Принцип работы систем дистанционного управления бытовой техникой. Как выбрать пульт к телевизору любой марки

Пульт ДУ для бытовой электронной аппаратуры обычно представляет собой небольшое устройство с кнопками, и питанием от батареек, посылающее команды посредством инфракрасного излучения с длиной волны 0,75-1,4 микрон. Этот спектр невидим для человеческого глаза, но распознаётся приёмником принимающего устройства. В большинстве ПДУ применяется одна специализированная микросхема-формирователь команд с кварцевым резонатором, корпусная либо бескорпусная (помещенная прямо на печатную плату и залитая компаундом, для предотвращения повреждения), усилитель сигналов, состоящий из одного или двух транзисторов, и излучающий диод (или два) ИК диапазона. Дополнительно в некоторых ПДУ еще устанавливают светодиод для индикации посылки команд.


Схема пульта EUR51971 для ТВ.

Схема пульта IP-Q 1 на Микросхеме SAA /7 со своим протоколом команд (количество 448), разработаны фирмой Thomson при содействии Philips, эти телевизоры можно отнести к группе Saba T6301/FF345. ТС342/365/440/460, Telefunken Chassis 418A, FB-180, Thomson Chassis ICC7.


Во всем мире для бытовой радиоаппаратуры наибольшее распространение получила система ДУ RC-5. Эта система была разработана фирмой Philips для нужд управления бытовой аппаратурой и используется во многих телевизорах. Для пультов ДУ выпускается специализированная микросхема передатчика SAA3010 (ПО «Интеграл» выпускает аналог INA3010 ). Применение специализированной микросхемы передатчика резко уменьшает необходимое количество компонентов, и позволяет поместить ИК передатчик в корпус небольшого размера. Кроме того, в таких микросхемах решен вопрос низкого потребления в режиме ожидания, что делает эксплуатацию пульта очень удобной: нет необходимости в отдельном выключателе питания. Схема переходит в активный режим при нажатии любой кнопки и возвращается в режим микропотребления при ее отпускании. В настоящее время разными производителями выпускается большое количество модификаций пультов ДУ RC-5, причем некоторые модели имеют, вполне приличный дизайн. Промышленные пульты, как правило, предназначены для управления телевизорами. Поэтому они используют систему 0 кода RC-5. Совсем несложно перейти на другой номер системы, и тогда взаимное влияние разных пультов будет исключено.

Когда мы нажимаем кнопку пульта, микросхема передатчика активизируется и генерирует последовательность импульсов, которые имеют заполнение частотой 36 КГц. Светодиоды преобразуют эти сигналы в ИК-излучение. Излученный сигнал принимается фотодиодом, который снова преобразует ИК-излучение в электрические импульсы. Эти импульсы усиливаются и демодулируются микросхемой приемника. Затем они подаются на декодер. Декодирование обычно осуществляется программно с помощью микроконтроллера. Код RC5 поддерживает 2048 команд. Эти команды составляют 32 группы (системы) по 64 команды в каждой. Каждая система используется для управления определенным устройством, таким как телевизор, видеомагнитофон и т.д. Одной из наиболее распространенных микросхем передатчика является микросхема SAA3010. Микросхема передатчика SAA3010 допускает питание напряжением +5V .

· Напряжение питания – 2...7V

· Потребляемый ток в ждущем режиме – не более 10 мка

· Максимальный выходной ток - ±10 мА

· Максимальная тактовая частота – 450 КГц

Структурная схема микросхемы SAA3010 показана на рисунке 1.

Рисунок 1. Структура ИС SAA3010.

Описание выводов микросхемы SAA3010 приведено в таблице:

Обозначение

Входные линии матрицы кнопок

Вход выбора режима работы

Входные линии матрицы кнопок

Модулированные выходные данные

Выходные данные

Выходы сканирования

Выходы сканирования

Вход генератора

Тестовый вход 2

Тестовый вход 1

Входные линии матрицы кнопок

Напряжение питания

Микросхема передатчика является основой пульта дистанционного управления. На практике один и тот же пульт может использоваться для управления несколькими устройствами. Микросхема может адресовать 32 системы в двух различных режимах: комбинированном и в режиме одной системы. В комбинированном режиме сначала выбирается система, а затем команда. Номер выбранной системы (адресный код) хранится в специальном регистре и происходит передача команды, относящейся к этой системе. Таким образом, для передачи любой команды требуется последовательное нажатие двух кнопок. Это не совсем удобно и оправдано только при работе одновременно с большим количеством систем. На практике передатчик чаще используется в режиме одной системы. При этом вместо матрицы кнопок выбора системы монтируется перемычка, которая и определяет номер системы. В этом режиме для передачи любой команды требуется нажатие только одной кнопки. Применив переключатель, можно работать с несколькими системами. И в этом случае для передачи команды требуется нажатие только одной кнопки. Передаваемая команда будет относиться к той системе, которая в данное время выбрана с помощью переключателя.

Для включения комбинированного режима на вывод передатчика SSM (Single System Mode ) нужно подать низкий уровень. В этом режиме микросхема передатчика работает следующим образом: во время покоя X и Z-линии передатчика находятся в состоянии высокого уровня с помощью внутренних p-канальных подтягивающих транзисторов. Когда нажата кнопка в матрице X-DR или Z-DR, запускается цикл подавления дребезга клавиатуры. Если кнопка замкнута на протяжении 18 тактов, фиксируется сигнал "разрешение генератора". В конце цикла подавления дребезга DR-выходы выключаются и запускаются два цикла сканирования, включающие по очереди каждый выход DR. В первом цикле сканирования обнаруживается Z-адрес, во втором - X-адрес. Когда Z-вход (матрица системы) или X-вход (матрица команды) обнаруживается в состоянии нуля, происходит фиксация адреса. При нажатии кнопки в матрице системы передается последняя команда (т.е. все биты команды равны единице) в выбираемой системе. Эта команда передается до тех пор, пока кнопка выбора системы не будет отпущена. При нажатии кнопки в матрице команды передается команда вместе с адресом системы, хранимом в регистре-фиксаторе. Если кнопка отпущена до начала передачи, происходит сброс. Если же передача началась, то независимо от состояния кнопки, она будет выполнена полностью. Если одновременно нажато более одной Z или X кнопки, то генератор не запускается.

Для включения режима одной системы на выводе SSM должен быть высокий уровень, а адрес системы должен быть задан соответствующей перемычкой или переключателем. В этом режиме во время покоя X-линии передатчика находятся в состоянии высокого уровня. В то же время Z-линии выключены для предотвращения потребления тока. В первом из двух циклов сканирования определяется адрес системы и сохраняется в регистре-фиксаторе. Во втором цикле определяется номер команды. Эта команда передается вместе с адресом системы, хранимом в регистре-фиксаторе. Если нет перемычки Z-DR, то никакие коды не передаются.

Если кнопка была отпущена между посылками кода, то происходит сброс. Если кнопка была отпущена во время процедуры подавления дребезга или во время сканирования матрицы, но до обнаружения нажатия кнопки, то также происходит сброс. Выходы DR0 – DR7 имеют открытый сток, в состоянии покоя транзисторы открыты.

В коде RC-5 имеется дополнительный управляющий бит, который инвертируется при каждом отпускании кнопки. Этот бит информирует декодер о том, удерживается кнопка или произошло новое нажатие. Бит управления инвертируется только после полностью завершенной посылки. Циклы сканирования производятся перед каждой посылкой, поэтому даже если во время передачи посылки сменить нажатую кнопку на другую, все равно номер системы и команды будут переданы правильно.

Вывод OSC представляет собой вход/выход 1-выводного генератора и предназначен для подключения керамического резонатора на частоту 432 КГц. Последовательно с резонатором рекомендуется включать резистор сопротивлением 6,8 Ком.

Тестовые входы TP1 и TP2 в нормальном режиме работы должны быть соединены с землей. При высоком логическом уровне на TP1 повышается частота сканирования, а при высоком уровне на TP2 – частота работы сдвигового регистра.

В состоянии покоя выходы DATA и MDATA находятся в Z-состоянии. Генерируемая передатчиком на выходе MDATA последовательность импульсов имеет заполнение частотой 36 кГц (1/12 частоты тактового генератора) со скважностью 25%. На выходе DATA генерируется такая же последовательность, но без заполнения. Этот выход используется в том случае, когда микросхема передатчика выполняет функции контроллера встроенной клавиатуры. Сигнал на выходе DATA полностью идентичен сигналу на выходе микросхемы приемника дистанционного управления (но в отличие от приемника он не имеет инверсии). Оба этих сигнала могут обрабатываться одним и тем же декодером.

Передатчик генерирует 14-битное слово данных, формат которого следующий:

· 2 стартовых бита.

· 1 управляющий бит.

· 5 бит адреса системы.

· 6 бит команды.

Рисунок 2. Формат слова данных кода RC-5.

Стартовые биты предназначены для установки АРУ в IC приемника. Управляющий бит является признаком нового нажатия. Длительность такта составляет 1.778 мс. Пока кнопка остается нажатой, слово данных передается с интервалом 64 такта, т.е. 113.778 мс (рис. 2). Для обеспечения хорошей помехоустойчивости применяется двухфазное кодирование (рис. 3).

Рисунок 3. Кодирование «0» и «1» в коде RC-5.

При использовании кода RC-5 может понадобиться вычислить средний потребляемый ток. Сделать это достаточно просто, если воспользоваться рис. 4, где показана подробная структура посылки.

Рисунок 4. Подробная структура посылки RC-5.

Для обеспечения одинакового реагирования оборудования на команды RC-5, коды распределены вполне определенным образом. Такая стандартизация позволяет конструировать передатчики, позволяющие управлять различными устройствами. С одними и теми же кодами команд для одинаковых функций в разных устройствах передатчик с относительно небольшим числом кнопок одновременно может управлять, например, аудиокомплексом , телевизором и видеомагнитофоном.

Номера систем для некоторых видов бытовой аппаратуры приведены ниже:

0 - Телевизор (TV)
2 - Телетекст
3 - Видеоданные
4 - Видеопроигрыватель (VLP)
5 - Кассетный видеомагнитофон (VCR)
8 - Видео тюнер (Sat.TV )
9 - Видеокамера
16 - Аудио предусилитель
17 - Тюнер
18 - Магнитофон
20 - Компакт-проигрыватель (CD)
21 - Проигрыватель (LP)
29 - Освещение

Остальные номера систем зарезервированы для будущей стандартизации или для экспериментального использования. Стандартизировано также соответствие некоторых кодов команд и функций.

Коды команд для некоторых функций приведены ниже:

0-9 - Цифровые величины 0-9
12 - Дежурный режим
15 - Дисплей
13 - mute
16 - громкость +
17 - громкость -
30 - поиск вперед
31 - поиск назад
45 - выброс
48 - пауза
50 - перемотка назад
51 - перемотка вперед
53 - воспроизведение
54 – стоп
55 - запись

Для того чтобы на основе микросхемы передатчика получить законченный пульт ИК ДУ, необходим еще драйвер светодиода, который способен обеспечивать большой импульсный ток. Современные светодиоды работают в пультах ДУ при импульсных токах около 1А.

Драйвер светодиода очень удобно строить на низкопороговом (logic level ) МОП-транзисторе , например, КП505А.

Пример принципиальной схемы пульта приведен на рис. 5.

Рисунок 5. Принципиальная схема пульта RC-5.

Номер системы задается перемычкой между выводами Zi и DRj .

Номер системы при этом будет следующим: SYS = 8i + j

Код команды, который будет передаваться при нажатии кнопки, которая замыкает линию Xi с линией DRj , вычисляется следующим образом: COM = 8i + j


Часто встречающиеся неисправности.

Неисправности беспроводных пультов ДУ

  • севшие батарейки (самая частая неисправность);
  • пульт залит какой-либо жидкостью и кнопки либо западают, либо не отпускаются;
  • от удара отвалился (или повреждён) кварцевый резонатор либо ИК-светодиод;
  • от частого использования проводящее напыление на самих кнопках (либо проводники под кнопками) истирается;
  • грязь от рук, попадающая внутрь пульта и скапливающаяся с течением времени.


Отсутствует сигнал с ПДУ.

Сначала проверяют исправность элементов питания. Если напряжение на элементе менее 1,3V , его необходимо заменить. Амперметром измеряют ток "короткого замыкания" элемента. Если он меньше 300 мА, элемент также необходимо заменить.

Проверить работоспособность ПДУ можно любым фотодиодом ИК диапазона. Под действием ИК излучения на выводах фотодиода появляется напряжение, которое регистрируют осциллографом. Фотодиод располагают напротив окошка ПДУ. При нажатии кнопок пульта на осциллографе должны появиться импульсы размахом 0,2...0,5V .

Проверка пульта без специальных средств.
Можно, включить приёмник на диапазон "AM" и нажав кнопку на пульте, поднести близко к приёмнику, из динамика будут отчётливо слышны звуки (пакетов импульсов)
Другой простой способ, с помощью которого можно проверить работоспособность пульта дистанционного управления заключается в следующем: включаем на мобильном телефоне камеру, направляем ПДУ на камеру и нажимаем любую кнопку, если пульт исправен на дисплее телефона будет видно свечение инфракрасного излучателя.

Если сигнал отсутствует, пульт неисправен. Его вскрывают. Эта операция требует определенных навыков и аккуратности, чтобы не оставить царапин на корпусе и не сломать защелки.

Осматривают печатную плату, и контакты клавиатуры следы высохшей жидкости в виде белесого налета удаляют с печатной платы и контактного поля ватным тампоном, смоченным спиртом. Трещины на печатных проводниках устраняют, напаивая сверху перемычки из луженого провода.

Контролируют качество паек, и отсутствие обрыва выводов деталей в первую очередь это касается излучающего ИК диода и кварцевого резонатора. Затем проверяют режимы работы.

Измеряют напряжение питания (обычно +3V ) на микросхеме. Осциллографом контролируют работу генератора при замыкании пары контактов кнопок. Если генерация отсутствует, проверяют постоянное напряжение +1...1.5V на кварцевом резонаторе. Если напряжение имеется, заменяют резонаторы. В случае отсутствия постоянного напряжения проверяют исправность микросхемы (заменой).

При наличии генерации возможны следующие неисправности:

1. Появление утечки в одной из пар контактов клавиатуры. Проверяют омметром. Сопротивление между контактами исправной пары должно быть не менее 100 кОм. В ином случае контакты протирают ватным тампоном, смоченным спиртом.

2. Возникла утечка с графитовых перемычек на печатные проводники, проходящие под перемычками. Для поиска неисправности поочередно отпаивают выводы микросхемы, соединенные с контактами клавиатуры. Если при отпайке очередного вывода генерация прекратилась, проверяют цепи, подходящие к этому выводу. Печатный проводник, находящийся под графитовой перемычкой, обрезают с обеих сторон и восстанавливают отрезком изолированного провода.

3. Попадание пыли, грязи, частиц олова и канифоли между выводами микросхемы. Кисточкой с жестким ворсом и спиртом промывают плату между выводами.

4.Дефект микросхемы. Если после отпайки ее выводов сопротивление пары контактов возросло до нормы, неисправна микросхема. Её необходимо заменить.

Сигнал с ПДУ отсутствует, на выходе микросхемы импульсный сигнал имеется.

1. Отсутствует напряжение питания усилителя.

2. Неисправен один из транзисторов усилителя или диод ИК излучения.

Поиск неисправности начинают с проверки осциллографом наличия импульсного сигнала на катоде диода ИК излучения. Если сигнал отсутствует, а постоянное напряжение равно нулю, проверяют исправность диода. Если он исправен, и имеется постоянное напряжение, но сигнал отсутствует, проверяют прохождение сигнала с выхода микросхемы до диода ИК излучения, исправность транзисторов, наличие напряжения питания.

Наиболее часто встречаются дефекты: неисправность выходного транзистора усилителя, нарушение паек выводов элементов.

Сигнал с ПДУ отсутствует. На диоде ИК излучения присутствует постоянное напряжение. Происходит быстрая разрядка элементов питания.

Характер неисправности указывает на то, что диод ИК излучения постоянно открыт, через него протекает значитель­ный ток, приводящий к разрядке эле­ментов.

Возможные причины неисправности:

Пробой одного из транзисторов усилителя. Проверяют омметром.

Наличие двух или более пар замк­нутых контактов клавиатуры. Проверяют омметром.

Дефектна микросхема. Проверяют заменой.

При не нажатых кнопках клавиатуры с ПДУ постоянно поступает команда.

Возможные причины неисправно­сти:

1. Уменьшение сопротивления изоляции между выводами микросхемы или контактами контактного поля. Устраняют промывкой спиртом.

2. Утечка с графитовой перемычки на печатный проводник, проходящий под ней. Дефектный проводник с обоих концов обрезают и припаивают сверху отрезок изолированного провода.

3.Дефектна микросхема. Проверяют заменой.

С ПДУ не поступает одна или несколько команд.

Причиной дефекта может быть увеличение сопротивления замыкающих контактов клавиатуры, грязь на контакт ном поле, трещины на плате, неисправность микросхемы.

Омметром проверяют сопротивление контактов из токопроводящей резины на клавиатуре. У исправных контактов оно должно находиться в пределах от 2 до 5 кОм. Если сопротивление превышает 10кОм, контакты неисправны. Прежде чем менять "резину" целиком, можно попытаться восстановить неисправные контакты. Для этого резиновую клавиатуру вначале очищают от грязи, для чего промывают ее под струей горячей воды с мылом и щеткой. Затем неисправный контакт прикладывают к листу писчей бумаги и с небольшим усилием проводят по нему. За счет шероховатости бумаги с контакта снимается тонкий слой грязи и окислов. Возможно использование мелкозернистой наждачной бумаги.

Другой способ восстановления работоспособности состоит в наклеивании на неисправные контакты кружков из токопроводящей резины. Они входят в специальные ремонтные комплекты для ПДУ, имеющиеся в продаже. Неплохие результаты дает наклеивание кружков из металлической фольги (от сигарет). Фольга на бумажной основе обеспечивает надежное клеевое соединение с резиной. Разрывы на проводниках устраняют напаиванием перемычек. Трещины на контактном поле устраняют нанесением слоя токопроводящего клея (имеется в продаже).

ПДУ команду излучает, однако телевизор на нее не реагирует. Телевизор исправен.

Возможные причины неисправности: дефект кварцевого резонатора или микросхемы.

Проверяют заменой.

Распространенные микросхемы П ДУ

8U5800

М3005А8

М708

RC005HC

SAF1039

U327

С LA 3117

M3006LAB

М709

SAA1 124

SKC5401

UM400

DMC6003

М50115

М710

SAA1 250

SL490

mPD660

DYC-R02

М50119

МС144105

SAA3004

SN76881

IX0733PA

М50460

МС14497

SAA3006

STV3021

KS51800

М50461

MN6027

SAA3007

Т8909

KS51810

М50462

MN6030B

SAA3008

Т8813

LC7462

М50560

NEC1986

SAA3010

TC9012F-011

М3004АВ

N58484P

РСА8521

SM3021

U321


История

Одно из самых ранних устройств для дистанционного управления придумал и запатентовал Никола Тесла в 1893 году.
В 1903 году испанский инженер и математик Leonardo Torres Quevedo представил в Парижской академии наук Telekino - устройство, представлявшее собой робота, выполняющего команды, переданные посредством электромагнитных волн.


Пульт ДУ Zenith Space Commander 500, 1958 год
Первый пульт ДУ для управления телевизором был разработан американской компанией Zenith Radio Corporation в начале 1950-х годов. Он был соединён с телевизором кабелем. В 1955 году был разработан беспроводной пульт Flashmatic, основанный на посылании луча света в направлении фотоэлемента. К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

Пульт ДУ Zenith Space Commander 600
В 1956 году американец австрийского происхождения Роберт Адлер разработал беспроводной пульт Zenith Space Commander. Он был механическим и использовал ультразвук для задания канала и громкости. Когда пользователь нажимал кнопку, она щёлкала и ударяла пластину. Каждая пластина извлекала шум разной частоты, и схема телевизора распознавала этот шум. Изобретение транзистора сделало возможным производство дешёвых электрических пультов, которые содержат пьезоэлектрический кристалл, питающийся электрическим током и колеблющийся с частотой, превышающей верхний предел слуха человека (хотя слышимой собаками). Приёмник содержал микрофон, подсоединённый к схеме, настроенной на ту же частоту. Некоторыми проблемами этого способа были возможность приёмника сработать от естественного шума и то, что некоторые люди, могли слышать пронзительные ультразвуковые сигналы.

В 1974 году фирмы GRUNDIG и MAGNAVOX выпустили первый цветной телевизор с микропроцессором управления на ИК-лучах. Телевизор имел экранную индикацию (OSD) - в углу экрана отображался номера канала.
Толчок к появлению более сложных типов пультов ДУ появился в конце 1970-х, когда компанией Би-би-си был разработан телетекст. Большинство продаваемых пультов ДУ в то время имели ограниченный набор функций, иногда только четыре: следующий канал, предыдущий канал, увеличить или уменьшить громкость. Эти пульты не отвечали нуждам телетекста, где страницы были пронумерованы трёхзначными числами. Пульт, позволяющий выбирать страницу телетекста, должен был иметь кнопки для цифр от 0 до 9, другие управляющие кнопки, например для переключения между текстом и изображением, а также обычные телевизионные кнопки для громкости, каналов, яркости, цветности. Первые телевизоры с телетекстом имели проводные пульты для выбора страниц телетекста, но рост использования телетекста показал необходимость в беспроводных устройствах. И инженеры Би-Би-Си начали переговоры с производителями телевизоров, что привело в 1977-1978 к появлению опытных образцов, имевших гораздо больший набор функций. Одной из компаний была ITT, её именем был позже назван протокол инфракрасной связи.
В 1980-х Стивен Возняк из компании Apple основал компанию CL9. Целью компании было создание пульта ДУ, который мог бы управлять несколькими электронными устройствами. Осенью 1987 года был представлен модуль CORE. Его преимуществом была возможность «обучаться» сигналам от разных устройств. Он также имел возможность выполнять определённые функции в назначенное время благодаря встроенным часам. Также это был первый пульт, который мог быть подключён к компьютеру и загружен обновлённым программным кодом. CORE не оказал большого влияния на рынок. Для среднего пользователя было слишком сложно программировать его, но он получил восторженные отзывы от людей, которые смогли разобраться с его программированием. Названные препятствия привели к роспуску CL9, но один из её работников продолжил дело под маркой Celadon.
К началу 2000-х количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять-шесть пультов: от спутникового приёмника, видеомагнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста по юзабилити Jakob Nielsen и изобретателя современного пульта ДУ Роберта Адлера, отмечают, сколь запутанно и неуклюже использование нескольких пультов.
Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования.



Источники.

Прошли те времена, когда для того чтобы переключить телевизионные каналы на телевизоре, добавить звук на магнитофоне или перемотать кассету надо было подниматься с дивана и подходить собственно к ручкам и переключателям на электронном устройстве. Конечно же, в этом ничего плохого не было – лишний раз поднять свою «пятую точку» очень даже полезно для здоровья, но все же технический прогресс неумолим и благодаря ему появился пульт дистанционного управления, без которого собственно сейчас не обходится управление не одним из современных электронных устройств.

Рассмотрим, как же работает это чудо техники. На самом деле все достаточно просто, если не вдаваться в детали. Пульт дистанционного управления, например пульт триколор тв сам по себе никакой функционально законченной задачи не выполняет. Он работает только в паре с тем устройством (телевизором, магнитофоном, кондиционером) с которым он изначально идет в комплекте либо же для которого предназначен.

В самом пульте находится микросхема , которая преобразует информацию о нажатой клавише в последовательность электрических импульсов, которые подаются на излучатель (обычно инфракрасный светодиод). В свою очередь излучатель передает уже визуально преобразованный сигнал на фотоприемник, который находится в самом электронном устройстве (телевизоре, магнитофоне или кондиционере). Приняв информацию в визуальном виде, фотоприемник преобразует ее в последовательность электрических импульсов, которые поступают на микросхему блока управления устройства. А она в свою очередь уже формирует сигналы для управления функциями телевизора, магнитофона или кондиционера.

То есть после того как вы нажали одну из кнопок пульта дистанционного управления, сначала сигнал преобразуется в световую форму, а затем обратно в электрический сигнал. Удобство такой системы в том, что при помощи последовательности импульсов (электрического сигнала) можно записать очень большое количество информации. Это позволяет не только придавать дистанционному управлению большую функциональную наполненность, но и использовать практически для каждого электронного устройства свой уникальный код, чтобы не вызывать ложные срабатывания других электронных устройств, управлять которыми в данный момент не требуется.

В основном для управления бытовыми электрическими приборами используется инфракрасный пульт дистанционного управления. Это означает, что передача информационного сигнала от излучателя к приемнику осуществляется в инфракрасном световом диапазоне. Человеческий глаз не может видеть в этом диапазоне, поэтому физически мы не замечаем мигание излучателя. С одной стороны это очень хорошо – сигналы управления не мешают, к примеру, просмотру телепередачи. Однако с другой стороны мы не можем визуально увидеть, работает пульт или сломался. Но это не такая уж и большая проблема. Чтобы проверить работоспособность пульта достаточно иметь под рукой мобильный телефон с камерой. Включите его в режим фотоаппарата и направьте камеру на светодиод пульта. При нажатии на любую из клавиш рабочий пульт будет выдавать периодические вспышки, которые хорошо видны на экране мобильного. Вот и все.

И пр. аудио- видеотехникой).

Энциклопедичный YouTube

  • 1 / 5

    Один из самых ранних образцов устройств для дистанционного управления придумал Никола Тесла в 1898 году . Механизм был запатентован и описан в Method of and Apparatus for Controlling Mechanism of Moving Vehicle or Vehicles . В 1898 году на электровыставке в Медисон-сквер-гарден он демонстрировал публике радиоуправляемую лодку под названием «телеавтомат» .

    Первый пульт ДУ для управления телевизором был разработан Юджином Полли , сотрудником американской компании Zenith Radio Corporation в начале 1950-х годов . Он был соединён с телевизором кабелем . В 1955 году был разработан беспроводной пульт Flashmatic , основанный на посылании луча света в направлении фотоэлемента . К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

    К началу 2000-х годов количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять-шесть пультов: от спутникового приёмника, видеомагнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста по юзабилити Jakob Nielsen и изобретателя современного пульта ДУ Роберта Адлера, отмечают, сколь запутанно и неуклюже использование нескольких пультов.

    Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования. Также возможно использование некоторых мобильных телефонов для дистанционного управления (по каналу Bluetooth) персональным компьютером.

    Типы ПДУ

    Пульты дистанционного управления различаются по:

    Питанию :

    • автономное;
    • получаемое по кабелю (проводу).

    Мобильности :

    • встроенный (стационарный);
    • носимый.

    Функциональности :

    • с фиксированным набором команд;
    • с переключаемым набором команд (универсальный);
    • с обучением набору команд (обучаемый).

    Каналу связи :

    • механический;

    Применение

    ПДУ используются для дистанционного управления бытовой электронной аппаратурой (телевизорами, муз. центрами, аудио- и видеопроигрывателями и тп.). Миниатюрные пульты ДУ имеют автомобильные сигнализации . Есть пульты ДУ и для управления роботами , авиамоделями и пр. Системами ДУ бывают оборудованы даже храмы . Вообще - пульт ДУ может быть применён в любом устройстве, имеющем электронное управление.

    ПДУ бытовой аппаратуры

    ПДУ для бытовой электронной аппаратуры обычно представляет собой небольшое устройство с кнопками , с питанием от батареек , посылающее команды посредством инфракрасного излучения с длиной волны 0,75-1,4 микрон . Этот свет невидим для человеческого глаза , но распознаётся приёмником принимающего устройства. В большинстве ПДУ применяется одна специализированная микросхема , корпусная либо бескорпусная (помещенная прямо на печатную плату и залитая компаундом для предотвращения повреждения).

    Ранее на пульт ДУ выносились только основные функции аппарата (переключение каналов , управления громкостью и т. п.), сейчас большинство образцов современной бытовой электроники на самом корпусе имеют ограниченный набор средств управления и полный набор их на пульте ДУ.

    Первым пультам для передачи одной функции, команды (одноканальный ПДУ, с одной кнопкой) было достаточно наличия/отсутствия самого передаваемого сигнала. Но и то только в том случае, если он передавался по помехозащищённому каналу (например, проводу), в противном случае внешние помехи (лучи Солнца и т. п.) приводили к ложному срабатыванию. Первые беспроводные ПДУ использовали ультразвуковой канал связи.

    Для пультов с несколькими функциями необходима более сложная система - частотная модуляция несущего сигнала (она применяется и для создания помехозащищённости канала) и кодирование передаваемых команд. Сейчас для этого используется цифровая обработка - микросхема передатчика (в пульте) модулирует и кодирует передаваемый сигнал, в приёмнике происходит его демодуляция и декодирование. После демодуляции полученного сигнала применяются соответствующие частотные фильтры для разделения сигналов.

    Для считывания кода нажатой кнопки обычно применяется метод сканирования линий матрицы кнопок (аналогичный метод применяется в компьютерных клавиатурах), но в пультах ДУ бытовой техники использование непрерывного сканирования требовало бы затрат энергии и батарейки бы быстро садились. Поэтому в режиме ожидания все линии сканирования устанавливаются в одинаковое состояние и процессор пульта переводится в режим «засыпания», отключая тактовый генератор и практически не потребляя энергию. При нажатии любой кнопки на входных линиях сканирования изменяется логический уровень, что вызывает «просыпание» процессора и запуск тактового генератора. После чего запускается полный цикл сканирования клавиатуры для определения вызвавшей просыпание кнопки. Метод «одна кнопка - одна линия» обычно не используется по причине большого числа кнопок на современных пультах ДУ. После определения нажатой кнопки пульт формирует посылку, содержащую код пульта и код кнопки.

    Бытовые пульты ДУ не имеют обратной связи , это означает, что пульт не может определить, достиг ли сигнал приёмника или нет. Поэтому сигнал, соответствующий нажатой кнопке, передаётся непрерывно до тех пор, пока кнопка не будет отпущена. При отпускании кнопки пульт переходит обратно в дежурное состояние.

    На приёмной стороне (например в телевизоре) принимаются данные: проверяется код пульта, и, если этот код соответствует заданному, выполняется команда, соответствующая нажатой кнопке. Передатчик и приёмник (пульта и аппарата) должны использовать одинаковые методы кодирования и частоту модуляции передаваемых данных, в противном случае приёмник окажется неспособен принять и обработать посланные ему данные.

    Модуляция

    Обычно в пультах используется одна частота модуляции несущей (то есть частоты излучения ИК-светодиода) - на неё настроен и пульт, и приёмник. Частоты модуляции обычно стандартны - это 36 кГц , 38 кГц, 40 кГц (Panasonic , Sony). Редкими считаются частоты 56 кГц (Sharp). Фирма Bang & Olufsen использует 455 кГц, что является большой редкостью. Использование приёмника с частотой модуляции, не точно совпадающего с частотой передатчика, не означает, что он не будет принимать - приём останется, но его чувствительность может очень сильно упасть.

    Передача сигнала осуществляется излучением ИК-светодиода с соответствующей частотой модуляции. Для частот от 30 до 50 кГц обычно используются светодиоды с длиной волны 950 нм, а для 455 кГц - специальные светодиоды с длиной волны 870 нм (на эту длину волны и высокую частоту модуляции ориентированы специализированные приёмники TSOP5700 и TSOP7000).

    Несколько таких модулированных передач и гашений (пачек импульсов ) формируют кодированную посылку (см. ниже). Приёмник ИК-сигнала состоит из нескольких каскадов усилителей и демодулятора (частотного детектора) и чувствителен к сигналу до −90 дБ (большинство радиолюбительских схем имеют чувствительность до −60 дБ). Также практически все производимые серийно ИК-приёмники имеют ИК-светофильтр (тёмно-красная линза или пластина). Сам модуль ИК-приёмника имеет всего три вывода: Питание , Земля , Выход данных .
    Пример фотоприёмников: TSOP1736 - настроен на частоту 36 кГц, TSOP1738 - 38 кГц (производитель Vishay Telefunken), BRM1020 - 38 кГц.
    Для приёма сигнала от пульта ДУ также существует демодулятор без встроенного ИК фотоприёмника - микросхема фирмы Sony CXA1511, по своей сути - высококачественный частотный детектор, позволяющий сделать пульт, например, на УФ-излучателях, а не на светодиодах ИК-диапазона.

    Кодирование

    Для распознавания множества различных команд пульта применяется кодирование передаваемых данных. Сейчас преимущественно используются следующие две схемы кодирования передаваемых данных:

    • Первая в пультах ДУ стала применяться фирмой Philips (протоколы RC4 и RC5, т. н. Манчестерское кодирование): Передача 0 дополнялась единицей, а передача 1 - нулём. То есть 001 передается как 01 01 10. Соответственно посылка считывается последовательно, и в эфир подаётся модулированный сигнал только когда встречается единица.
    • Авторство второй схемы кодирования приписывается фирме Sony. Сначала всегда передаётся «1» модулированным сигналом, затем «0» - пауза. Временной размер единицы всегда одинаковый, а временной размер 0 - это кодированные передаваемые данные. Длинная пауза - передача единицы, короткая пауза - передача нуля.

    Перед посылкой кодированных данных пульт всегда посылает одну или несколько синхропосылок для того, чтобы фотоприёмник настроил приёмную цепь (синхронизировался с пультом по чувствительности и фазе).

    • Протоколы RC5, Sony SIRC, Panasonic, JVC, Daewoo (англ.)

    Производители пультов не склонны придерживаться каких-либо общих стандартных протоколов кодирования данных и вправе разрабатывать и применять для своей техники всё новые и новые протоколы. Более полный список протоколов: NEC (repetitive pulse), NEC (repetitive data), RC5, RC6, RCMM, RECS-80, R-2000 (33 кГц), Thomson RCA (56,7 кГц), Toshiba Micom Format (similar NEC), Sony 12 Bit, Sony 15 Bit, Sony 20 Bit, Kaseikyo Matsushita (36,7 кГц), Mitsubishi (38 кГц, preburst 8 ms, 16 bit), Ruwido r-map, Ruwido r-step, Continuous transmission 4000 bps и Continuous transmission 1000 bps.

    Питание

    Бытовые пульты ДУ обычно питаются от 2-4 батареек типоразмера или AAA (реже от батарейки 9 В типа «Крона»). Это связано с тем, что для питания инфракрасного светодиода необходимо не менее 2,0-2,5 Вольта, и от одной батарейки (1,5 В) такого напряжения без усложнения схемы не получить. Для пультов рекомендуется покупать обыкновенные солевые или щелочные (Alkaline) батарейки, они прослужат дольше - дело в том, что аналогичные (типоразмера AA или AAA) аккумуляторы могут разрядиться уже за полгода только из-за высокого тока саморазряда у них, к тому же длительный срок эксплуатации одной зарядки не окупит стоимость аккумулятора.

    Неисправности беспроводных пультов ДУ

    • севшие батарейки (самая частая неисправность);
    • пульт залит какой-либо жидкостью и кнопки либо западают, либо не отпускаются;
    • от удара отвалился (или повреждён) кварцевый резонатор либо ИК-светодиод;
    • от частого использования проводящее напыление на самих кнопках (либо проводники под кнопками) истирается;
    • грязь от рук, попадающая внутрь пульта и скапливающаяся с течением времени.

    Наличие сигнала с пульта можно проверить, посмотрев на него через видеокамеру или цифровой фотоаппарат, при этом нажимая на пульте кнопки. ПЗС-матрицы бытовой фото- и видеоаппаратуры обычно видят инфракрасный диапазон.
    Также часто можно услышать сигналы, модулируемые инфракрасной несущей пульта, рядом со средневолновым радиоприёмником , не настроенным на станцию.

    Не включается телевизор с дистанционки или не переключаются каналы, не регулируется громкость, а другие кнопки работают нормально? Такие симптомы неисправности пульта дистанционного управления знакомы почти каждому. Эта неисправность ПДУ наиболее распространенная и тянется с момента появления самих пультов, но производители так и не приняли никаких радикальных мер по их устранению. Почти со 100-процентной уверенностью причиной такой неисправности является стирание или загрязнение токопроводящего слоя контактных кнопок. Возобновления работоспособности пульта ДУ в этом случае два:

    - Первый - не заморачиваться и купить новый пульт дистанционного управления. Стоит заметить, что приобретая дешевый (не оригинальный) пульт, Вы рискуете столкнуться с этой же или другой поломкой уже в первый месяц. Поэтому, если решили поменять пульт, то по возможности, покупайте оригинальный пульт и не в "шарашкиной канторе". Это сохранит Вам нервы и деньги.

    - Второй - самостоятельно отремонтировать пульт ДУ. Это не требует знаний электроники и доступно любому, не взирая на пол и возраст. Кроме батарейки, которую Вы тоже удалите из пульта, "опасного" электричества" в пульте нет. Даже если что-то не получится, то всегда в запасе остается первый способ, да и деньги для этого потребуются довольно скромные. Но зачем платить, если за 15-20 минут можно сделать все самому, к тому-же любой новый пульт ждет такая же судьба и опыт первого ремонта не будет напрасным.

    Стоит заметить, что за редким исключением, мастерские по ремонту не занимаются подобным восстановлением, или же стоимость будет сопоставима с ценой нового пульта. Если решили - то делайте сами, все просто, а в помощь Вам эта статья.

    В начале, еще раз остановимся на

    Диагностике неисправности пульта дистанционного управления телевизора, тюнера, кондиционера или любой другой техники

    Если устройство не включается с пульта ДУ и не работает ни одна кнопка, то первым делом замените батарейки. При слабых батарейках возможно реагирование на кнопки один -два раза подряд, затем не реагирует, через какое-то время (20-30 мин) опять реагирует один-два раза. Это тоже указывает на изношенные батарейки, которые надо заменить. Если это не поможет, то неисправность в электронике. Далее, в зависимости от Вашей квалификации и желания, принимаете решение о самостоятельном ремонте. Это не наш случай и требует для ремонта знаний электроники.

    Проверка ДУ цифровым фотоаппаратом.

    Для этого достаточно направить пульт в объектив фотоаппарата или камеры мобилки и удерживать кнопку. В этот момент сфотографировать пульт без вспышки. Если пульт или кнопка исправны, то на фотографии будет ярко-белое пятно на месте ИК-светодиода. Если свечение будет видно на фотографии, то причина с большой долей вероятности в приемнике, находящемся в телевизоре или другой технике от которой Ваш пульт. Вывод о ремонте, как и в первом пункте.

    Если не работают, или работают (реагируют на нажатие) с 2-10 попытки, только несколько кнопок, наиболее часто использующихся, то это наш случай. Далее рассмотрим способы устранении данной неисправности ПДУ.

    Устройство пульта дистанционного управления

    Все ПДУ имеют схоже устройство. Основные компоненты:

    Корпус. Состоит из двух половинок, склеенных или скрученных.

    Печатная плата. На плате присутствует небольшая микросхема, еще немного радиоэлементов, инфракрасный светодиод, контакты батарейного отсека и контактная площадка в виде токопроводящих дорожек.

    Прорезиненная накладка с кнопками.

    Батарейки.

    Разборка пульта ДУ

    В самом начале вынимаем батарейки, затем смотрим в батарейном углублении наличие крепежных винтов. Они могут находиться под наклейками. Проведите по наклейке отверткой, если она где то продавится, значит, под ней есть винт. Осматриваете весь корпус на наличие винтов. Если есть, откручиваете все и разделяете корпус на две половинки. Корпус дополнительно к винтам может быть на защелках. Если винтов нет, то весь корпус собран только на защелках. Бывает, дополнительно еще и проклеен, но не паникуйте, все разбирается.

    Берем любой нож и кончик аккуратно просовываем в щель посредине корпуса и пытаемся раздвинуть половинки до появления щелчка. Щелчок говорит о том, что одна из защелок открылась. Здесь важно найти и расцепить первую защелку, остальные пойдут проще. Старайтесь делать все аккуратно, чтобы не сломать защелки, а если даже одну-две сломаете, не беда, пульт от этого хуже закрываться не будет, в крайнем случае легко подклеивается каплей любого суперклея. Также можно разъединить двумя тонкими отвертками, или совместить нож и отвертку.


    Если Вы разбираете пульт первый раз, то предпочтительнее работать ножом и отверткой. Вначале кончик отвертки подсовываете в щель, между половинками корпуса и, медленно, продвигая отвертку вдоль корпуса, ищите первую защелку. Как только Вы ее нашли, отщелкиваете, но отвертку оставляете воткнутой возле защелки, и уже далее продолжаете работать кончиком ножа. Когда ножом дойдете к следующей защелке, можно вставить вторую отвертку и продолжать движение кончиком ножа, или продолжить движение первой отверткой. Во общим делайте так, как Вам удобнее.

    Дальше вынимаете плату и резиновую накладку с кнопками. В батарейном отсеке есть прорези, в которые вставляются пружинные контакты батареек. Перед тем как извлечь печатную плату, запомните как они стоят в пазах, чтобы при сборке не возникло вопросов. В большинстве случаев, эти контактные пружины припаяны на плату и по другому не вставите.

    Прежде чем восстанавливать токопроводящий слой кнопок, рекомендуется сначала просто почистить. Иногда загрязнение видно "не вооруженным глазом".

    Довольно часто все пространство, где расположено резиновое основание с кнопками, заполнено прозрачной липучей и тягучей жидкостью по виду напоминающей эпоксидную смолу, только без отвердителя. Жидкость эта намазана аккуратным тонким слоем, местами с маленькими капельками. Эта липучая жидкость находится везде. На верхней и нижней стороне резинового основания кнопок, на верхней части корпуса с гнездами для кнопок. Верхняя часть печатной платы с контактными площадками тоже намазана этим клеем…

    Происхождение этого клея является предметом обсуждений и даже споров в кругах ремонтников. Одни говорят, что это жир от пальцев рук, другие, что это испарения от батареек. Но, почему тогда этими испарениями не покрыта нижняя часть платы, где нет деталей?

    Наиболее вероятной кажется версия о том, что эти липучие соединения исходят собственно из самого резинового основания. Резина как бы потеет, выпуская из себя наружу пластификаторы, что говорит о нарушении технологии производства резинотехнических изделий. Вот только возникает вопрос, почему таких некондиционных изделий так много? Такое наблюдается практически в каждом пульте, когда возникает подобная неисправность.

    Чистить надо мылом или другим моющим средством, но не спиртом, ацетоном и т. п., что может привести к полному отказу ПДУ.
    Хороший результат, может принести промывание платы и резинки с кнопками не очень горячей водой, желательно с применением средства для мытья посуды или хозяйственного мыла.

    Промывать следует нежно, мягкой тряпочкой, промакивающими движениями, что-бы не стереть графитовое покрытие. Совсем хорошо, если перед тем, как отмывать сопливый налет, детали разобранного ПДУ некоторое время, минут 20…30, полежат в растворе моющего средства. После промывки не вытирать, а подождать, пока детали высохнут и только после этого собирать пульт. Можно использовать фен, для ускорения просушки.

    Пульт полностью не собирайте, наложите кнопки, вставьте батарейки и проверьте работоспособность. Если все работает - собирайте и пользуйтесь. Если неисправность осталась, приступаем ко второму этапу восстановления. В некоторых случаях промывку можете пропустить и сразу перейти к восстановлению. Интуиция Вам в помощь.

    Для интересующихся есть различных видов.

    Способ 1. Суперклей и квадратики из фольги

    С помощью клея аккуратно наклейте на контактные площадки “коврика” кусочки фольги. Фольгу можно взять от конфет (чистую), шоколадки, а лучше от пачки сигарет. Алюминиевая фольга с бумажным основанием из сигаретных пачек приклеивается достаточно надежно и просто любым клеем типа «Момент» или суперклеем из маленьких тюбиков. Пятачки можно сделать как квадратные, так и круглые. Можно воспользоваться дыроколом подходящего диаметра. В результате должно получиться как-то вот так.

    Способ 2. Двусторонний скотч и фольга

    Полоску длиной 5-7 см двустороннего скотча нужно наклеить на фольгу, обрезать края фольги, где нету скотча. Затем фольгу со скотчем "пропускаем" через дырокол столько раз, сколько кнопок нам нужно отремонтировать или используем ножницы. Еще можно применить сломанную телескопическую антенну. Берется подходящее по диаметру звено и на стекле высекаются кружочки. Когда кружочки готовы, наклеиваем на нерабочие площадки кнопок пульта. Можно не заморачиваться с кружочками а вырезать квадраты.

    Дополнительно, можно осторожно, острым лезвием срезать слой токопроводящей резины с кнопок перед наклейкой. Обычно это слой примерно 0,5-1,0 мм.

    Способ 3. Медная проволока

    Понадобится медную проволока диаметром 0.2-0.4. С помощью молотка расплющиваем ее на любой наковальне с интервалом примерно 1 см. Схематическое обозначение ("--" Это проволока, «О» это место расплющивание) (--О--О--О--) отрезаем элемент (-–О)

    левый конец элемента втыкаем в кнопку можно рядом с кнопкой, нагибаем у элемента(-–О) расплющенную часть над токопроводящий резиной

    Если хорошо закрепить, то такой вариант довольно долговечен.

    Более простой вариант - металлическая скобка от степлера. Согнуть-укоротить по размеру контактной площадки и вдавить в резину в таком положении, чтобы при нажатии кнопки скобка замыкала контакты на плате.

    Способ 4. Токопроводящие клеи или лаки

    Еще один вариант ремонта ПДУ это намазывание кнопок токопроводящими клеями и лаками, например «Контактол» или «Элласт». По поводу этого способа также существует немало разных мнений, что лучше пока не ясно. Видимо, все просто: у кого получилось хорошо, тот хвалит и наоборот.

    Способ 5. Ремкомплект

    Продаются готовые ремкомплекты специально для ремонта ПДУ. Стоят дешево - главное найти. В пакетике лежит тюбик клея и кругленькие резиновые пятачки с графитовым покрытием. Просто намазывай, и приклеивай, куда надо. Даже есть и инструкции, как приклеивать.

    Более современный вариант ремкомплекта – пятачки самоклеющиеся. Уж тут все совсем просто. Вот в таких случаях как раз и не повредит протирание резиновых кнопок спиртом или другим растворителем.

    Все варианты работоспособны и проверены на практике. Выбирайте любой, какой Вам больше нравится. Удачи.


    В наше время телевидение достигло апогея развития. Многие люди смотрят телевизор по несколько раз день и пульт в данном случае является неотъемлемой частью телевизора. Взрослые люди с грустью вспоминают те времена, когда им приходилось вставать каждый раз с дивана или кресла, чтобы переключить канал. Теперь же все гораздо проще – достаточно нажать всего одну кнопку на этой «волшебной палочке» и вы смотрите уже другой канал. Но как же работает пульт? Давайте заглянем внутрь. Принцип работы дистанционного управления заключается в том, что для его действия необходимо нажать кнопку, которая отвечает за ту или иную функцию. Это нажатие затем превратится в инфракрасный сигнал света, который получит телевизор. Если снять заднюю крышку пульта, то вы увидите всего одну деталь – печатную плату с множеством точечек и линий. Практически во всех устройствах дистанционного управления используется типичный набор компонентов. Во-первых, это интегральная схема (также называемая чипом) с серийным номером "TA11835". С правой стороны чипа проходит диод, транзистор (черный), резонатор (желтый), два резистора (зеленые) и конденсатор (темно синий). Рядом с контактами батареи есть резистор (зеленый) и конденсатор (коричневый диск). С помощью этой схемы чип определяет, какая была нажата кнопка. Затем он переводит «нажатую кнопку» в некую последовательность символов, своего рода азбуку Морзе, поскольку каждая кнопка имеет свой код. Затем чип отсылает этот закодированный сигнал на транзистор, который его усиливает.

    Печатная схема

    Если раскрутить печатную схему и вытащить ее из пульта, то можно заметить, что она представляет собой тонкую пластинку из стекловолокна, на поверхности которой выгравированы тонкие медные "полосы". На печатной плате собраны различные электронные части. «Печатанье» медных полос на листе из стекловолокна довольно недорогостоящий процесс. К тому же в наше время не составляет большой сложности установить детали (например, чипы, транзисторы и т.д.) на пластину из стекловолокна, а затем припаять все это медными проводами.

    Если посмотреть на схему, то можно увидеть набор точек контакта, которые соответствуют каждой отдельной кнопке. Сами кнопки сделаны из тонкого эластичного материала. Каждой кнопке соответствует крошечный проводящий диск. Когда диск соприкасается с контактами на печатной схеме, происходит соединение и чип улавливает сигнал об их соединении. На конце печатной схемы находится инфракрасный светодиод, также называемый светоизлучающим диодом. Многие светоизлучающие диоды производят видимый свет, но те диоды, которые устанавливаются в пульты дистанционного управления, излучают невидимый для человеческого глаза свет. Но если у вас есть видеокамера, то вы можете увидеть этот свет через видеоискатель. Для этого вам необходимо навести пульт на камеру и нажать любую кнопку. Инфракрасный свет отразится в видеоискателе.

    В сущности, основной принцип работы всех устройств дистанционного управления состоит в следующем: вы нажимаете на кнопку и главный чип улавливает соприкосновение кнопки с платой и определяет какая была нажата кнопка. Тогда он воспроизводит кодированный сигнал этой кнопки и отсылает его на светоизлучающий диод, который перерабатывает сигнал в инфракрасный свет. Датчик в телевизоре улавливает этот сигнал и выполняет заданную ему команду.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: