Протокол modbus стандартные функции. Структура Modbus RTU сообщения

Пришло время рассмотреть еще одну вариацию протокола Modbus Modbus ASCII . Эта версия протокола использует для передачи данных только символы ASCII, которыми кодирует шестнадцатеричное представление бинарных данных. Немного не понятно и запутано? Это ничего, welcome под кат и давайте рассмотрим, с чем же мы имеем дело.

Разделитель пакетов

Первое отличие протокола Modbus ASCII от Modbus RTU – у него есть разделитель между пакетами. Если в Modbus RTU все пакеты шли один за одним (практически, там должна быть небольшая задержка на линии между пакетами, порядка 2-5мс), то в Modbus ASCII каждый новый пакет должен начинаться со специального символа разделителя.

По стандарту Modbus RTU между пакетами нужна задержка в 3.5 символа (это время, которое нужно для передачи 3.5 символов по линии связи, зависит от скорости передачи). Эта задержка используется, что бы детектировать новый запрос от мастера. Т.е. эта задержка указывает начало нового запроса. Но когда стали использовать модемы, это перестало работать. На модеме невозможно выдержать нужное время. Поэтому решили использовать новый вариант протокола — Modbus ASCII . Этот вариант устраняет многие неудобства при работе с модемом: есть специальный символ разделитель пакетов и используются только видимые символы ASCII.

Так вот, таким символом начала пакета служит символ двоеточие с шестнадцатеричным кодом 0x3A . А конец каждого пакета помечается символами новой строки и перевода каретки – 0x0D 0x0A . Таким образом, из протокола полностью убирается зависимость от задержек между байтами. Т.е. если модем задержит байт, это не вызовет недопонимания на стороне клиента. И он будет ждать окончания пакета байтами 0x0D 0x0A . А если встретит символ разделителя 0х3А – сбросит буфер и начнем формировать пакет заново. Кроме того нет необходимости в экранировании спец символов модема, так как данные не используют символы из начальной секции ASCII таблицы.

Представление байтов данных

В Modbus ASCII протоколе каждый байт данных представлен в виде 2 байтов. Каждый байт представляет собой ASCII символ в шестнадцатеричном представлении. Что бы легче было понять, приведем пример:

Немного объяснений для таблицы.

Например, нам нужно передать байт данных, который хранит символ # . Этот символ имеет в таблице ASCII шестнадцатеричный код 0x23 . В протоколе Modbus RTU мы просто передаем байт со значением 0x23 .

Если мы хоти передать тот же символ через протокол Modbus ASCII , нам нужно уже передавать 2 байта. На первом этапе мы получаем шестнадцатеричный код символа, 0x23 . На втором этапе мы кодируем это значение при помощи двух символов ASCII – 2 и 3 . И на третьем этапе мы передаем два байта данных, первый — это шестнадцатеричное значение символа 2 , второй байт — это шестнадцатеричное значение символа 3 .

Таким образом, диапазон значений для байта данных в протоколе Modbus RTU 0 .. 0xFF

Диапазон значений для байта данных в протоколе Modbus ASCII – только символы, необходимые для отображения шестнадцатеричных цифр, т.е. 0 – 9, A, B, C, D, E, F (все заглавные).

Контрольная сумма для Modbus ASCII

В протоколе Modbus RTU используется 2 байтная контрольная сумма, которая помогает детектировать поврежденные запросы. В протоколе Modbus ASCII так же есть контрольная сумма – LRC (Longitudinal Redundancy Check) .

Вычисление LRC намного проще, чем вычисление CRC . Что бы высчитать LRC вам нужно сделать следующие:

  • Сложить вместе все байты в сообщении Modbus ASCII , до того, как они сконвертированы в в символы ASCII. Не включаются в вычисления стартовый символ двоеточия и завершающие символы CR/LF .
  • Обнулить все биты больше 8 (т.е. оставить младший байт)
  • Сделать результирующий байт отрицательным чтобы получить LRC байт

Таким образом, если затем сложить все байты пакета данных и байт LRC мы получим в результате 0. Это и есть самая быстрая проверка корректности пакета данных.

Ниже приведен пример вычисления LRC для конкретного запроса Modbus ASCII .

Для примера возьмем запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03
Данные (Десятичные) Данные (HEX) Данные (Двоичные)
17 11 0001 0001
3 03 0000 0011
0 00 0000 0000
107 6B 0110 1011
0 00 0000 0000
3 03 0000 0011

Теперь посчитаем сумму всех байт

Вот это отрицательное число (-130 или 0x7E ) и есть LRC запроса.

Эта контрольная сумма добавляется к запросу в виде 2 ASCII символов – 7 и E .

Т.е. в конце запроса нужно добавить 2 байта со значением 37 и 45 .

Примеры Modbus RTU и Modbus ASCII запросов

Что бы лучше понять, как все это работает, посмотрите пару простых примеров.

Возьмем наш запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03

Это Modbus RTU запрос без последних двух байтов CRC . Теперь преобразуем этот запрос из Modbus RTU в Modbus ASCII . Для этого добавляем в начало запроса символ двоеточия, в конец запроса символ перевода строки и возврата каретки, а каждый байт представим в виде ASCII символов, соответствующих шестнадцатеричному представлению каждого байта запроса. В итоге у нас получиться такой запрос (в виде ASCII символов, или попросту в виде текстовой строки). Так же в конец запроса добавляем LRC .

: 1 1 0 3 0 0 6 B 0 0 0 3 7 E CR LF

Теперь просто нужно передать данный запрос в порт, используя коды ASCII символов. В бинарном виде запрос будет выглядеть так:

3A 3131 3033 3030 3642 3030 3033 3745 0D 0A
Индекс байта Значение HEX ASCII Описание
0 3A : Символ начала
1-2 31 31 11 Адрес устройства
3-4 30 33 03 Код команды
5-8 30 30 36 42 00 6B Адрес HOLDING регистра, с которого нужно начинать чтение. В данном случае 0х006B = 107. Но это не адрес, а смещение от адреса 40001. Т.е. реальный адрес = 107+ 40001 = 40108.
9-12 30 30 30 33 00 03 Количество регистров, которые нужно прочитать. 0х0003 = 3. Т.е. читать нужно регистры 40108– 40110.
13 – 14 37 45 7E LRC запроса
15 CR 0D Символ перевода каретки
16 LF 0A Символ новой строки

) для использования в её контроллерах с программируемой логикой . Впервые спецификация протокола была опубликована в 1979 году. Это был открытый стандарт, описывающий формат сообщений и способы их передачи в сети состоящей из различных электронных устройств.

Первоначально контроллеры MODICON использовали последовательный интерфейс RS-232. Позднее стал применяться интерфейс RS-485, так как он обеспечивает более высокую надёжность, позволяет использовать более длинные линии связи и подключать к одной линии несколько устройств.

Многие производители электронного оборудования поддержали стандарт, на рынке появились сотни использующих его изделий. В настоящее время развитием Modbus занимается некоммерческая организация Modbus-IDA , созданная производителями и пользователями электронных приборов .

Введение

Modbus относится к протоколам прикладного уровня сетевой модели OSI . Контроллеры на шине Modbus взаимодействуют, используя клиент-серверную модель, основанную на транзакциях , состоящих из запроса и ответа.

Обычно в сети есть только один клиент, так называемое, «главное» (англ. master ) устройство, и несколько серверов - «подчиненных» (slaves ) устройств. Главное устройство инициирует транзакции (передаёт запросы). Подчиненные устройства передают запрашиваемые главным устройством данные, или производят запрашиваемые действия. Главный может адресоваться индивидуально к подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчиненное устройство формирует сообщение и возвращает его в ответ на запрос, адресованный именно ему. При получении широковещательного запроса ответное сообщение не формируется.

Спецификация Modbus описывает структуру запросов и ответов. Их основа - элементарный пакет протокола, так называемый PDU (Protocol Data Unit). Структура PDU не зависит от типа линии связи и включает в себя код функции и поле данных. Код функции кодируется однобайтовым полем и может принимать значения в диапазоне 1...127. Диапазон значений 128...255 зарезервирован для кодов ошибок. Поле данных может быть переменной длины. Размер пакета PDU ограничен 253 байтами.

Modbus PDU
номер функции данные
1 байт N < 253 (байт)

Для передачи пакета по физическим линиям связи PDU помещается в другой пакет, содержащий дополнительные поля. Этот пакет носит название ADU (Application Data Unit). Формат ADU зависит от типа линии связи.

Существуют три основных реализации протокола Modbus, две для передачи данных по последовательным линиям связи, как медным EIA/TIA-232-E (RS-232), EIA-422, EIA/TIA-485-A (RS-485), так и оптическим и радио:

  • Modbus ASCII,

и для передачи данных по сетям Ethernet поверх TCP/IP :

  • Modbus TCP.

Общая структура ADU следующая (в зависимости от реализации, некоторые из полей могут отсутствовать):

  • адрес ведомого устройства - адрес подчинённого устройства, к которому адресован запрос. Ведомые устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего ведомого устройства, который может изменяться от 1 до 247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство, адреса в диапазоне 248...255 - зарезервированы;
  • номер функции - это следующее однобайтное поле кадра. Оно говорит ведомому устройству, какие данные или выполнение какого действия требует от него ведущее устройство;
  • данные - поле содержит информацию, необходимую ведомому устройству для выполнения заданной мастером функции или содержит данные, передаваемые ведомым устройством в ответ на запрос ведущего. Длина и формат поля зависит от номера функции;
  • блок обнаружения ошибок - контрольная сумма для проверки отсутствия ошибок в кадре.

Максимальный размер ADU для последовательных сетей RS232/RS485 - 256 байт, для сетей TCP - 260 байт.

Для Modbus TCP ADU выглядит следующим образом:

  • ид транзакции - два байта, обычно нули
  • ид протокола - два байта, нули
  • длина пакета - два байта, старший затем младший, длина следующей за этим полем части пакета
  • адрес ведомого устройства - адрес подчинённого устройства, к которому адресован запрос. Обычно игнорируется, если соединение установлено с конкретным устройством. Может использоваться, если соединение установлено с бриджом, который выводит нас, например, в сеть RS485.

Поле контрольной суммы в Modbus TCP отсутствует.

Категории кодов функций

В действующей в настоящее время спецификации протокола определяются три категории кодов функций:

Стандартные команды Их описание должно быть опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как уже определенные, так и свободные в настоящее время коды. Пользовательские команды Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может реализовать произвольную функцию. При этом не гарантируется, что какое-то другое устройство не будет использовать тот же самый код для выполнения другой функции. Зарезервированные В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. Это коды 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Модель данных

Одно из типичных применений протокола - чтение и запись данных в регистры контроллеров. Спецификация протокола определяет четыре таблицы данных:

Доступ к элементам в каждой таблице осуществляется с помощью 16-битного адреса, первой ячейке соответствует адрес 0. Таким образом, каждая таблица может содержать до 65536 элементов. Спецификация не определяет, что физически должны представлять собой элементы таблиц и по каким внутренним адресам устройства они должны быть доступны. Например, допустимо организовать перекрывающиеся таблицы, В этом случае команды работающие с дискретными данными и с 16-битными регистрами будут фактически обращаться к одним и тем же данным.

Следует отметить, что со способом адресации данных связана определённая путаница. Modbus был первоначально разработан для контроллеров Modicon. В этих контроллерах для каждой из таблиц использовалась специальная нумерация. Например, первому регистру ввода соответствовал номер ячейки 30001, а первому регистру хранения - 40001. Таким образом, регистру хранения с адресом 107 в команде Modbus соответствовал регистр № 40108 контроллера. Хотя такое соответствие адресов больше не является частью стандарта, некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, например, вычитая 40001 из адреса регистра хранения.

Стандартные функции протокола Modbus

PDU запроса и ответа для стандартных функций
номер
функции
запрос/ответ
1 (0x01) A 1 A 0 Q 1 Q 0
N D (N байт)
2 (0x02) A 1 A 0 Q 1 Q 0
N D (N байт)
3 (0x03) A 1 A 0 Q 1 Q 0
N D (N байт)
4 (0x04) A 1 A 0 Q 1 Q 0
N D (N байт)
5 (0x05) A 1 A 0 D 1 D 0
A 1 A 0 D 1 D 0
6 (0x06) A 1 A 0 D 1 D 0
A 1 A 0 D 1 D 0
15 (0x0F) A 1 A 0 Q 1 Q 0 N D (N байт)
A 1 A 0 Q 1 Q 0
16 (0x10) A 1 A 0 Q 1 Q 0 N D (N байт)
A 1 A 0 Q 1 Q 0
  • A 1 и A 0 - адрес элемента,
  • Q 1 и Q 0 - количество элементов,
  • N - количество байт данных
  • D - данные

Чтение данных

Для чтения значений из перечисленных выше таблиц данных используются функции с кодами 1-4 (шестнадцатеричные значения 0x01-0x04):

  • 1 (0x01) - чтение значений из нескольких регистров флагов (Read Coil Status)
  • 2 (0x02) - чтение значений из нескольких дискретных регистров (Read Discrete Inputs)
  • 3 (0x03) - чтение значений из нескольких регистров хранения (Read Holding Registers)
  • 4 (0x04) - чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения и регистров ввода передаются начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым:

байт 1 байт 2 байт 3 байт 4 ... байт N-1 байт N
R A,1 R A,0 R A+1,1 R A+1,0 ... R A+Q-1,1 R A+Q-1,0

Значения флагов и дискретных входов передаются в упакованном виде: по одному биту на флаг. Единица означает включённое состояние, ноль - выключенное. Значения запрошенных флагов заполняют сначала первый байт, начиная с младшего бита, затем следующие байты, также от младшего бита к старшим. Младший бит первого байта данных содержит значение флага, указанного в поле «адрес». Если запрошено количество флагов, не кратное восьми, то значения лишних битов заполняются нулями:

байт 1 ... байт N
F A+7 F A+6 F A+5 F A+4 F A+3 F A+2 F A+1 F A ... 0 ... 0 F A+Q-1 F A+Q-2 ...

Запись одного значения

  • 5 (0x05) - запись значения одного флага (Force Single Coil)
  • 6 (0x06) - запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта).

Для регистра хранения значение является просто 16-битным словом.

Для флагов значение 0xFF00 означает включённое состояние, 0x0000 - выключенное, другие значения недопустимы.

Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений

  • 15 (0x0F) - запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) - запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Ниже приведён пример команды ведущего устройства и ответа ведомого (для Modbus RTU).

Контроль ошибок в протоколе Modbus RTU

Во время обмена данными могут возникать ошибки двух типов:

  • ошибки, связанные с искажениями при передаче данных;
  • логические ошибки.

Ошибки первого типа обнаруживаются при помощи фреймов символов, контроля чётности и циклической контрольной суммы CRC -16-IBM (используется число-полином = 0xA001).

RTU фрейм

В RTU режиме сообщение должно начинаться и заканчиваться интервалом тишины - временем передачи не менее 3.5 символов при данной скорости в сети. Первым полем затем передаётся адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3.5 символов. Новое сообщение может начинаться после этого интервала.

Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1.5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный.

Таким образом, новое сообщение должно начинаться не раньше 3.5 интервала, т.к. в этом случае устанавливается ошибка.

Немного об интервалах (речь идёт о Serial Modbus RTU): при скорости 9600 и 11 битах в кадре (стартовый бит + 8 бит данных + бит контроля чётности + стоп-бит): 3.5 * 11 / 9600 = 0,00401041(6), т.е. более 4 мс; 1.5 * 11 / 9600 = 0,00171875, т.е. более 1 мс. Для скоростей более 19200 бод допускается использовать интервалы 1,75 и 0,75 мс соответственно.

Логические ошибки

Для сообщений об ошибках второго типа протокол Modbus RTU предусматривает, что устройства могут отсылать ответы, свидетельствующие об ошибочной ситуации. Признаком того, что ответ содержит сообщение об ошибке, является установленный старший бит кода команды. Пример кадра при выявлении ошибки ведомым устройством, в ответ на запрос приведён в (Таблица 2-1).

1. Если Slave принимает корректный запрос и может его нормально обработать, то возвращает нормальный ответ.

2. Если Slave не принимает какого-либо значения, никакого ответа не отправляется. Master диагностирует ошибку по таймауту.

3. Если Slave принимает запрос, но обнаруживает ошибку (parity, LRC, or CRC), никакого ответа не отправляется. Master диагностирует ошибку по таймауту.

4. Если Slave принимает запрос, но не может его обработать (обращение к несуществующему регистру и т.д.), отправляется ответ содержащий в себе данные об ошибке.

Таблица 2-1. Кадр ответа (Slave→Master) при возникновении ошибки modbus RTU
Направление передачи адрес подчинённого устройства номер функции данные (или код ошибки) CRC

В этой статье вы узнаете о протоколе Modbus TCP, который является развитием протокола Modbus RTU. Англоязычная версия статьи доступна на ipc2u.com .

Куда посылать команду Modbus TCP?

В сети Ethernet адресом устройства является его IP-адрес. Обычно устройства находятся в одной подсети, где IP адреса отличаются последними цифрами 192.168.1.20 при использовании самой распространённой маски подсети 255.255.255.0.

Интерфейсом является сеть Ethernet , протоколом передачи данных – TCP/IP .

Используемый TCP-порт: 502 .

Описание протокола Modbus TCP

Команда Modbus TCP состоит из части сообщения Modbus RTU и специального заголовка.

Из сообщения Modbus RTU удаляется SlaveID адрес в начале и CRC контрольная сумма в конце, что образует PDU, Protocol Data Unit.

Ниже приведен пример запроса Modbus RTU для получения значения AO аналогового выхода (holding registers) из регистров от #40108 до 40110 с адресом устройства 17.

11 03 006B 0003 7687

Отбрасываем адрес устройства SlaveID и контрольную сумму CRC и получаем PDU:

03 006B 0003

К началу получившегося сообщения PDU добавляется новый 7-байтовый заголовок, который называется MBAP Header (Modbus Application Header). Этот заголовок имеет следующие данные:

Transaction Identifier (Идентификатор транзакции) : 2 байта устанавливаются Master, чтобы однозначно идентифицировать каждый запрос. Может быть любыми. Эти байты повторятся устройством Slave в ответе, поскольку ответы устройства Slave не всегда могут быть получены в том же порядке, что и запросы.

Protocol Identifier (Идентификатор протокола) : 2 байта устанавливаются Master, всегда будут = 00 00, что соответствует протоколу Modbus.

Length (Длина) : 2 байта устанавливаются Master, идентифицирующие число байтов в сообщении, которые следуют далее. Считается от Unit Identifier до конца сообщения.

Unit Identifier (Идентификатор блока или адрес устройства) : 1 байт устанавливается Master. Повторяется устройством Slave для однозначной идентификации устройства Slave.

Итого получаем:

Modbus RTU Slave ID Запрос CRC
Modbus RTU 11 03 006B 0003 7687
0001 0000 0006 11 03 006B 0003
PDU
ADU, Application Data Unit

В ответе от Modbus TCP Slave устройства мы получим:

0001 0000 0009 11 03 06 022B 0064 007F

0001 Идентификатор транзакции Transaction Identifier
0000 Идентификатор протокола Protocol Identifier
0009 Длина (9 байтов идут следом) Message Length
11 Адрес устройства (17 = 11 hex) Unit Identifier
03 Функциональный код (читаем Analog Output Holding Registers) Function Code
06 Количество байт далее (6 байтов идут следом) Byte Count
02 (02 hex) Register value Hi (AO0)
2B (2B hex) Register value Lo (AO0)
00 Значение старшего разряда регистра (00 hex) Register value Hi (AO1)
64 Значение младшего разряда регистра (64 hex) Register value Lo (AO1)
00 Значение старшего разряда регистра (00 hex) Register value Hi (AO2)
7F Значение младшего разряда регистра (7F hex) Register value Lo (AO2)

Регистр аналогового выхода AO0 имеет значение 02 2B HEX или 555 в десятичной системе.

Регистр аналогового выхода АО1 имеет значение 00 64 HEX или 100 в десятичной системе.

Регистр аналогового выхода АО2 имеет значение 00 7F HEX или 127 в десятичной системе.

Типы команд Modbus TCP

Приведем таблицу с кодами функций чтения и записи регистров Modbus TCP.

Код функции Что делает функция Тип значения Тип доступа
01 (0x01) Чтение DO Read Coil Status Дискретное Чтение
02 (0x02) Чтение DI Read Input Status Дискретное Чтение
03 (0x03) Чтение AO Read Holding Registers 16 битное Чтение
04 (0x04) Чтение AI Read Input Registers 16 битное Чтение
05 (0x05) Запись одного DO Force Single Coil Дискретное Запись
06 (0x06) Запись одного AO Preset Single Register 16 битное Запись
15 (0x0F) Запись нескольких DO Force Multiple Coils Дискретное Запись
16 (0x10) Запись нескольких AO Preset Multiple Registers 16 битное Запись

Как послать команду Modbus TCP на чтение дискретного вывода? Команда 0x01

Эта команда используется для чтения значений дискретных выходов DO.

В запросе PDU задается начальный адрес первого регистра DO и последующее количество необходимых значений DO. В PDU значения DO адресуются, начиная с нуля.

Значения DO в ответе находятся в одном байте и соответствуют значению битов.

Значения битов определяются как 1 = ON и 0 = OFF.

Младший бит первого байта данных содержит значение DO адрес которого указывался в запросе. Остальные значения DO следуют по нарастающей к старшему значению байта. Т.е. справа налево.

Если запрашивалось меньше восьми значений DO, то оставшиеся биты в ответе будут заполнены нулями (в направлении от младшего к старшему байту). Поле Byte Count Количество байт далее указывает количество полных байтов данных в ответе.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 04
01 Адрес устройства 01 Адрес устройства
01 Функциональный код 01 Функциональный код
00 01 Количество байт далее
00 02 Значение регистра DO 0-1
00 Количество регистров Hi байт
02 Количество регистров Lo байт

Состояния выходов DO0-1 показаны как значения байта 02 hex, или в двоичной системе 0000 0010.

Значение DO1 будет вторым справа, а значение DO0 будет первым справа (младший бит).

Шесть остальных битов заполнены нулями до полного байта, т.к. их не запрашивали.

Модули с дискретным выводом: ioLogik E1211 , ET-7060 , ADAM-6060

Как послать команду Modbus TCP на чтение дискретного ввода? Команда 0x02

Эта команда используется для чтения значений дискретных входов DI.

Запрос и ответ для DI похож на запрос для DO.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 04
01 Адрес устройства 01 Адрес устройства
02 Функциональный код 02 Функциональный код
00 Адрес первого регистра Hi байт 01 Количество байт далее
00 Адрес первого регистра Lo байт 03 Значение регистра DI 0-1
00 Количество регистров Hi байт
02 Количество регистров Lo байт

Состояния выходов DI 0-1 показаны как значения байта 03 hex, или в двоичной системе 0000 0011.

Значение DI1 будет вторым справа, а значение DI0 будет первым справа (младший бит).

Шесть остальных битов заполнены нулями.

Модули с дискретным вводом: ioLogik E1210 , ET-7053 , ADAM-6050

Как послать команду Modbus TCP на чтение аналогового вывода? Команда 0x03

Эта команда используется для чтения значений аналоговых выходов AO.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 07
01 Адрес устройства 01 Адрес устройства
03 Функциональный код 03 Функциональный код
00 Адрес первого регистра Hi байт 04 Количество байт далее
00 Адрес первого регистра Lo байт 02 Значение регистра Hi (AO0)
00 Количество регистров Hi байт 2B Значение регистра Lo (AO0)
02 Количество регистров Lo байт 00 Значение регистра Hi (AO1)
64 Значение регистра Lo (AO1)

Состояния выхода AO0 показаны как значения байта 02 2B hex, или в десятичной системе 555.

Состояния выхода AO1 показаны как значения байта 00 64 hex, или в десятичной системе 100.

Модули с дискретным вводом: ioLogik E1210 , ET-7053 , ADAM-6050

Как послать команду Modbus TCP на чтение аналогового ввода? Команда 0x04

Эта команда используется для чтения значений аналоговых входов AI.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 07
01 Адрес устройства 01 Адрес устройства
04 Функциональный код 04 Функциональный код
00 Адрес первого регистра Hi байт 04 Количество байт далее
00 Адрес первого регистра Lo байт 00 Значение регистра Hi (AI0)
00 Количество регистров Hi байт 0A Значение регистра Lo (AI0)
02 Количество регистров Lo байт 00 Значение регистра Hi (AI1)
64 Значение регистра Lo (AI1)

Состояния выхода AI0 показаны как значения байта 00 0A hex, или в десятичной системе 10.

Состояния выхода AI1 показаны как значения байта 00 64 hex, или в десятичной системе 100.

Модули с аналоговым вводом: ioLogik E1240 , ET-7017-10 , ADAM-6217

Как послать команду Modbus TCP на запись дискретного вывода? Команда 0x05

Эта команда используется для записи одного значения дискретного выхода DO.

Значение FF 00 hex устанавливает выход в состояние включен ON.

Значение 00 00 hex устанавливает выход в состояние выключен OFF.

Все остальные значения недопустимы и не будут влиять на состояние выхода.

Нормальный ответ на такой запрос - это эхо (повтор запроса в ответе), возвращается после того, как состояние DO было изменено.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 06
01 Адрес устройства 01 Адрес устройства
05 Функциональный код 05 Функциональный код
00 Адрес регистра Hi байт 00 Адрес регистра Hi байт
01 Адрес регистра Lo байт 01 Адрес регистра Lo байт
FF Значение Hi байт FF Значение Hi байт
00 Значение Lo байт 00 Значение Lo байт

Модули с дискретным выводом: ioLogik E1211 , ET-7060 , ADAM-6060

Как послать команду Modbus TCP на запись аналогового вывода? Команда 0x06

Эта команда используется для записи одного значения аналогового выхода AO.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
06 06
01 Адрес устройства 01 Адрес устройства
06 Функциональный код 06 Функциональный код
00 Адрес регистра Hi байт 00 Адрес регистра Hi байт
01 Адрес регистра Lo байт 01 Адрес регистра Lo байт
55 Значение Hi байт 55 Значение Hi байт
FF Значение Lo байт FF Значение Lo байт

Состояние выхода AO0 поменялось на 55 FF hex, или в десятичной системе 22015.

Модули с аналоговым выводом: ioLogik E1241 , ET-7028 , ADAM-6224

Как послать команду Modbus TCP на запись нескольких дискретных выводов? Команда 0x0F

Эта команда используется для записи нескольких значений дискретного выхода DO.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
08 06
01 Адрес устройства 01 Адрес устройства
0F Функциональный код 0F Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
00 Адрес первого регистра Lo байт 00 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00
02 Количество регистров Lo байт 02
01 Количество байт далее
02 Значение байт

Состояние выхода DO1 поменялось с выключен OFF на включен ON.

Состояние выхода DO0 осталось выключен OFF.

Модули с дискретным выводом: ioLogik E1211 , ET-7060 , ADAM-6060

Как послать команду Modbus TCP на запись нескольких аналоговых выводов? Команда 0x10

Эта команда используется для записи нескольких значений аналогового выхода AO.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
01 Идентификатор транзакции 01 Идентификатор транзакции
02 02
00 Идентификатор протокола 00 Идентификатор протокола
00 00
00 Длина сообщения 00 Длина сообщения
0B 06
01 Адрес устройства 01 Адрес устройства
10 Функциональный код 10 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
00 Адрес первого регистра Lo байт 00 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00 Кол-во записанных рег. Hi байт
02 Количество регистров Lo байт 02 Кол-во записанных рег. Lo байт
04 Количество байт далее
00 Значение Hi AO0 байт
0A Значение Lo AO0 байт
01 Значение Hi AO1 байт
02 Значение Lo AO1 байт

Состояние выхода AO0 поменялось на 00 0A hex, или в десятичной системе 10.

В этой статье я попытаюсь рассказать как устроен протокол Modbus , какие данные он может хранить, в каком виде они могут храниться, как они могут быть считаны. Эта статья даст представление о том, что же такое Modbus протокол и как он может применяться.

Адресация данных в Modbus протоколе

Для хранения информации в ведомых устройствах (slave device ) используются 4 таблицы (или массива). Каждая таблица хранит информацию для схожих переменных в регистрах. Каждый регистр имеет свой размер и адрес. Так же регистры могут быть только для чтения, или для чтения – записи. Давайте рассмотрим эти 4 типа данных, которые можно хранить в регистрах:

COILS

Это цифровые выходы (Digital Outputs ). Каждый coil можно записать или считать. Его размер – 1 бит (т.е. 0 или 1). Исторически эти регистры связаны с реальными цифровыми выходами на сенсорах или терминальных устройствах. Цифровые выходы используются для управления, например светодиодами, реле или моторами. Т.е. записывая в такой регистр 1 мы можем включить светодиод, а записав 0 – выключить его (это условно, на самом деле 0 может включать, а 1 – выключать).

При чтении данного регистра мы можем узнать состояние выхода (т.е. включен он или выключен). Результат чтения так же 1 бит, т.е. 1 или 0.

CONTACTS

Это цифровые входы (Digital Inputs ). Цифровой вход можно только читать, т.е считывая данный регистр мы узнаем состояние реального цифрового входа на сенсоре или устройстве. Цифровые входы используются для контроля состояние – например, включен свет или выключен, достигла жидкость нужного уровня или нет, включено реле или нет, и т.д.

ANALOG INPUT REGISTERS

Под этим обычно имеются в виду аналоговые входы (Analog Inputs ). Аналоговые входы можно только читать, т.е их нельзя записывать, а можно только считать текущее состояние налогового входа. Обычно аналоговые входы применяются на сенсорах для измерение некоторых значений: входного тока или входного напряжения. Затем, полученное значение можно конвертировать в некоторую реальную величину, например в температуру, влажность воздуха, давление или еще что то. Для этого используются специальные формулы, которые идут вместе с сенсором. Но чаще сенсор сразу возвращает реальное значение. Например, сенсор измеряющий температуру, может возвращать измеренное значение как градусы по Цельсию умноженные на 10. Т.е. 253 означает 25.3°С. Этот прием часто используется, если нужно вернуть дробные значения через целочисленный регистр.

ANALOG OUTPUT HOLDING REGISTERS

Под этим обычно имеются в виду аналоговые выходы (Analog Outputs ) но так же часто просто регистры, которые хранят некоторые значения, которые можно как записывать, так и считывать. Т.е. эти регистры можно как читать, так и писать. Наиболее часто используются для записи DAC устройств (Digital to Analog Converter) или просто как регистры, хранящие некоторые значения. DAC часто используются для управления чем либо, например: яркостью свечения светодиода, или громкостью сирены, или скоростью вращения двигателя.

Эти регистры 16 битные, т.е. каждый регистр может хранить всего 2 байта.

Вот эти четыре типа регистров поддерживаются в стандартном Modbus . И используя только их, нужно строить систему. Если взглянуть с точки зрения конечного устройства (slave device), то регистры логичнее всего использовать для следующих нужд:

Coils – для управления устройствами через цифровые порты вывода или булевыми флагами типа включен/выключен, открыт / закрыт и т.д.

Contacts – для хранения значений булевых флагов или для отображения информации с цифровых входов.

Inputs –для значений, которые нужно только читать на стороне мастера, и которые могут быть представлены как 16 битные целые числа. Например, входы ADC, или какие о значения, генерируемые системой которые нужно читать (например количество запущенных процессов или внутренняя температура устройства может быть считана через некий Input регистр)

Holding – эти регистры можно использовать для хранения конфигурации устройства, для управления DAC устройствами, для хранения некоторой служебной информации. В принципе, эти регистры можно использовать для чего угодно, на что хватит фантазии разработчика системы.

Кроме того, каждый регистр в схеме Modbus может иметь уникальный адрес, который определяется типом регистра. Посмотрите таблицу ниже:

Имя Тип Доступа Адреса Доступно Регистров
Coils Чтение / Запись 1 – 9999 9999
Contacts Чтение 10001 – 19999 9999
Inputs Чтение 30001 – 39999 9999
Holdings Чтение / Запись 40001 – 49999 9999

Как видно из таблицы, каждый тип регистров может вмещать максимум 9999 регистров. Но все они начинаются с некоторого смещения: 0, 10000, 30000, 40000.

На самом деле, внутри команд протокола Modbus , используется не полный адрес, а только его смещение относительно базового адреса. Т.е. для всех типов регистров реальный адрес внутри команды будет 0 -9998. А команда определяет какой именно базовый адрес может быть использован.

Проще всего представить себе, что устройство хранит 4 массива элементов по 9999 элементов в каждом. Индекс внутри массива – это и есть адрес, который задается внутри команды. А команда определяет, какой массив нужно использовать.

Если внимательно посмотреть на таблицу, то видно, что при желании можно использовать больше адресов для Holding регистров: 40001 – 105537, т.е. всего 65535 регистров. То же самое для Contacts : 10001 – 29999, т.е. всего 19999. Это так называемые расширенные регистры. Они не поддерживаются стандартными Modbus устройствами. Поэтому, если вы хотите, что бы ваше устройство могло работать со стандартными клиентами, то не нужно использовать расширенные регистры.

Но если вы уверены, что ваше устройство будет работать с вашим мастером, который знает как работать с расширенными регистрами, или вы точно знаете, что мастер устройство, которое будет использоваться для вашего продукта знает о расширенных регистрах, тогда используйте их.

Выше мы разобрались, как адресуются регистры внутри устройства. Теперь посмотрим, как адресуются сами устройства.

Адресация Modbus устройств

Для адресации устройств используется специальный идентификатор, который называется Slave Id . Это однобайтное значение, которое определяет уникальный адрес устройства на всей сети Modbus . По стандарту Modbus это может быть число от 1 до 247. Т.е. всего в сети может находиться 247 конечных устройств (slave device) с уникальными адресами.

Когда мастер посылает команду в сеть, первый байт – это Slave Id . Это позволяет устройствам уже после первого байта определить, должны они обрабатывать команду, или могут ее проигнорировать. Это справедливо для Modbus RTU . Для Modbus TCP протокола используется Unit Id значение. Хотя если разобраться, это просто другое название Slave Id . Unit Id – это так же однобайтный адрес устройства, от 1 до 247.

Это очень сильно ограничивает количество устройств, которые одновременно могут находиться в сети. Поэтому есть вариант, когда используется 2 байта для адресации устройств. В таком случае количество устройств увеличивается до 65535. Этого более чем достаточно. Но есть одно условие. Мастер и Конечное устройство должны использовать 2 байте для адресации. Т.е. они должны быть настроены, что бы использовать одинаковую схему адресации устройств: 1 или 2 байта. Так же, все устройства в сети должны использовать ту же самую схему адресации – 1 или 2 байта. Не может быть в сети устройств с разной схемой адресации.

Функции Modbus

Для того, что бы запросить данные или записать их, мастер должен указать функции, которую он хочет исполнить на конечном устройстве. Все доступные функции в стандартном Modbus протоколе приведены ниже:

Код Функции Тип Действия Описание
01 (01 hex) Чтение Читает значение Coil регистра
02 (02 hex) Чтение Читает значение Contact регистра
03 (03 hex) Чтение Читает значение Holding регистра
04 (04 hex) Чтение Читает значение Input регистра
05 (05 hex) Запись одного регистра Записывает значение в Coil регистр
06 (06 hex) Запись одного регистра Записывает значение в Holding регистр
15 (0F hex) Запись нескольких регистров Записывает значение в несколько Coil регистров
16 (10 hex) Запись нескольких регистров Записывает значение в несколько Holding регистров

Каждая функция будет рассмотрена позже, подробно и с примерами.

CRC 16 как способ избежать ошибок

Каждая команда в Modbus RTU протоколе заканчивается двумя байтами, которые содержать CRC16 значение всех байт команды. Добавление CRC16 позволяет найти поврежденные запросы и игнорировать их. Так как для вычисления контрольной суммы используется каждый байт в команде, то даже изменение одного бита в любом байте вызовет расхождение в переданной контрольной сумме и вычисленной на основе полученных байт. Это достаточно надежный способ обезопасить передаваемые данные от повреждений (имеется в виду, найти поврежденные данные). Клиент, как и мастер, должны проверять CRC16 из полученной команды с CRC16 сгенерированным на основе полученных байт. Если контрольные суммы не совпадают, значит полученный запрос содержит поврежденные байты, что искажает смысл посланной команды. Такая команда должна быть проигнорирована.

Нужно заметить, CRC16 не используется в Modbus TCP протоколе. Так как TCP пакеты уже имеют свою встроенную контрольную сумму и проверяются на целостность данных, нет никакой необходимости для вычисления CRC16.

Еще в одной разновидности Modbus протокола, Modbus ASCII , используется LRC (Longitudinal Redundancy Check) вместо CRC16. LRC намного проще чем CRC16 и результатом является 1 байт. LRC менее надежно для детектирования ошибок повреждения данных, но исторически так сложилось что Modbus ASCII использует именно этот метод.

О том, как вычислять CRC16 для Modbus RTU протокола и LRC для Modbus ASCII протокола, я напишу отдельно.

Типы данных, которые хранятся в регистрах.

Поговорим о том, какие данные могут храниться в регистрах. Самый простой случай – это Coil и Contac регистры. В этих регистрах может храниться 1 бит информации – 0 или 1. Когда мастер читает эти регистры, он получает в результате 0 или 1. Для записи регистров используются специальные константы:

0xFF00 – означает логическую 1

0x0000 – означает логический 0

Если используется команда для записи нескольких регистров, то каждый регистр будет записан при помощи 1 бита: 0 или 1.

Все остальные регистры – это 16 битные данные (2 байта)

И вот тут самое интересное.

Интерпретация данных должна быть задана в описании Modbus регистров (так называемом Modbus Map документе). В этом документе нужно точно прописать, какой регистр хранит какие джанные, и какие значение для него приемлемы.

Начнём с простых случаев.

Если мы считываем 1 Input или Holding регистр, то мы получаем 16 бит данных. Например, это может быть значение 0x8D05 – два байта 0x8D и 0x05 .

В самом простом случае это может быть без знаковое целое значение: 36101

Но это может быть целое число со знаком: -29435

Другой пример. Мы прочитали значение 0x4D4F

Это может быть как целое без знака, целое со знаком, так и 2 символа в кодировке ASCII:

0x4D = M

0x4F = O

Теперь случай поинтереснее. Комбинируя несколько регистров вместе, мы можем хранить типы данных, размер которых больше 16 бит.

К примеру, мы прочитали 2 регистра, и получили следующие данные: 0xAE53 0x544D

Это может быть:

32 битное целое без знака

0xAE53 0x544D = 2924696653

32 битное целое со знаком

0xAE53 0x544D = -1370270643

32 битный float – число с плавающей точкой

0xAE53 0x544D = -4.80507e-11

Или хранить 4 символа в кодировке ASCII

0xAE53 0x544D = 0xAE 0x53 0x54 0x4D = ®STM

Если продолжать, то комбинируя больше регистров, можно хранить 64 битные значения, 128 битные значения, строки и в принципе любые типы данных.

Но, комбинируя регистры, у нас встает следующий вопрос:

Порядок байт и слов

К сожалению протокол Modbus не определяет как должны храниться байты внутри регистра. Т.е. различные устройства от различных производителей могут хранить байты в произвольном порядке.

Например, читая регистр, мы получили значение 0xA543

В зависимости от того, в каком порядке хранились байты в исходном регистре, это могут быть два абсолютно разных значения:

Если использовался Big Endian формат (старший байт первый), то у нас будет значение 42307

Но если использовался Little Endian формат (младший байт первым), то у нас будет значение 17317

Еще интереснее, когда мы формируем 32 битное значение из двух регистров.

Вариантов комбинации байтов становится 4. К примеру 32 битное число 4014323619 (0xEF45B7A3 ) может быть передано 4 следующими последовательностями байтов:

0xEF45 0xB7A3

0x45EF 0x A3B7

0xB7A3 0xEF45

0x A3B7 0x45EF

На самом деле это не важно, какой порядок байт / слов реализован на конечном устройстве. Главное, мастер должен знать этот порядок, и уметь формировать правильные значения из полученных байтов. Зная точный формат данных на конечном устройстве, мастер всегда будет правильно формировать значения регистров. И именно для этого существует такое понятие как Modbus Map (Карта Modbus ).

Modbus Map

Modbus Map – это документация, которая полностью описывает все возможные Modbus регистры на устройстве, их адреса, назначение, доступные значения, значения по умолчанию, способ доступа.

Некоторые устройства поставляются с фиксированным описанием регистров. Т.е. список регистров, их адресов, хранимых данных и т.д. жестко задан производителем и описан в документации.

А есть настраиваемая конфигурация. Т.е. на устройстве нет фиксированных адресов для регистров. Пользователь может сконфигурировать Modbus Map так, как ему нужно (например соединив некоторые регистры в непрерывную последовательность адресов, что бы считывать их одной командой).

Пример фиксированного Modbus Map , который имеет смысл применять для своих устройств, может выглядеть так, как в таблице ниже.

Адрес Описание Доступ Значение по умолчанию Доступные значения
40001 Код продукта Чтение 1 1
40002 Командный регистр, для записи команд Запись 0 – сброс устройства
1 – Разблокировать uSD карту для записи
2 – Заблокировать uSD карту для записи
3 – Созранить конфигурацию на uSD карту
40003 Время работы, в секундах
Младшее слово
Чтение 0 0 .. 0xFFFF
40004 Время работы, в секундах
Старшее слово
Чтение 0 0 .. 0xFFFF
40005 Системная ошибка Чтение / Запись 0 Смотри приложение с кодами ошибок.
Запись 0 для сброса ошибки и выключения ERROR LED

Чего не может Modbus

Modbus очень простой протокол, поэтому он поддерживает далеко не все, что может потребоваться.

Modbus не поддерживает сообщения (events). Т.е. конечное устройство не может послать сообщение мастеру. Только мастер может опросить конечное устройство.

Modbus не поддерживает чтение исторических данных (накопленных за некоторый промежуток времени). Хотя это ограничение можно легко обойти, создав командные регистры, регистры адреса и перегружаемые регистры. Это будет обсуждаться в одной из следующих статей.

Стандартный Modbus не может хранить сложные структурированные данные (по крайней мере это не так просто реализовать).

Кроме того, Modbus не поддерживает идентификации и шифрования. Т.е вся коммуникация идет в незащищённом режиме. Хотя, при некотором желании можно реализовать некоторое подобие идентификации в Modbus TCP в большинстве случаев это сделать невозможно. Есть некоторые варианты как защитить данные от несанкционированного доступа и изменения, но они все не очень надежные (хотя и могут применятся). Я опишу их в следующих статьях.

И кажется, это все явные недостатки для этого протокола. В остальном он очень прост и отлично подходит для простых систем мониторинга, которые должны следить за некоторыми показателями системы и предоставлять доступ к ним через чтение регистров.

В следующей статье мы рассмотрим все основные функции, которые поддерживаются протоколом Modbus .

6.3. MODBUS Serial

Первые сети MODBUS базировались на асинхронных последовательных линиях связи и получили название MODBUS RTU и MODBUS ASCII . На физическом уровне они используют стандартные последовательные интерфейсы с символьным режимом передачи (см. рис.6.1).

В настоящее время в MODBUS-IDA эти сети получили название MODBUS over Serial Line и описаны в соответствующем стандарте. В нем указываются правила и рекомендации использования на канальном и физическом уровне.

Поскольку сеть MODBUS RTU/ASCII может иметь шинную топологию, определен метод доступа к шине - это модель Ведущий/Ведомый. В сетях MODBUS RTU и MODBUS ASCII Процесс Ведущего всегда является Клиентом, а Процессы Ведомых - Серверами. Это значит, что Ведущий отсылает запросы, а Ведомые их обрабатывают. Этот запрос может быть адресован как индивидуальному узлу так и всем Ведомым на шине (broadcast).

На канальном уровне MODBUS RTU/ASCII используется адресация, ориентированная на идентификаторы узлов. Каждый Ведомый должен иметь свой уникальный адрес (1-247), Ведущий не адресуется. При индивидуальных запросах, Ведущий (с клиентским Процессом) формирует кадр с сообщением-запросом и отправляет его по указанному адресу. Ведомый (с серверным Процессом) получает этот кадр и обрабатывает сообщение. После его обработки, Ведомый формирует кадр с сообщением-ответом, и отправляет его обратно Ведущему. Кадр с сообщением-ответом носит также функции кадра подтверждения, которого Ведущий будет ждать от Ведомого течение времени, определенного тайм-аутом.

При широковещательных запросах (broadcast) используется 0-вой адрес. Широковещательные запросы не требуют подтверждения, поэтому после отправки широковещательного кадра, Ведущий не ожидает ответного кадра.

6.3.1. Канальный уровень

На рис.6.11 показан общий вид кадра MODBUS Serial. Обратите внимание, что разграничение между кадрами и тип контрольной суммы здесь не указаны, поскольку это зависит от режима передачи ASCII или RTU. В поле адреса устройства Ведущий (при запросе) указывает адрес получателя, а Ведомый (при ответе) - свой адрес. Поля MODBUS PDU описаны выше.

На временной диаграмме рис.6.12 показаны три типичные ситуации работы модели Ведущий-Ведомый на MODBUS Serial. Первая ситуация - типичный обмен в одноадресном режиме, вторая - в широковещательном, третья - реакция Ведомого на коммуникационную ошибку.

6.3.2. MODBUS RTU

Данный режим предусматривает использование 8 бит данных в 11-битном символе, который позволяет передавать по байту на символ. Формат символа в RTU режиме: 1 стартовый бит, 8 бит данных (младший бит передается первым), 1 бит паритета + 1 стоповый бит или без паритета + 2 стоповых бита.

Формат кадра MODBUS RTU приведен на рисунке 6.13. Разграничение между кадрами производится с помощью пауз между символами. Новый кадр не должен появляться на шине раньше, чем 3.5 * Тс от предыдущего, где Тс - время передачи одного символа. Если отсутствие сигнала на линии (интервал тишины) будет больше чем 1.5 * Тс приемник идентифицирует окончание кадра. С другой стороны, появление нового кадра ранее 3.5 * Тс, тоже приведет к ошибке.

Поле адреса и кода функции в RTU режиме занимают по одному байту, поскольку каждый байт передается одним символом. В качестве контрольной суммы используется два байта, посчитанные по алгоритму CRC16.


6.3.3. MODBUS ASCII

В данном режиме каждый байт сообщения передается как два ASCII символа их шестнадцатеричного представления, т.е. значение байта 03 16 будет передаваться как ASCII-код символов "0" и "3" (0110000 0110011) Таким образом, байты данных, код функции и байт поля проверки будет передаваться кодами символов 0-9, A-F. Формат символа в ASCII-режиме: 1 стартовый бит, 7 битов данных (младший бит передается первым); 1 бит паритета + 1 стоповый бит или без паритета + 2 стоповых бита.

Формат кадра приведен на рис.6.14. Как видим, для разграничения между кадрами используются стартовый символ ":" и стоповая последовательность "CR LF". Приемники на шине непрерывно отслеживают символ ":" который однозначно указывает на начало кадра. Когда он принят, приемники отлавливают поле адреса и т.д. Это очень простой способ синхронизации, который позволяет некритически относиться к паузам между символами (до 1 сек.). Адрес Ведомого и код функции занимают по два символа, согласно значению одного байта. Далее идут n * 2 символов данных, где n количество байт данных. В ASCII режиме для подсчета контрольной суммы используется алгоритм LRC. Причем контрольная сумма проводится над всеми байтами кадра, кроме стартовой и стоповой последовательности символов.

Режим ASCII накладывает меньшие требования на оборудование, за счет использования стартовой и столбовой последовательности в разграничении кадров, и нечувствительности к значительным паузам между символами. Но эти преимущества отражаются на его недостатках. RTU-режим более требователен к интервалам между кадрами, но значительно продуктивнее чем ASCII .

Пример 6.4. MODBUS. Расчет времени опроса ведомых на MODBUS-RTU.

Задача . Построить кадры форматов сообщений запросов и ответов для MODBUS RTU и рассчитать общее время опроса 10-ти аналоговых 16-битных переменных для 4-х ведомых (рис.6.15). Битовая скорость передачи данных - 19200 бит/с. Клиентский Процесс Ведущего (TSX Premium) и серверные Процессы ведомых (ПЛК TSX Micro) принимают сообщения в начале цикла, а отправляют - в конце цикла. Время цикла Ведущего = 10 мс, Ведомого - 5с .

Выполнения задания. Доступ к внутренним аналоговым переменным TSX Micro проводится через 03 или 04 функцию, поэтому формат кадров будет выглядеть как на рис.6.16.

Учитывая, что структура других кадров - аналогичная, приводить их формат нет смысла.
Аналогично рис.6.12 построим временную диаграмму обмена (рис.6.17).

Со стороны клиентского приложения сообщение-запрос формируется с помощью коммуникационной функции, отправка данных которой через коммуникационный порт производится в конце цикла задачи, а получение из порта - в начале цикла. Такое поведение клиентской стороны вполне соответствует многим реализациям для различных ПЛК.

В TSX Micro MODBUS-сервер реализован на уровне операционной системы. Специфика реализации заключается в том, что прием MODBUS-запросов из коммуникационного порта системой проводится в начале цикла, а отправка сообщений-ответов – в конце.

Следует отметить, что реализация MODBUS-сервера может быть поддержана на уровне коммуникационного модуля, а обмен данными с памятью самого устройства производится через коммуникационные буферы. В этом случае реакция MODBUS-сервера будет значительно быстрее и не зависеть от цикла программы. Для расчета времени транзакции для других типов систем необходимо ознакомиться с деталями их реализации.

На рис.6.17 показано, что поступления кадра приходит где-то внутри цикла. Это значит, что их обработка и генерация ответа пройдет примерно через 1,5 цикла. Следует понимать, что это усредненное значение, для наихудшей оценки лучше резервировать 2 времени цикла (т.е. когда кадр пришел сразу после опроса коммуникационного порта). Таким образом время транзакции для одного ПЛК, например PLC1 (ТТ1), будет равна:

ТТ1=С5+T1.req+2*C1+T1.res+C5*2 (6.1)

ТТ1 рассчитан с учетом 2-х циклов затраченных Ведомым на генерацию ответа на сообщение-запрос. Если бы транзакция проводилась не периодически, как по условию задачи, а по возникновению события, то во время транзакции необходимо было бы включить также еще один цикл Ведущего. Несложно вывести время опроса всех ведомых:

ТТall=C5*9+C1*2+C2*2+C3*2+C4*2+T1.req+T1.res+ T2.req+T2.res+ T3.req+T3.res+ T4.req+T4.res (6.2)

Учитывая, что циклы Ведомых одинаковы, а кадры запросов и кадры ответов для всех ведомых имеют одинаковую структуру, общая формула будет иметь следующий вид:

ТТall= C5*9 + C1*8 + (T1.req+T2.req)*4(6.3)

Рассчитаем время T1.req и T2.req.

Время передачи кадра (Тframe) можно ориентировочно рассчитать по количеству символов (Nsymb) в кадре и времени передачи одного символа (Tsymb):

Tframe=Nsymb*Tsymb (6.4)

Время передачи одного символа рассчитывается:

время передачи одного символа = количество бит в символе/битовая скорость;
Время передачи кадров будет равна (див.рис.6.16 и рис.6.17):

T1.req=8*(11/19200)=4,58 мс

T1.res=25*(11/19200)=14,33 мс

TTall=90+40+ (4,58+14,33)*4= 206 мс.

Таким образом, для опроса 10-ти переменных из 4-х Ведомых со скоростью 19200 бит/с необходимо затратить примерно 206 мс. Если необходим периодический опрос, желательно зарезервировать определенное время, например еще дополнительно 100 мс.

В ряде случаев, реализация функций MODBUS-Клиента ложится на операционную систему, а доступ к ним в программе ПЛК происходит через интерфейсные коммуникационные функции. В частности, это характерно для большинства ПЛК от Scneider Electric (Momentum, Quantum, TSX Micro, TSX Premium, M340). В ряде других систем - клиентскую сторону на прикладном уровне необходимо полностью прописывать в программе ПЛК, а интерфейс предоставляется только для обмена с коммуникационным портом. В этом случае система предоставляет сервисы отправки и получения сообщений (которые формирует и анализирует сама программа пользователя), и генерации и проверки контрольной суммы. Рассмотрим пример .

Пример 6.5. MODBUS. Реализация MODBUS-клиента на TSX Twido.

Задача . Записать фрагмент программы в ПЛК Twido для считывания 3-х регистров с Ведомого с адресом 1 (рис.6.18).

Решение . В Twido клиентскую сторону MODBUS необходимо реализовывать через универсальную функцию EXCHx, которая отправляет и/или получает данные через коммуникационный порт с номером x. Параметрами функции являются таблица слов (%MW), в которых размещаются данные управления функцией, данные для отправки и буфер для приема. Если обмен будет проходить через коммуникационный порт 2, то вызов функции будет иметь следующий формат :

EXCH2 %MWy:n,

где y - номер первой переменной выделенной таблицы, n - количество слов в таблице.

Формат таблицы, то есть данных, которые необходимо заполнить, и область данных для приема одинаков для всех типов коммуникаций. Для функций 03/04 (чтение N слов) по MODBUS-RTU эта таблица будет иметь вид, приведенный в табл.6.2).

Таблица параметров состоит из 3-х частей-подтаблиц. В таблице управления функцией задаются параметры самой функции. Так в старшем байте 0-го слова указывается, что эта функция работает в обе стороны, т.е. после отправки данных, необходимо ждать ответа. Младший байт этого же слова указывает на длину таблицы передачи (в данном случае 6 байт), для того чтобы система знала о байтах которые необходимо передать (со 2-го слова по 4-е) и откуда начинается буфер приема (с 5-го слова) . Смещение в передаче и приеме необходимо для выравнивания данных в буферах по словам.

Таблица передачи содержит непосредственно сам запрос, т.е. кадр без кода CRC. Таблица приема - это буфер, который система заполнит кадром ответа, при положительном результате. Таким образом, перед использованием этой функции необходимо построить кадр запроса и ответа за исключением поля CRC (рис.6.19)

Таблица 6.2

Таблица параметров

Индекс в таблице

Старший байт

Младший байт

Таблица управления комм. функцией

01 (тип ф-ции отправка+приём)

06 (длина таблицы передачи)

03 (смещение в приёме)

00 (смещение в передаче)

Таблица передачи

адрес Ведомого

03 (номер функции)

адрес начального регистра

количество регистров

Таблица приёма (сообщение-ответ)

адреса Ведомого

03 (номер функции)

00 (байт для смещения)

счнтчик байт

первый регистр

второй регистр

...

N+6

N-ный регистр

Как видим, в запросе 6 байт. Это количество необходимо вписать в младший байт 0-го слова таблицы. В ответе ожидается 9-байт. Если байты кадра ответа разместить в последовательности слов (в ПЛК Schneider Electric память адресуется словами), то старший байт первого принятого регистра (согласно условию это %MW100) будет находиться на младшем байте 2-го слова буфера, а младший байт принятого регистра придется на старший байт 3-го слова в буфере. Таким образом, все принятые слова будут смещены, и прочитать их будет проблематично. Для устранения этой проблемы в таблице параметров функции есть поле смещения приема, в котором указывается номер байта в буфере приема, который будет сдвигать всю последовательность.

Фрагмент программы будет выглядеть как на рис.6.20.
Верхняя цепочка LD предназначена для заполнения таблицы управления функцией и заполнения таблицы передачи.

Во второй цепочке производится непосредственно вызов функции. Переменная %MSG2.D возвращает логическую "1", когда функция EXCH2 обработана и результат получен. Ее использование не дает "затопить" сеть чрезмерным количеством кадров, ведь пока нет ответа на предыдущий запрос или не прошло время тайм-аута, новый запрос отправлять нельзя.

Последний цепочка предназначена для записи результата чтения в переменные %MW0:3 (таблица с 3-х слов начиная с %MW0). Переменная %MSG2.E будет равной 1-це тогда, когда есть место ошибки в вызове функции.

6.3.4. Реализация физического уровня для MODBUS Serial

В отличие от начальной спецификации, которая ограничивалась описанием кадра, в стандарте MODBUS-IDA описываются также правила для реализации сети на физическом уровне. MODBUS over Serial Line базируется на использовании последовательных интерфейсов RS-485, RS-422 и RS-232.

Для RS-485 определена топология - это шина, в которой предусмотрено три способа подключения устройств (рис.6.21):

- Непосредственно к магистральному (trunk) кабелю, без ответвлений;

- Через пассивную коробку подключения и кабель ответвления (Derivation);

- Через активную коробку и специфический кабель ответвления.

Интерфейсы между кабелями и элементами сети имеют следующие обозначения (см. рис.6.21): ITr - интерфейс к магистральному кабелю; IDv - интерфейс между устройством и пассивной коробкой; AUI - интерфейс между устройством и активной коробкой; LT - терминаторы линии.
Битовые скорости определены равными 9600 бит/с и 19200 бит/с (по умолчанию). Другие скорости являются опциональными. Используется метод кодирования NRZ.

При использовании RS-485 стандарт определяет правила подключения устройств по 2-х проводной и 4-х проводной схеме, а также правила совместимости 2-х проводных и 4-х проводных интерфейсов на единственной линии. Ниже рассмотрено только 2-х проводное подключение, поддержка которого является обязательным.

По сути, 2-х проводное подключение на самом деле является 3-х проводным, так как кроме линий A-(D0 ) и B+(D1 ) используется также общая линия C(Common ), которая является обязательной (рис.6.22) .

Общее количество устройств ограничено: 32 устройства на одном сегменте RS-485 без репитеров (использование репитеров разрешается). Максимальная длина кабеля зависит от скорости, типа кабеля, количества нагрузок и конфигурации сети (2-х проводная или 4-х проводная). Для битовой скорости 9600 и кабеля AWG26 максимальная длина ограничена 1000м. Кабель ответвления должен быть короче 20 м. Если используются мультипортовые коробки с n портами, то каждый кабель ответвления ограничен длиной 40/n м.

Общий сигнальный провод (Common) обязательно соединяется с экраном в одной точке шины, как правило возле узла Ведущего, либо его коробки ответвления.

Для погашения отражения волн на концах линии между D1 и D0 выставляется терминаторы линии (LT). Терминаторы разрешается выставлять только на магистральном кабеле. В качестве терминаторов можно использовать:

- Резистор номиналом 150 Ом и мощностью 0.5 Вт;

- Последовательно соединенные конденсатор (1 нФ, 10 В минимум) и резистор номиналом 120 Ом (0.25 Вт) при использовании поляризации линии

В стандарте MODBUS Serial определены правила реализации защитного смещения (поляризации), которые предусматривают подключение питания номиналом 5 В между D1 и D0 через PullUp и PullDown резисторы для поддержания логической "1" на линии при отсутствии передачи. Номинал резисторов выбирается от 450 Ом до 650 Ом в зависимости от количества устройств (650 Ом при большом количестве). Защитное смещение проводится только в одной точке линии, как правило на стороне Ведущего. Максимальное количество устройств с реализованной поляризацией уменьшается на 4 по сравнению с системой без поляризации. Поляризация является необязательной. Однако коммуникации на устройствах могут давать сбой при отсутствии логического сигнала. Если это так, то поляризацию необходимо реализовывать самостоятельно, или использовать существующие схемы, если таковые предусмотрены устройствами.

Стандарт определяет также механический интерфейс, т.е. типы разъемов, вилок и соответствие сигналов на контактах. В качестве механического терминала можно использовать клемную колодку, экранированный RJ-45 (рис.6.23) или экранированный SUB-D9 разъем (рис.6.24).

В таблице 6.3 указано назначение контактов для коннекторов при 2-х проводном подключением по RS-485, а в таблице 6.4 по RS-232

Таблица 6.3

Предназначение контактов конекторов при подключении по RS-485

номера контактов

требования к наличию

цепь IDv

цепь ITr

название RS-485

комментарий

(см. раздел 3)

RJ45

SUB-D9

опционально

PMC

управление режимом ком. порта

обязательно

D1

B/B"

напряж V1, V1>V0 для лог. "1"

обязательно

D0

A/A"

напряж V0, V0>V1 для лог. "0"

желательно

Питание 5…24 VDC

обязательно

Common

Common

C/C"

Питание и сигнальная земля

Таблица 6.4

Предназначение контактов конекторов при подключении по RS-232

DCE (модем)

контур

DTE

номера контактов

требования к наличию

название

комментарий

(см. раздел 3)

источник

RS-232

требования к наличию

номера

контактов

RJ45

SUB-D9

RJ45

SUB-D9

обязательно

TxD

Transmitted Data

<< DTE

обязательно

обязательно

RxD

Received Data

DCE >>

обязательно

опционально

CTS

Clear to Send

DCE >>

опционально

опционально

RTS

Request to Send

<< DTE

опционально

обязательно

Common

Signal Common

обязательно

В качестве кабелей для 2-х проводного типа соединения стандарт определяет двойную экранированную витую пару категорий 4 (до 600м) или 5 (до 1000м), где в одной паре идут сбалансированные сигналы D0 и D1, а во второй - сигнальная земля Common. Рекомендуемые цвета кабелей: D1 желтый; D0 коричновий; Common серый.

Пример 6.6. MODBUS. Схема сетевых соединений MODBUS RTU.

Задача . Нарисовать схему сетевых соединений для 2-х проводной реализации шины MODBUS RTU со следующими узлами:

- PLC1: VIPA CPU 115SER 6BL32 (Ведущий) через встроенный последовательный порт процессорного модуля;

- PLC2: TSX Twido TWDLMDA40DTK (Ведомый) через коммуникационный модуль TWD NOZ 485T

- PLC3: TSX Twido TWDLMDA40DTK (Ведомый) через коммуникационный модуль TWD NOZ 485T

Решение . На рис.6.25 показана схема сетевых соединений для поставленной задачи. Спецификация сетевых средств дана в таб.6.5.

Как видно из рис.6.25, PLC1 подключается к шине через пассивную коробку, а вернее через клеммную колодку, что в принципе равнозначно. Это вызвано тем, что на ПЛК подключения идет с использованием 9-штекерного SUB-D разъема, что требует разработку собственного кабеля, схема подключения (спая) которого к коннектору и к клеммной колодке показан ниже основной схемы.

Таким образом к вилке КК1 провода кабеля КМ2 необходимо припаять. Назначение пинов розетки SER не совпадает со стандартной. Пины 8 и 3 (соответственно А (D0) и В (D1)) идут в одну пару, затем подключаются к ХТ1:1 и ХТ1:2; 5 и 6 (соответственно M5V (-5В) и P5V (+5 В)) идут в другую витую пару кабеля КМ2. Питания 5В необходимо для того, чтобы реализовать защитное смещение (асимметрию) в соответствии со стандартом. Кроме того M5V является сигнальной землей (Common).

Кабель КМ2 подключается к ХТ1 согласно схеме, показанной на рис.6.25. Экран кабеля соединяется с сигнальной землей в соответствии с требованиями стандарта. Следует напомнить, что ПЛК VIPA в этой системе является Ведущим, следовательно и защитное смещение и соединения экрана с землей необходимо реализовывать именно в этом месте. Защитное смещение производится с помощью питания 5В, которое берется из порта SER и двух резисторов.

Таблица 6.5.

Спецификация сетевых средств

Обозначение

Наименование

Референс

Колич

Примечание

PLC1

ПЛК VIPA 100

VIPA CPU 115SER 6BL32

1 шт.

VIPA

PLC2, PLC3

ПЛК Twido

TWDLMDA40DTK

2 шт.

Schneider Electric

MK1, MK2

коммуникационный модуль для реализации интерфейса RS-485, подключение под винт

TWD NOZ 485T

2 шт.

Schneider Electric

KK1

9-пиновий SUB-D коннектор типа вилка

1 шт.

XT1

клеммная колодка на 4 клеммы

1 шт.

TL1,TL2

терминаторы линии

2 шт

изготовляются с поз. 7 и 8

Резистор 120 Ом (0.25 Вт)

2 шт.

в составе поз.6

Конденсатор 1 нФ (>10 В)

2 шт.

в составе поз поз.6

Ru,Rd

Резистор 500 Ом (0.25 Вт)

2 шт

КМ1

AWG26

300 м

КМ2

кабель двойная экранированная витая пара 5-й категории AWG26

2 м

КМ3

кабель двойная экранированная витая пара 5-й категории AWG26

300 м

PLC2 и PLC3 соединяются с шиной с помощью коммуникационного модуля с клеммной колодкой. Это позволяет реализовать подключение без ответвлений. Однако на колодке не предусмотрено место подключения экрана, поэтому кабель экранируется отдельно.

Терминаторы линий реализованы последовательным соединением резисторов и конденсаторов, поскольку на шине задействовано защитное смещение.

В настоящее время MODBUS Serial используется как на уровне контроллеров так и на уровне датчиков (для распределенной периферии). Его использование проблематично при наличии на шине нескольких устройств SCADA / HMI , которые в клиент-серверной архитектуре должны быть Клиентами, ведь на MODBUS RTU/ASCII только Ведущий может быть Клиентом. Но даже в такой ситуации есть возможность организовать доставку данных всем нуждающимся узлам, если они поддерживают такой режим.

Исходя из указанного, на шине MODBUS Serial можно остановить свой выбор в случае, если:

- все устройства-Серверы поддерживают MODBUS RTU / ASCII в режиме Ведомого;

- необходимо только одно устройство-Клиент, которому необходимо инициировать обмены на шине, поддерживающий MODBUS RTU/ASCII как Ведущий;

- скорость восстановления данных - удовлетворяет условию задачи;
нет необходимости в



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: