное. Охлаждение компьютера — обзор методов

Особенности конструкции и функционирования активной, и пассивной систем охлаждения видеокарты, и процессора. Достоинства и недостатки таких систем, их эффективность.

Активной системой процессор или видеокарту охлаждать намного проще, так как можно применить меньший радиатор и сильно сократить расстояние между его ребрами.

Это разрешает расположить большее число ребер, а значит, и площадь рассеяния тепла кулера вырастет.

Вентилятором создается направленный поток воздуха, обдувающий все ребра, что и приводит к их охлаждению. Минусом всякого активного охлаждения является его шум, зависящий от конструкции вентилятора, его размеров и числа оборотов.

Для создания мощного воздушного потока вентилятору меньших размеров нужно крутиться быстрее, при этом он больше шумит.

Так, вентилятор с типоразмером 120 мм способен обеспечить эффективность воздушного потока, имея лишь 800-1000 об/мин., это достаточно тихое вращение.

Для создания такой же эффективности вентилятору 80 мм надо будет набирать уже 1600 об/мин.

Своего вентилятора у пассивной системы охлаждения нет, поэтому она вообще не шумит, хотя охлаждать нагретый процессор ей намного труднее. Естественной конвекции воздуха может в корпусе самого системного блока не хватать для эффективности удаления тепла с ребристой поверхности радиатора.

При этом все пассивные охлаждающие системы обязаны быть довольно крупными для наличия возможности расширения межреберного пространства радиатора с целью наилучшего охлаждения.

Причем, они не должны нести больших потерь в площади рассеяния.

Из-за того, что нет вентилятора в таком стратегически значимом процессорном секторе материнской платы, дополнительно на системной плате нагревается радиатор чипсета и цепь процессорного питания.

При такой системе охлаждения процессор греется быстро, а его остывание идет медленнее. Ясно, что с системой пассивного охлаждения процессор нагреется больше, чем с соизмеримой по конструкции системой активного типа охлаждения.

Причем, если в зимнее время температурный режим CPU будет держаться в районе критического порогового значения в 60ºС, а в доме будет чуть выше 20ºС, то в летнюю жару нагрев может достигать 70ºС и больше, а это становится уже вредным для процессора.

Из-за перегревания процессоры Intel начинают отключать TurboBoost технологии, которые повышают тактовые частоты процессорных ядер, а если достигаются критические температуры, то происходит активация аппаратной защиты от перегревания -Throttling, принуждающей CPU пропускать часть тактов, чтобы успеть охладиться.

В общем, работать ПК, в лучшем случае, станет медленнее, а в худшем он и вовсе способен выйти из строя, если его компоненты будут постоянно перегреваться при работе, причем намного ранее этого он начнет себя вести весьма нестабильно.

Стало быть, однозначно ответить на вопрос «какое охлаждение лучше?» просто невозможно. Каждый из кулеров решает свои задачи.

При наличии у вас маломощного или экономичного процессора, находящегося внутри стандартного корпуса системного блока, хватит и пассивного охлаждения, при этом процессор не перегреется никогда.

И наоборот, мощному ПК, работающему с ресурсоемкими приложениями или имеющему тесный и слабо продуваемый корпус, требуется активное охлаждение.

Одним из неотъемлемых элементов персонального компьютера является система его охлаждения. Так как все компоненты ПК работают от электрического тока, то они имеют свойство нагреваться, причем степень их нагрева прямо пропорционально зависит от уровня нагрузки на эти компоненты. Другими словами, если вы хотите, чтобы компьютер мог успешно справляться с поставленными задачами, и при этом не перегореть, то стоит уделить внимание подбору качественного охлаждения. Базовая система охлаждения нужна даже для самого простенького компьютера, если же вы являетесь или планируете стать обладателем игрового или профессионального ПК, то на хорошем охлаждении ни в коем случае не следует экономить.

Виды систем охлаждения

На данный момент существует два основных вида систем охлаждения компьютера: воздушное и водяное.

Воздушные системы охлаждения

На сегодняшний день воздушное охлаждение является наиболее распространенным. Принцип действия системы воздушного охлаждения заключается в том, что тепло с нагревающегося элемента ПК напрямую передается на радиатор, и затем рассеивается в окружающее пространство. Эффективность такого метода охлаждения зависит от нескольких условий: полезной площади радиатора, материала, из которого он изготовлен и скорости проходящего воздушного потока. К примеру, медь является лучшим проводником тепла, чем алюминий, правда и стоимость ее гораздо выше. Также для лучшей теплоотдачи радиатора, может применяться чернение его поверхности. Воздушное охлаждение компьютера может быть активным или пассивным.

  • Активное охлаждение подразумевает наличие, помимо радиатора, еще и вентилятора, который значительно ускоряет процесс отвода тепла от трубок радиатора в окружающее пространство. Как правило, вентиляторы активного охлаждения, или, как их еще называют, кулеры, применяют для охлаждения самых «горячих» компонентов ПК - процессора и видеокарты.
  • Пассивное охлаждение в основном устанавливается на те элементы компьютера, которые не очень сильно нагреваются в процессе работы, так как его эффективность существенно ниже, чем у активного. Однако есть пассивные радиаторы, которые предназначены специально для построения бесшумной системы - они отличаются высокой эффективностью отвода тепла при низкой скорости потока воздуха.

Жидкостные системы охлаждения

Системы водяного охлаждения, которые раньше применялись только на серверных системах, в последнее время достаточно эффективно используются и в домашних компьютерах. Их основное преимущество – скорость охлаждения, поскольку жидкость может проводить тепло приблизительно в 30 раз быстрее, чем воздух. Основой жидкостного охлаждения является хладагент - рабочая жидкость, с помощью которой тепло отводится от нагревающегося элемента ПК к радиатору, где затем рассеивается в окружающую среду. В качестве такой рабочей жидкости может использоваться дистиллированная вода, масло, антифриз, жидкий металл или другое специальное вещество.

Помимо радиатора и трубок, по которым проводится рабочая жидкость, система водяного охлаждения включает в себя насос для циркуляции жидкости, резервуар для компенсации теплового расширения жидкости и теплосъемник – металлическую пластину, которая собирает тепло с компонентов компьютера.

Как видно, жидкостная система охлаждения представляет собой довольно сложную конструкцию, установка которой требует специальных знаний и немалых усилий. К тому же, если установить водяную систему охлаждения неправильно, то может возникнуть протечка, в результате которой компоненты компьютера пострадают или даже выйдут из строя. Поэтому оборудование такой системы лучше доверить профессионалам, или же просто-напросто купить готовый собранный ПК на водяном охлаждении.

Система водяного охлаждения может использоваться для двух целей: обеспечения высокой производительности компьютера или для создания бесшумного ПК. Некоторые по ошибке считают, что при помощи водяного охлаждения можно максимально добиться и того и другого, но к сожалению это не так. Высокоэффективная жидкостная система охлаждения должна иметь мощный насос, а шум от такого насоса вполне может превышать шум от активной системы вентиляции ПК. С другой стороны, бесшумное водяное охлаждение не обеспечит столь высокой эффективности.

В любом случае жидкостные системы охлаждения – продукт вовсе не массовый, ведь даже самая недорогая конфигурация такой системы будет в разы превышать стоимость воздушного охлаждения. Поэтому компьютеры на водяном охлаждении чаще всего приобретают геймеры, а также те, кому высокая производительность критически важна для работы. Остальным же пользователям вполне хватит и традиционного воздушного охлаждения.

Элементы системы охлаждения

Для построения грамотной системы охлаждения необходимо знать, какие именно элементы компьютера больше всего нуждаются в отводе тепла, и как правильно этот отвод организовать.

Охлаждение для корпуса

В недорогих конфигурациях персональных компьютеров воздухообмен в системном блоке происходит за счет вентиляционной решетки и вытяжного вентилятора на блоке питания. Воздух попадает внутрь корпуса через отверстия вентиляции, проходит через компоненты ПК и отводит тепло наружу, через блок питания. Однако при более-менее приличной мощности компьютера этого зачастую бывает недостаточно и тогда необходимо устанавливать в системный блок дополнительные вентиляторы. Но ставить их нужно не как попало, иначе горячий воздух будет «гулять» внутри системного блока, что сведет на нет всю эффективность охлаждения. Ниже на иллюстрации показана схема правильного воздухообмена внутри корпуса компьютера: холодный воздух затягивается большим вентилятором снизу, проходит через все главные компоненты ПК и вытягивается наверх при помощи нескольких небольших вентиляторов.

Охлаждение для процессора

Процессор является самым «жарким» компонентом компьютера и поэтому особенно нуждается в хорошем охлаждении. Лучшим решением для отвода тепла от процессора будет качественный радиатор с кулером среднего или большого диаметра – это обеспечит высокую эффективность при невысоком уровне шума.

Также не стоит забывать о правильном и своевременном нанесении термопасты – без этого вещества между процессором и радиатором будет образовываться тонкий воздушный слой с крайне низкой теплопроводимостью.

Охлаждение для видеокарты

Видеокарте также необходимо качественное охлаждение, ведь она тоже испытывает при работе немалую нагрузку (особенно во время игр, или работы с графическими редакторами). Большинство видеокарт продаются со встроенным кулером активного охлаждения, но есть и модели с радиатором пассивного охлаждения. Последние приобретаются любителями бесшумных систем, а также энтузиастами, которые дополнительно устанавливают на них кулер, повышая тем самым производительность видеокарты.

Охлаждение для жесткого диска, чипсета и оперативной памяти

Обычному пользователю вряд ли стоит беспокоиться об охлаждении материнской платы, оперативной памяти или винчестера. Однако владельцам мощных комплектующих установка пассивных теплоотводных элементов на вышеперечисленные компоненты совсем не помешает. Особенно сильно может нагреваться чипсет материнской платы – при больших нагрузках его температура порой достигает 65-70 градусов по Цельсию.

Пыль – главный источник перегрева

Помимо установки хорошей системы охлаждения, необходимо также следить за чистотой внутреннего пространства системного блока компьютера. При засорении пылью эффективность теплоотводных радиаторов снижается минимум вдвое, а вентилятор, забитый пылью, не в состоянии обеспечивать достаточную циркуляцию воздуха внутри корпуса. Поэтому нужно вовремя проводить плановую чистку компьютера от пыли, в которую также должны входить: чистка вентиляторов, радиаторов, блока питания и контактных поверхностей компонентов (видеокарты, оперативной памяти и т.д.).

С каждым годом появляются все новые и новые модели компьютерной техники и комплектующие. Однако в погоне за мощностью и высокой производительностью лидеры в сфере высоких технологий сталкиваются с закономерными проблемами. Процессор, видеокарта и другие детали в процессе работы вырабатывают энергию, которая преобразуется в тепло и способствует перегреву системного блока. Это, в свою очередь, влечет за собой частые сбои в работы системы и поломки. Выход из ситуации - установка системы охлаждения.

Типы систем охлаждения процессора

Качественная система позволит не только избежать выхода из строя, казалось бы, совершенно новых деталей, но и обеспечит быстродействие, отсутствие задержек и бесперебойную работу.

На сегодняшний момент системы охлаждения процессора представлены тремя типами: жидкостное, пассивное и воздушное. Ниже рассмотрены преимущества и недостатки каждого решения.

Несколько забегая наперед, можно сказать, что самым распространенным типом охлаждения на сегодняшний день является воздушное, т. е. установка кулеров, тогда как наиболее эффективно жидкостное. Воздушное охлаждение для процессора выигрывает во многом благодаря лояльной ценовой политике. Именно поэтому вопросу выбора подходящего вентилятора в статье будет уделено особое внимание.

Система жидкостного охлаждения

Система жидкостного является наиболее продуктивным методом избежать перегрева процессора и связанных с этим процессом поломок. Конструкция системы во многом напоминает устройство холодильника и состоит из:

  • теплообменника, вбирающего в себя тепловую энергию, вырабатываемую процессором;
  • помпы, которая выступает в качестве резервуара для жидкости;
  • дополнительной емкости для расширяющегося в процессе работы теплообменника;
  • теплоносителя - элемента, который наполняет всю систему специальной жидкостью или дистиллированной водой;
  • теплосъемников для элементов, выделяющих тепло;
  • шлангов, по которым проходит вода и нескольких переходников.

К преимуществам метода водяного охлаждения процессора можно отнести высокую эффективность и низкую шумовую способность. Недостатков, несмотря на продуктивность системы, также хватает:

  1. Пользователи отмечают высокую стоимость жидкостного охлаждения, так как для установки такой системы требуется мощный блок питания.
  2. Конструкция в итоге получается довольно-таки громоздкой из-за объемных резервуара и водяного блока, обеспечивающих качественное охлаждение.
  3. Существует вероятность образования конденсата, что негативно сказывается на работе некоторых комплектующих и может спровоцировать замыкание в системном блоке.

Если рассматривать исключительно жидкостный способ, то лучшее охлаждение процессора компьютера - это применение жидкого азота. Метод, конечно, совершенно не бюджетный и чрезвычайно сложный в монтаже и дальнейшем обслуживании, но результат действительно того заслуживает.

Пассивное охлаждение

Пассивное охлаждение процессораявляется самым неэффективным способом вывода тепловой энергии. Достоинством данного метода, впрочем, считают низкую шумовую способность: система состоит из радиатора, который, собственно, и не «воспроизводит звуки».

Пассивный метод охлаждения применялся давно, он был довольно хорош для компьютеров с низкой производительностью. На сегодняшний момент пассивное охлаждение процессора широко не используется, но применяется для других комплектующих - материнских плат, оперативной памяти, дешевых видеокарт.

Воздушное охлаждение: описание системы

Ярким представителем самого распространенного воздушного типа отвода тепла является кулер охлаждения процессора, который состоит из радиатора и вентилятора. Популярность воздушного охлаждения связывают в первую очередь с лояльной ценовой политикой и широким выбором вентиляторов по параметрам.

Качество воздушного охлаждения напрямую зависит от а также диаметра и изгиба лопастей. При увеличении вентилятора снижается количество необходимых оборотов для эффективного отвода тепла от процессора, что улучшает результат работы кулера при меньших его «усилиях».

Скорость вращения лопастей регулируется при помощи современных материнских плат, разъемов и программного обеспечения. Количество разъемов, способных контролировать работу кулера, при этом зависит от модели конкретной платы.

Настраивается скорость вращения лопастей вентиляторов через BIOS Setup. Также существует целый перечень программ, которые следят за повышением температуры в системном блоке и, в соответствии с полученными данными, регулируют режим работы системы охлаждения. Созданием подобного программного обеспечения часто занимаются изготовители материнских плат. К таковым можно отнести Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep. Кроме того, регулировать количество оборотов вентилятора способны многие современные видеокарты.

О достоинствах и недостатках воздушного охлаждения

Воздушный тип охлаждения процессора имеет больше достоинств, чем недостатков, в связи с чем и пользуется особой популярностью по сравнению с другими системами. К достоинствам такого типа охлаждения процессора можно отнести:

  • большое количество видов кулеров, а следовательно, и возможность подобрать идеальный вариант для потребностей каждого пользователя;
  • небольшие энергозатраты в ходе эксплуатации оборудования;
  • простая установка и обслуживание воздушного охлаждения.

Недостатком воздушного охлаждения является повышенный уровень шума, который только увеличивается в процессе эксплуатации комплектующих вследствие попадания в вентилятор пыли.

Параметры системы воздушного охлаждения

При выборе кулера для эффективного охлаждения процессора особое внимание стоит уделить техническим моментам, ведь далеко не всегда ценовая политика производителя соответствует качеству продукции. Так, система охлаждения процессораобладает следующими основными техническими параметрами:

  1. Совместимость с сокетом (в зависимости от материнской платы: на базе AMD или Intel).
  2. Конструктивные характеристики системы (ширина и высота конструкции).
  3. Вид радиатора (типы представлены стандартным, комбинированным или С-видом).
  4. Размерные характеристики лопастей вентилятора.
  5. Способность к воспроизведению шума (другими словами, уровень шума, воспроизводимый системой).
  6. Качество и мощность воздушного потока.
  7. Весовая характеристика (в последнее время актуальны эксперименты с весом кулера, что отражается на качестве работы системы скорее негативным образом).
  8. Сопротивление тепла или тепловое рассеивание, что актуально только для топовых моделей. Показатель находится в пределах от 40 до 220 Вт. Чем выше величина - тем более продуктивна система охлаждения.
  9. Точка касания кулера с процессором (оценивается плотность соединения).
  10. Способ соприкосновения трубок с радиатором (пайка, компрессовка или применение технологии прямого контакта).

Большинство этих параметров в конечном итоге влияют на стоимость кулера. Но ведь и бренд также накладывает свой отпечаток, поэтому в первую очередь стоит обращать внимание на характеристики комплектующей детали. В противном случае можно приобрести именитую модель, которая окажется абсолютно бесполезной при последующей эксплуатации.

Сокет: теория совместимости

Основным моментом при выборе вентилятора является архитектура, т.е. совместимость системы охлаждения с сокетом процессора. Под непонятным английским термином, в прямом переводе означающим «разъем», «гнездо», кроется программный интерфейс, который обеспечивает обмен данными между различными процессами.

Так, у каждого процессора есть определенное пространство и виды крепления на материнской плате. Это значит, например, что охлаждение процессора Intel не подойдет для AMD. При этом линейка моделей Intel представлена как флагманскими, так и бюджетными решениями. Охлаждение процессора i7 необходимо более продуктивное чем для предыдущих версий Intel Core, которым подходит Для других процессоров на базе Intel (Pentium, Celeron, Xeon и т. п.) необходим сокет LGA 775.

AMD же отличается тем, что для комплектующих данного производителя не годится стандартный вентилятор. Охлаждение процессора AMD лучше приобретать отдельно.

В сокетах для AMD и Intel существуют и визуальные отличия, что несколько поможет разобраться в вопросе даже неосведомленному пользователю ПК. Тип крепления для AMD представляет собой крепежную раму, за которую цепляются скобы с петлями. Крепление Intel - это плата, в которую вставляются четыре так называемые ножки. В тех случаях, когда вес вентилятора превышает стандартные цифры, применяется винтовой крепеж.

Конструктивные характеристики

Не только совместимость с сокетом является важным параметром. Также следует обратить внимание на ширину и высоту кулера, ведь под него предстоит найти место в корпусе системного блока так, чтобы работе вентилятора не мешали другие детали. Видеокарта и модули оперативной памяти при неправильном монтаже кулера будут препятствовать нормальному движению воздушных потоков, которые в этом случае вместо охлаждения будут способствовать еще большему перегреву всей конструкции.

Вид радиатора: стандартный, С-тип или комбинированный?

В данный момент радиаторы для вентилятора поставляются трех типов:

  1. Стандартный, или башенный вид.
  2. С-тип радиатора.
  3. Комбинированный вид.

Стандартный тип предусматривает, что трубки, параллельные основанию, проходят через пластины. Такие вентиляторы наиболее популярны. Они несколько изогнуты вверх и являются более эффективным решением для охлаждения процессора. Недостаток стандартного типа состоит в том, что подходит к задней или верхней стороне корпуса вдоль материнки. Таким образом, воздух проходит только один круг циркуляции, и процессор может сильно перегреваться.

От данного недостатка избавлены кулеры С-типа. С-образная конструкция таких радиаторов способствует прохождению потока воздуха около гнезда процессора. Но не обошлось и без недостатков: С-вид охлаждения менее эффективен, чем башенный.

Флагманским решением является комбинированный вид радиатора. Данный вариант сочетает в себе все достоинства предшественников, и одновременно практически полностью избавлен от недостатков с-типа или стандартного вида.

Размерные характеристики лопастей

Ширина, длина и изогнутость лопастей влияют на объем воздуха, который будет задействован в процессе работы охлаждающей системы. Соответственно, чем больше размер лопасти, тем большим будет и объем воздушных потоков, что улучшит охлаждение процессора ноутбука или компьютера. Однако не стоит пускаться «во все тяжкие»: охлаждение для процессора должно соответствовать другим характеристикам персонального компьютера.

Уровень шума, воспроизводимый кулером

Параметр, который производители систем охлаждения пытаются улучшить практически любыми средствами, - это уровень шума, воспроизводимый кулером. По мнению большинства пользователей, охлаждение для процессора в идеале должно быть не только эффективным, но и бесшумным. Но это лишь в теории. На практике полностью избавиться от шума в процессе эксплуатации воздушной системы не получится.

Кулеры небольших размеров издают меньше шума, что вполне устраивает пользователей не особенно мощных компьютеров. Большие же вентиляторы создают достаточный уровень звука, чтобы считать это проблемой.

В настоящее время большинство кулеров обладают способностью реагировать на количество выделяемого тепла и, соответственно, работать в более активном режиме в случае необходимости. Программа для охлаждения процессора прекрасно справляется с задачей контроля над необходимостью активного охлаждения. Так, шум больше не постоянный, а возникает только при интенсивной работе процессора. Программа для охлаждения процессора - отличное решение для небольших моделей и нетребовательных компьютеров.

В вопросах регулировки уровня шума стоит обратить внимание на тип подшипника. Бюджетным, а потому наиболее популярным вариантом является подшипник скольжения, но скупой платит дважды: уже достигнув половины предполагаемого срока службы, он будет издавать навязчивый шум. Более удачным решением являются гидродинамические подшипники и подшипники качения. Они прослужат гораздо дольше и не перестанут справляться с поставленными задачами «на полпути».

Точка касания кулера с процессором: материал

Система охлаждения необходима, чтобы выводить излишки тепловой энергии из системного блока в окружающую среду, но точка соприкосновения деталей при этом должна быть как можно более плотной. Здесь важными критериями выбора качественной системы охлаждения будут являться материал, из которого кулер изготовлен, и степень гладкости его поверхности. Наиболее качественными материалами (по мнению пользователей и технических специалистов) зарекомендовали себя алюминий или медь. Поверхность материала в точке соприкосновения должна быть максимально гладкой - без вмятин, царапин и неровностей.

Способ соприкосновения трубок с радиатором

Если на стыке трубок с радиатором в системе охлаждения есть видимые следы, то, скорее всего, для фиксации применялась пайка. Устройство, изготовленное таким методом, будет надежным и долговечным, хотя пайка в последнее время используется все реже. Пользователи, которые успели приобрести кулер с пайкой в месте соприкосновения трубок с радиатором, отмечают длительный срок службы охлаждающей системы и отсутствие поломок.

Более популярным способом соприкосновения трубок с радиатором является менее качественная опрессовка. Также широкое распространение получили вентиляторы, изготавливающиеся с применением технологии прямого контакта. В этом случае основание радиатора заменяют тепловые трубки. Чтобы определить качественное изделие, следует обращаться внимание на расстояние между тепловыми трубками: чем оно меньше, тем лучше будет работать кулер, так как теплообмен станет более равномерным.

Термопаста: как часто нужно менять?

Термопаста представляет собой пастообразную консистенцию, может быть различных оттенков (белая, серая, черная, синяя, голубая). Сама по себе она не дает охлаждающего эффекта, но помогает быстрее проводить тепло от чипа к радиатору системы охлаждения. В обычных условиях между ними образуется воздушная подушка, которая обладает низкой теплопроводностью.

Термопасту следует наносить туда, где кулер непосредственно касается процессора. Время от времени следует осуществлять замену вещества, потому как высыхание приводит к возрастанию степени перегрузки процессора. Оптимальный «срок службы» большинства современных видов термопасты, по отзывам пользователей, составляет один год. Для старых и надежных марок периодичность замены увеличивается до четырех лет.

А может, достаточно стандартного решения?

Действительно, стоит ли отдельно приобретать кулер и вообще думать над системой охлаждения? Преобладающее большинство процессоров идет в продаже сразу с вентилятором. Зачем тогда вдаваться в детали и покупать его отдельно?

Заводские кулеры, как правило, отличает низкая производительность и высокая способность воспроизведения шума. Это отмечают и пользователи, и специалисты. При этом качественная система охлаждения - это гарант долгой и бесперебойной работы процессора, безопасность и сохранность внутренностей компьютера. Правильным выбором станет лучшее охлаждение для процессора, которым далеко не всегда является стандартное решение.

Компьютерные технологии развиваются очень и очень быстро. То и дело появляются новые версии комплектующих, начинают применять инновационные технологии и решения. Современные производители предусматривают, что система охлаждения процессора также должна совершенствоваться.

Качественные конструкции вентиляторов сейчас производят лишь немногие компании. Многие бренды стараются отличиться совместимостью с разъемами различного типа, низким уровнем шума своих моделей, дизайном. Топовыми производителями воздушных систем охлаждения являются THERMALTAKE, COOLER MASTER и XILENCE. Модели приведенных брендов отличаются качественными материалами и долгим сроком эксплуатации.

Часто для построения большого радиатора используют тепловые трубки (англ.: heat pipe ) — герметично запаянные и специальным образом устроенные металлические трубки (обычно медные). Они очень эффективно переносят тепло от одного своего конца к другому: таким образом, даже самые дальние рёбра большого радиатора эффективно работают в охлаждении. Так, например, устроен популярный кулер

Для охлаждения современных производительных графических процессоров применяют те же методы: большие радиаторы, медные сердечники систем охлаждения или полностью медные радиаторы, тепловые трубки для переноса тепла к дополнительным радиаторам:

Рекомендации по выбору здесь такие же: использовать медленные и крупноразмерные вентиляторы, максимально большие радиаторы. Так, например, выглядят популярные системы охлаждения видеокарт и Zalman VF900 :

Обычно вентиляторы систем охлаждения видеокарт лишь перемешивали воздух внутри системного блока, что не очень эффективно, с точки зрения охлаждения всего компьютера. Лишь совсем недавно для охлаждения видеокарт стали применять системы охлаждения, которые выносят горячий воздух за пределы корпуса: первыми стали и, схожая конструкция, от бренда :

Подобные системы охлаждения устанавливаются на самые мощные современные видеокарты (nVidia GeForce 8800, ATI x1800XT и старше). Такая конструкция зачастую более оправдана, с точки зрения правильной организации воздушных потоков внутри корпуса компьютера, чем традиционные схемы. Организация воздушных потоков

Современные стандарты по конструированию корпусов компьютеров среди прочего регламентируют и способ построения системы охлаждения. Начиная ещё с , выпуск которых был начат в 1997 году, внедряется технология охлаждения компьютера сквозным воздушным потоком, направленным от передней стенки корпуса к задней (дополнительно воздух для охлаждения всасывается через левую стенку):

Интересующихся подробностями отсылаю к последним версиям стандарта ATX.

Как минимум один вентилятор установлен в блоке питания компьютера (многие современные модели имеют два вентилятора, что позволяет существенно снизить скорость вращения каждого из них, а, значит, и шум при работе). В любом месте внутри корпуса компьютера можно устанавливать дополнительные вентиляторы для усиления потоков воздуха. Обязательно нужно следовать правилу: на передней и левой боковой стенке воздух нагнетается внутрь корпуса, на задней стенке горячий воздух выбрасывается наружу . Также нужно проконтролировать, чтобы поток горячего воздуха от задней стенки компьютера не попадал напрямик в воздухозабор на левой стенке компьютера (такое случается при определённых положениях системного блока относительно стен комнаты и мебели). Какие вентиляторы устанавливать, зависит в первую очередь от наличия соответствующих креплений в стенках корпуса. Шум вентилятора главным образом определяется скоростью его вращения (см. раздел ), поэтому рекомендуется использовать медленные (тихие) модели вентиляторов. При равных установочных размерах и скорости вращения, вентиляторы на задней стенке корпуса субъективно шумят несколько меньше передних: во-первых, они находятся дальше от пользователя, во-вторых, сзади корпуса расположены почти прозрачные решётки, в то время как спереди - различные декоративные элементы. Часто шум создаётся вследствие огибания элементов передней панели воздушным потоком: если переносимый объём воздушного потока превышает некий предел, на передней панели корпуса компьютера образуются вихревые турбулентные потоки, которые создают характерный шум (он напоминает шипение пылесоса, но гораздо тише).

Выбор компьютерного корпуса

Практически подавляющее большинство корпусов для компьютеров, представленных сегодня на рынке, соответствуют одной из версий стандарта ATX, в том числе и по части охлаждения. Самые дешёвые корпуса не комплектуются ни блоком питания, ни дополнительными приспособлениями. Более дорогие корпуса оснащаются вентиляторами для охлаждения корпуса, реже - переходниками для подключения вентиляторов различными способами; иногда даже специальным контроллером, оснащённым термодатчиками, который позволяет плавно регулировать скорость вращения одного или нескольких вентиляторов в зависимости от температуры основных узлов (см. напр. ). Блок питания включается в комплект не всегда: многие покупатели предпочитают выбирать БП самостоятельно. Из прочих вариантов дополнительного оснащения стоит отметить специальные крепления боковых стенок, жёстких дисков, оптических приводов, карт расширения, которые позволяют собирать компьютер без отвёртки; пылевые фильтры, препятствующие попаданию грязи внутрь компьютера через вентиляционные отверстия; различные патрубки для направления воздушных потоков внутри корпуса. Исследуем вентилятор

Для переноса воздуха в системах охлаждения используют вентиляторы (англ.: fan ).

Устройство вентилятора

Вентилятор состоит из корпуса (обычно в виде рамки), электродвигателя и крыльчатки, закреплённой при помощи подшипников на одной оси с двигателем:

От типа установленных подшипников зависит надёжность вентилятора. Производители заявляют такое типичное время наработки на отказ (количество лет получено из расчёта круглосуточной работы):

С учётом морального старения компьютерной техники (для домашнего и офисного применения это 2-3 года), вентиляторы с шарикоподшипниками можно считать «вечными»: срок их работы не меньше типового срока работы компьютера. Для более серьёзных применений, где компьютер должен работать круглосуточно много лет, стоит подобрать более надёжные вентиляторы.

Многие сталкивались со старыми вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал крыльчатки дребезжит и вибрирует при работе, издавая характерный рычащий звук. В принципе, такой подшипник можно отремонтировать, смазав его твёрдой смазкой, - но многие ли согласятся ремонтировать вентилятор, цена которому всего пара долларов?

Характеристики вентиляторов

Вентиляторы различаются по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора :

Из этого следует простой вывод: чем интенсивнее работают вентиляторы в задней части корпуса компьютера, тем больше воздуха можно будет прокачать через всю систему, и тем эффективнее будет охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый вентилятором при работе, зависит от различных его характеристик (подробнее о причинах его возникновения можно прочесть в статье ). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения , в мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, и .

Жирным шрифтом выделены самые популярные типы вентиляторов.

Посчитав коэффициент пропорциональности потока воздуха и уровня шума к оборотам, видим почти полное совпадение. Для очистки совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная производительность вентилятора пропорциональна количеству оборотов крыльчатки, то же самое справедливо и для уровня шума .

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна в некотором диапазоне скоростей вращения; логично предположить, что линейный характер зависимости сохранится и в некоторой окрестности этого диапазона; но при очень больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку вентиляторов другого производителя: , и . Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные.
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост . А уровень шума при одинаковых оборотах примерно равен : пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой для разных моделей вентиляторов.

Ценовые категории вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном и том же интернет-магазине и : результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan - но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел ), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - «земля», общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания . Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы в пластмассовой части разъёма при помощи пары отгибающихся металлических «усиков». Не составляет труда извлечь контакт, придавив выступающие части тонким шилом или маленькой отвёрткой. После этого «усики» нужно опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них :

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке . Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

Ответная часть находится на контактной площадке, при подключении она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод - такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно не рекомендуется соединять таким способом два разных электромотора : из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как считаю, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.

Контроль и управление вентиляторами

Большинство современных материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора - только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X - нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) - их появляется всё больше на современном рынке.

Контролировать значения скорости вращения вентиляторов можно при помощи BIOS Setup. Как правило, если материнская плата поддерживает изменение скорости вращения вентиляторов, здесь же в BIOS Setup можно настроить параметры алгоритма регулирования скорости. Набор параметров различен для разных материнских плат; обычно алгоритм использует показания термодатчиков, встроенных в процессор и материнскую плату. Существует ряд программ для различных ОС, которые позволяют контролировать и регулировать скорость вентиляторов, а также следить за температурой различных компонентов внутри компьютера. Производители некоторых материнских плат комплектуют свои изделия фирменными программами для Windows: Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep и т.д. Распространено несколько универсальных программ, среди них: (shareware, $20-30), (распространяется бесплатно, не обновляется с 2004 года). Самая популярная программа этого класса - :

Эти программы позволяют следить за целым рядом температурных датчиков, которые устанавливаются в современные процессоры, материнские платы, видеокарты и жёсткие диски. Также программа отслеживает скорость вращения вентиляторов, которые подключены к разъёмам материнской платы с соответствующей поддержкой. Наконец, программа способна автоматически регулировать скорость вентиляторов в зависимости от температуры наблюдаемых объектов (если производитель системной платы реализовал аппаратную поддержку этой возможности). На приведённом выше рисунке программа настроена на управление только вентилятором процессора: при невысокой температуре ЦП (36°C) он вращается со скоростью около 1000 об/мин, - это 35% от максимальной скорости (2800 об/мин). Настройка таких программ сводится к трём шагам:

  1. определению, к каким из каналов контроллера материнской платы подключены вентиляторы, и какие из них могут управляться программно;
  2. указанию, какие из температур должны влиять на скорость различных вентиляторов;
  3. заданию температурных порогов для каждого датчика температуры и диапазона рабочих скоростей для вентиляторов.

Возможностями по мониторингу также обладают многие программы для тестирования и тонкой настройки компьютеров: , и т. д.

Многие современные видеокарты также позволяют регулировать обороты вентилятора системы охлаждения в зависимости от нагрева графического процессора. При помощи специальных программ можно даже изменять настройки механизма охлаждения, снижая уровень шума от видеокарты в отсутствие нагрузки. Так выглядят в программе оптимальные настройки для видеокарты HIS X800GTO IceQ II :

Пассивное охлаждение

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый «чужими» вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения видеокарт, например, :

Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в :

Сравните корпус-радиатор на фото с корпусом обычного компьютера!

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.) Охлаждение экономией

В старые времена, когда энергопотребление процессоров не достигло ещё критических величин - для их охлаждения хватало небольшого радиатора - вопрос «что будет делать компьютер, когда делать ничего не нужно?» решался просто: пока не надо выполнять команды пользователя или запущенные программы, ОС даёт процессору команду NOP (No OPeration, нет операции). Эта команда заставляет процессор выполнить бессмысленную безрезультатную операцию, результат которой игнорируется. На это тратится не только время, но и электроэнергия, которая, в свою очередь, преобразуется в тепло. Типичный домашний или офисный компьютер в отсутствие ресурсоёмких задач загружен, как правило, всего на 10% - любой может удостовериться в этом, запустив Диспетчер задач Windows и понаблюдав за Хронологией загрузки ЦП (Центрального Процессора). Таким образом, при старом подходе около 90% процессорного времени улетало на ветер: ЦП занимался выполнением никому не нужных команд. Более новые ОС (Windows 2000 и далее) в аналогичной ситуации поступают разумнее: при помощи команды HLT (Halt, останов) процессор полностью останавливается на короткое время - это, очевидно, позволяет снизить потребление энергии и температуру процессора при отсутствии ресурсоёмких задач.

Компьютерщики со стажем могут припомнить целый ряд программ для «программного охлаждения процессора»: будучи запущенными под управлением Windows 95/98/ME они останавливали процессор с помощью HLT, вместо повторения бессмысленных NOP, чем снижали температуру процессора в отсутствие вычислительных задач. Соответственно, использование таких программ под управлением Windows 2000 и более новых ОС лишено всякого смысла.

Современные процессоры потребляют настолько много энергии (а это значит: рассеивают её в виде тепла, то есть греются), что разработчики создали дополнительные технические по борьбе с возможным перегревом, а также средства, повышающие эффективность механизмов экономии при простое компьютера.

Тепловая защита процессора

Для защиты процессора от перегрева и выхода из строя, применяется так называемый thermal throttling (обычно не переводят: троттлинг). Суть этого механизма проста: если температура процессора превышает допустимую, процессор принудительно останавливается командой HLT, чтобы кристалл имел возможность остыть. В ранних реализациях этого механизма через BIOS Setup можно было настраивать, какую долю времени процессор будет простаивать (параметр CPU Throttling Duty Cycle: xx%); новые реализации «тормозят» процессор автоматически до тех пор, пока температура кристалла не опустится до допустимого уровня. Безусловно, пользователь заинтересован в том, чтобы процессор не прохлаждался (буквально!), а выполнял полезную работу — для этого нужно использовать достаточно эффективную систему охлаждения. Проверить, не включается ли механизм тепловой защиты процессора (троттлинга) можно при помощи специальных утилит, например :

Минимизация потребления энергии

Практически все современные процессоры поддерживают специальные технологии для снижения потребления энергии (и, соответственно, нагрева). Разные производители называют такие технологии по-разному, например: Enhanced Intel SpeedStep Technology (EIST), AMD Cool’n’Quiet (CnQ, C&Q) - но работают они, по сути, одинаково. Когда компьютер простаивает, и процессор не загружен вычислительными задачами, уменьшается тактовая частота и напряжение питания процессора. И то, и другое уменьшает потребление процессором электроэнергии, что, в свою очередь, сокращает тепловыделение. Как только загрузка процессора увеличивается, автоматически восстанавливается полная скорость процессора: работа такой схемы энергосбережения полностью прозрачна для пользователя и запускаемых программ. Для включения такой системы нужно:

  1. включить использование поддерживаемой технологии в BIOS Setup;
  2. установить в используемой ОС соответствующие драйверы (обычно это драйвер процессора);
  3. в Панели управления Windows (Control Panel), в разделе Электропитание (Power Management), на закладке Схемы управления питанием (Power Schemes) выбрать в списке схему Диспетчер энергосбережения (Minimal Power Management).

Например, для материнской платы Asus A8N-E с процессором нужно (подробные инструкции приведены в Руководстве пользователя):

  1. в BIOS Setup в разделе Advanced > CPU Configuration > AMD CPU Cool & Quiet Configuration параметр Cool N"Quiet переключить в Enabled; а в разделе Power параметр ACPI 2.0 Support переключить в Yes;
  2. установить ;
  3. см. выше.

Проверить, что частота процессора изменяется, можно при помощи любой программы, отображающей тактовую частоту процессора: от специализированных типа , вплоть до Панели управления Windows (Control Panel), раздел Система (System):


AMD Cool"n"Quiet в действии: текущая частота процессора (994 МГц) меньше номинальной (1,8 ГГц)

Часто производители материнских плат дополнительно комплектуют свои изделия наглядными программами, наглядно демонстрирующими работу механизма изменения частоты и напряжения процессора, например, Asus Cool&Quiet:

Частота процессора изменяется от максимальной (при наличии вычислительной нагрузки), до некоторой минимальной (при отсутствии загрузки ЦП).

Утилита RMClock

Во время разработки набора программ для комплексного тестирования процессоров , была создана (RightMark CPU Clock/Power Utility): она предназначена для наблюдения, настройки и управления энергосберегающими возможностями современных процессоров. Утилита поддерживает все современные процессоры и самые разные системы управления потреблением энергии (частотой, напряжением…) Программа позволяет наблюдать за возникновением троттлинга, за изменением частоты и напряжения питания процессора. Используя RMClock, можно настраивать и использовать всё, что позволяют стандартные средства: BIOS Setup, управление энергопотреблением со стороны ОС при помощи драйвера процессора. Но возможности этой утилиты гораздо шире: с её помощью можно настраивать целый ряд параметров, которые не доступны для настройки стандартным образом. Особенно это важно при использовании разогнанных систем, когда процессор работает быстрее штатной частоты.

Авторазгон видеокарты

Подобный метод используют и разработчики видеокарт: полная мощность графического процессора нужна только в 3D-режиме, а с рабочим столом в 2D-режиме современный графический чип справится и при пониженной частоте. Многие современные видеокарты настроены так, чтобы графический чип обслуживал рабочий стол (2D-режим) с пониженной частотой, энергопотреблением и тепловыделением; соответственно, вентилятор охлаждения крутится медленнее и шумит меньше. Видеокарта начинает работать на полную мощность только при запуске 3D-приложений, например, компьютерных игр. Аналогичную логику можно реализовать программно, при помощи различных утилит по тонкой настройке и разгону видеокарт. Для примера, так выглядят настройки автоматического разгона в программе для видеокарты HIS X800GTO IceQ II :

Тихий компьютер: миф или реальность?

С точки зрения пользователя, достаточно тихим будет считаться такой компьютер, шум которого не превышает окружающего шумового фона. Днём, с учётом шума улицы за окном, а также шума в офисе или на производстве, компьютеру позволительно шуметь чуть больше. Домашний компьютер, который планируется использовать круглосуточно, ночью должен вести себя потише. Как показала практика, практически любой современный мощный компьютер можно заставить работать достаточно тихо. Опишу несколько примеров из моей практики.

Пример 1: платформа Intel Pentium 4

В моём офисе используется 10 компьютеров Intel Pentium 4 3,0 ГГц со стандартными процессорными кулерами. Все машины собраны в недорогих корпусах Fortex ценой до $30, установлены блоки питания Chieftec 310-102 (310 Вт, 1 вентилятор 80?80?25 мм). В каждом из корпусов на задней стенке был установлен вентилятор 80?80?25 мм (3000 об/мин, шум 33 дБА) - они были заменены вентиляторами с такой же производительностью 120?120?25 мм (950 об/мин, шум 19 дБА). В файловом сервере локальной сети для дополнительного охлаждения жёстких дисков на передней стенке установлены 2 вентилятора 80?80?25 мм , подключённые последовательно (скорость 1500 об/мин, шум 20 дБА). В большинстве компьютеров использована материнская плата Asus P4P800 SE , которая способна регулировать обороты кулера процессора. В двух компьютерах установлены более дешёвые платы Asus P4P800-X , где обороты кулера не регулируются; чтобы снизить шум от этих машин, кулеры процессоров были заменены (1900 об/мин, шум 20 дБА).
Результат : компьютеры шумят тише, чем кондиционеры; их практически не слышно.

Пример 2: платформа Intel Core 2 Duo

Домашний компьютер на новом процессоре Intel Core 2 Duo E6400 (2,13 ГГц) со стандартным процессорным кулером был собран в недорогом корпусе aigo ценой $25, установлен блок питания Chieftec 360-102DF (360 Вт, 2 вентилятора 80×80×25 мм). В передней и задней стенках корпуса установлены 2 вентилятора 80×80×25 мм , подключённые последовательно (скорость регулируется, от 750 до 1500 об/мин, шум до 20 дБА). Использована материнская плата Asus P5B , которая способна регулировать обороты кулера процессора и вентиляторов корпуса. Установлена видеокарта с пассивной системой охлаждения.
Результат : компьютер шумит так, что днём его не слышно за обычным шумом в квартире (разговоры, шаги, улица за окном и т. п.).

Пример 3: платформа AMD Athlon 64

Мой домашний компьютер на процессоре AMD Athlon 64 3000+ (1,8 ГГц) собран в недорогом корпусе Delux ценой до $30, сначала содержал блок питания CoolerMaster RS-380 (380 Вт, 1 вентилятор 80?80?25 мм) и видеокарту GlacialTech SilentBlade GT80252BDL-1 , подключенными к +5 В (около 850 об/мин, шум меньше 17 дБА). Используется материнская плата Asus A8N-E , которая способна регулировать обороты кулера процессора (до 2800 об/мин, шум до 26 дБА, в режиме простоя кулер вращается около 1000 об/мин и шумит меньше 18 дБА). Проблема этой материнской платы: охлаждение микросхемы чипсета nVidia nForce 4, Asus устанавливает небольшой вентилятор 40?40?10 мм со скоростью вращения 5800 об/мин, который достаточно громко и неприятно свистит (кроме того, вентилятор оборудован подшипником скольжения, имеющим очень небольшой ресурс). Для охлаждения чипсета был установлен кулер для видеокарт с медным радиатором , на его фоне отчётливо слышны щелчки позиционирования головок жёсткого диска. Работающий компьютер не мешает спать в той же комнате, где он установлен.
Недавно видеокарта была заменена HIS X800GTO IceQ II , для установки которой потребовалось доработать радиатор чипсета : отогнуть рёбра таким образом, чтобы они не мешали установке видеокарты с большим вентилятором охлаждения. Пятнадцать минут работы плоскогубцами - и компьютер продолжает работать тихо даже с довольно мощной видеокартой.

Пример 4: платформа AMD Athlon 64 X2

Домашний компьютер на процессоре AMD Athlon 64 X2 3800+ (2,0 ГГц) с процессорным кулером (до 1900 об/мин, шум до 20 дБА) собран в корпусе 3R System R101 (в комплекте 2 вентилятора 120×120×25 мм, до 1500 об/мин, установлены на передней и задней стенках корпуса, подключены к штатной системе мониторинга и автоматического управления вентиляторами), установлен блок питания FSP Blue Storm 350 (350 Вт, 1 вентилятор 120×120×25 мм). Использована материнская плата (пассивное охлаждение микросхем чипсета), которая способна регулировать обороты кулера процессора. Использована видеокарта GeCube Radeon X800XT , система охлаждения заменена на Zalman VF900-Cu . Для компьютера был выбран жёсткий диск , известный низким уровнем создаваемого шума.
Результат : компьютер работает так тихо, что слышен шум электродвигателя жёстких дисков. Работающий компьютер не мешает спать в той же комнате, где он установлен (соседи за стенкой разговаривают и того громче).

Высокие температуры, в дополнение к вредоносным программам и механическим повреждениям, одна из самых серьезных угроз для вашего компьютера.

Для защиты вашего компьютера от перегрева есть несколько эффективных методов его охлаждения.

Для решения проблем с охлаждением сначала нужно определить, очаг тепла на вашем компьютере.

Эффективность компьютерных комплектующих

Компьютерные компоненты, такие как процессор или видеокарта больше всего генерируют тепло.

Производители стараются увеличить максимальную эффективность. Одним из основных методов уменьшения размеров компонентов.

Тогда уменьшается требуемое напряжение для питания. Уменьшается расход энергии и таким образом уменьшается теплоотдача.

Несмотря на огромный прогресс в этой области в последние годы, компьютерные компоненты, все же требуют охлаждения.

Активное и пассивное охлаждение

Современная электронная техника (в том числе компьютеры) обычно используют активный или пассивный режим охлаждения.

Активный режим хорошо известный большинству владельцев компьютеров. Включает в себя вентилятор, который заставляет воздух охлаждать радиатор.

Радиатор подключен к компоненту слоем пасты, что дополнительно улучшает теплопроводность. Он эффективно собирает тепло от компонентов компьютера.


Современные вентиляторы PWM работатают быстрее и тише, что дает пользователю лучший комфорт.

Пассивное — работает на основе естественной конвекции. В нем нет вентилятора. Радиатор должен справиться со всем в одиночку. Оно встречаются в смартфонах и планшетах.

Водяное охлаждение

Водяное – это тип охлаждения, который сочетает в себе преимущества пассивных и активных методов.

В прошлом считалось это слишком экстравагантно. Сегодня становится все более популярным.

Такая система состоит из пластиковых трубок, установленных внутри корпуса. Блок, в свою очередь состоит из медной или алюминиевой пластины, которая соприкасается с нагревательными элементами.

Вторая часть блока действует в качестве резервуара для воды. Система жидкостного охлаждения также включает также радиатор, который является элементом для охлаждения воды.

Кроме того, там еще есть насос, который обеспечивает циркуляцию жидкости и действует как резервуар расширительного бачка.

Недостатком является, стоимость. Полная система для установки составляет расходы до нескольких сотен долларов.

Охлаждение для ноутбуков

Ноутбуки в течение нескольких лет постепенно начали заменять стационарные модели.

В прошлом охлаждение было очень простое — в соответствующих местах установлен радиатор и вентилятор, чтобы поддерживать правильные рабочие параметры.

Проблемы, связанные с перегревом, появились в поколении нетбуков и ультрабуков.

Не помогли даже гигантские вентиляционные отверстия (как правило, расположены на боковой стороне корпуса).

Новые поколения процессоров привели к повышению эффективности охлаждения. Они используют другие типы материалов, которые характеризуются значительно более высокой теплопроводностью.

Современный корпус использует эти элементы, чтобы уменьшить нагревание.

Уход за системой охлаждения

Чтобы гарантировать максимальную мощность охлаждения в первую очередь вы должны помнить об очистке.

В случае настольного компьютера суть проста — снять боковую панель и сжатым воздухом очистить пыль

Пыль является проблемной по нескольким причинам. Во-первых, входит в подшипники вентилятора и, таким образом, препятствует его работе.

Второе — действует как тепловой изолятор, уменьшая эффективность радиаторов.

Очистка ноутбука является более сложной – снятие крышки приведет к аннулированию гарантии.

Таким образом, часто приходится чистить ноутбуки в сервисах. Это дело в течение года или двух после даты покупки, в зависимости от того, насколько производитель дал гарантию.

Безнадежно грязные или изношенные подшипники могут вызвать необходимость замены вентилятора.

В случае ноутбуков такая процедура может быть дорогой. Упрямые пылевые сгустки можно сначала попытаться удалить пластмассовым пинцетом, а затем обработайте сжатым воздухом.

Температурную диагностику ПК позволяет выполнить программа под названием SpeedFan .

Она получает доступ к встроенным компонентам и датчикам температуры, которые используются для аварийного отключения при обнаружении перегрева.

SpeedFan поможет вам увидеть, насколько система работает должным образом.

Замена термопасты

Каждые 2-3 года потребуется замена термопасты между GPU и радиатором. Для этого, вы должны отвинтить вентилятор, вытащить блок, а затем аккуратно удалить старую пасту.

После этого нанести новый слой в соответствии с инструкциями на упаковке. Затем правильно установите вентилятор.

Альтернатива пасты — теплопроводные ленты. Они используется преимущественно там, где мы имеем дело с мелкими деталями.

Правильное поведение

Даже лучшее охлаждение не освобождает вас от обязанности применять некоторые хорошие практики в деле ликвидации избыточного тепла.

Среди наиболее важных правил, это обеспечить надлежащий поток воздуха.

Избегайте стола со специальными полками для компьютера – их стенки часто слишком близки к корпусу, в котором имеются отверстия для получения прохладного воздуха.


Не ставьте ноутбук на одеяло или другую мягкую поверхность, которая плотно соприкасается с нижней частью корпуса.

Кроме того, вы можете купить специальную подставку. Она не только улучшает охлаждение, но и повышает эргономику.

В жаркие дни можно применять небольшой вентилятор USB, а поток воздуха направить прямо на клавиатуру.

Некоторый эффект в борьбе с высокой температурой, можно получить обновлением БИОС и частей программного обеспечения. Успехов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: