Полнодуплексный и полудуплексный режим работы коммутатора, управление потоком кадров. Дуплексный режим работы канала

Классификация каналов связи. Симплексный. Полудуплексный. Дуплексный.

В технических системах часто возникает задача связать две подсистемы или два узла для организации информационного обмена между ними. Полученную коммуникативную связь называют каналом связи.

Каналы связи можно разделить по типу передаваемого сигнала (электрический, оптический, радиосигнал и т.д.), по среде передачи данных (воздух, электрический проводник, оптоволокно и т.д.) и по многим другим характеристикам. В этой статье речь пойдёт о делении каналов связи по режимам и правилам приёма и передачи информации. По указанным признакам каналы связи делят на симплексные, полудуплексные и дуплексные.

Симплексная связь

Симплексный канал связи - это односторонний канал, данные по нему могут передаваться только в одном направлении. Первый узел способен отсылать сообщения, второй может только принимать их, но не может подтвердить получение или ответить. Типичным...

0 0

Соединения WiFi работает в полудуплексном режиме, а проводная часть локальной сети в полном дуплексе. Узнайте больше прочитав эту статью.

Дуплекс против симплекса

В сети термин «дуплекс» означает возможность для двух точек или устройств связываться друг с другом в оба направления, в отличие от «симплекса», который относится к однонаправленной коммуникации. В системе дуплексной связи, обе точки (устройства) могут передавать и получать информацию. Примерами дуплексных систем являются телефоны и рации.

С другой стороны, в симплекс системе одно устройство передает информацию, а другое получает. Пульт дистанционного управления является примером системы симплекс, где пульт дистанционного управления передает сигналы, но не получает их в ответ.

Полный и полудуплекс

Полная дуплексная связь между двумя компонентами означает, что оба могут...

0 0

Виды связи

Телекоммуникационные системы по видам связи, а так же режимам передачи и приема данных делятся на следующие виды связи:

Симплексная связь

Симплексная связь – это односторонняя связь между двумя абонентами, в которой направление осуществляется в одну сторону и по одному и тому же каналу связи. Т.е. при симплексной связи второй абонент, кому направленно сообщение или послание, не может ни ответить, ни подтвердить ничего, а только слушать.

Полудуплексная связь

Полудуплексная связь – это двусторонняя связь между двумя абонентами, в которой по одному и тому же каналу связи прием и передача данный осуществляется поочередно. Первый абонент посылает сообщение и должен освободить свой канал. Второй, получив сообщение, по этому же каналу отправляет (посылает) ответное сообщение. И так может продолжаться сколь угодно долго. В фильмах часто звучат подобные диалоги:

Первый, это айсберг – ПРИЕМ
- Айсберг, твое послание...

0 0

СИМПЛЕКСНАЯ СВЯЗЬ - двухсторонняя связь между 2 пунктами, при которой в каждом из них передача и прием сообщений ведутся поочередно … Большой Энциклопедический словарь

Симплексная связь - двухсторонняя связь, в которой передача и прием сообщений (сигналов) между двумя корреспондентами осуществляется по одному каналу связи поочередно. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

симплексная связь - - [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN one way communication … Справочник технического переводчика

симплексная связь - двусторонняя связь между 2 пунктами, при которой в каждом из них передача и приём сообщений ведутся поочерёдно. * * * СИМПЛЕКСНАЯ СВЯЗЬ СИМПЛЕКСНАЯ СВЯЗЬ, двухсторонняя связь между 2 пунктами, при которой в каждом из них передача и прием… … Энциклопедический словарь

симплексная связь - 3.4 симплексная связь (simplex):...

0 0

симплексные каналы передачи данных характеризуются тем что

В разделе Наука, Техника, Языки на вопрос Чем отличается симплекс от дуплекса? заданный автором МАНЬЯК-ОСЕМЕНИТЕЛЬ.БОЙТЕСЬ!!! лучший ответ это все очень просто: симплекс - передача по каналу в момент времени возмодна тока в одну из сторон (один передает - другой принимает и пока первый не закончит передачу, 2й не сможет ему что нибудь отослать. даже сообщение о возникшей ошибке) дуплекс - канал можно одновременно использовать в каждом из направлений

Ответ от 2 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Чем отличается симплекс от дуплекса?

Ответ от Александр С[гуру]
односторонняя и двухсторонняя передача...

Ответ от Isok[гуру]
Передача сообщений в один конец, затем приём с другого конца. А при дуплексной связи - обмен сообщениями. как при телефонном разговоре.

Ответ от Ёвалился с Луны[гуру]
Одно - связь с одним абонентом, другое- сразу с несколькими (...

0 0

Симплексная связь (Simplex operation)

Схема связи позволяет передавать сигналы только в одном направлении, в одну сторону и по одному и тому же каналу связи, при этом прием сообщения производятся поочередно. Передатчик включается при передачи и выключается при приеме. Большинство УКВ радиостанции и радиостанций с однополосным сигналом (SSB - Single Side Band) работают в симплексном режиме.

Полудуплексная связь (Semi Duplex operation)

Полудуплексная радиосвязь представляет собой способ симплексной связи на одном конце линии и дуплексной на другой, осуществляется с помощью двух частот. Радиопередатчик включается при передачи и выключается во время приема. Сигнал принимается на одной частоте, а передается на другой.

Дуплексная связь (Duplex operation)

Дуплексная связь – это связь, которая осуществляется одновременно на двух частотах. На одной прием, на другой передача, как в обычном телефоне.
Оборудования для дуплексной связи более...

0 0

Лекция 4. Методы сетевой коммуникации.

Методы сетевой коммуникации

Как упоминалось раньше, существует много способов физического создания и пе редачи сигнала электрические импульсы могут проходить по медному проводу, им пульсы света - по стеклянному или пластмассовому волокну, радиосигналы переда ются по воздуху, так же передаются и лазерные импульсы в инфракрасном, или ви димом диапазоне Преобразование единиц и нулей, представляющих данные в компьютере, в импульсы энергии называется кодированием (модуляцией).

Подобно классификации компьютерных сетей, сигналы можно классифицировать на основе их различных характеристик. Сигналы бывают следующие:

аналоговые и цифровые,

смодулированные и модулированные,

синхронные и асинхронные,

симплексные, полудуплексные, дуплексные и мультиплексные

Аналоговые и цифровые сигналы

В зависимости от формы электрического напряжения (которую можно увидеть на экране...

0 0

2.4. Режимы передачи данных

2.4.1. Направление потока сигналов

Симплекс

Симплексный канал является однонаправленным, позволяющим передавать данные " лишь в одном направлении, как показано на рис. 2.10. Традиционное радиовещание является примером симплексной передачи. Радиостанция передает широковещательную программу, но в ответ ничего не получает от вашего радиоприемника.

Рис. 2.10. Симплексная передача

Это ограничивает использование симплексного канала для передачи данных, поскольку для контроля процесса передачи, подтверждения данных и т. д. требуется постоянный поток данных в обоих направлениях.

Полудуплекс

Полудуплексная передача дает возможность предоставить симплексную связь в обои;, направлениях по, единственному каналу, как показано на рис. 2.11. Здесь передатчик кг станции А посылает данные приемнику на станции В. Когда требуется передаче з обратном направлении, имеет место процедура переключения линии. После этогс...

0 0

Перед тем, как приступить к обсуждению принципов организации систем связи, следует определиться с терминами, которые мы будем использовать при обозначении того или иного действия. К сожалению, в этой области не существует конкретных названий, однозначно характеризующих «методы», «способы» и «виды». Поэтому мы оставляем за читателем право выбора предпочтительного слова.

Примечание: Если не оговорено иное, то приведенные ниже соображения относятся к подвижной наземной связи, организуемой в диапазонах УКВ и ДЦВ (с некоторыми допущениями – «Low Band»).

Симплекс, дуплекс и нечто среднее

Симплекс

Для связи используется одна частота, как для приема, так и для передачи. Экономично, просто, понятно.

Радиосвязь осуществляется одновременно на двух частотах. На одной прием, на другой передача. На этом принципе работают телефонные системы. Неэкономично, сложно и, в подвижной связи, непонятно зачем.

Полудуплекс (двухчастотный...

0 0

10

Дуплекс (Duplex) Дуплексная связь - способ связи, при котором передача возможна в обоих направлениях канала электросвязи (ст. 1.126).

Реализующее дуплексный способ связи устройство может в любой момент времени и передавать, и принимать информацию. Пример дуплексной связи - разговор двух людей (корреспондентов) по городскому телефону: каждый из говорящих в один момент времени может и говорить, и слушать своего корреспондента.

Для обозначения конца передачи и перехода в режим приема корреспондент произносит слово «прием» (англ. «over»). Режим, когда передача данных может производиться одновременно с приёмом данных (иногда его также называют «полнодуплексным», для того чтобы яснее показать разницу с полудуплексным).

Например, если используется технология Fast Ethernet со скоростью 100 Мбит/с, то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём). Полная скорость обмена информацией по каналу связи в данном режиме имеет...

0 0

11

Что такое дуплексная связь?

Дуплексный в переводе с латинского означает двойной. Дуплексная связь - двухсторонняя связь, позволяющая осуществлять передачу и прием сообщений одновременно, т. е. принимающий сообщение может, не дожидаясь окончания сообщения, обратиться к передающему абоненту за разъяснением или уточнением. Такая связь значительно повышает оперативность в обмене информацией, но достигается за счет усложнения средств связи. Для этого требуется дополнительный канал связи с трех- или четырехпроводной линией (кабелем) связи, либо с электронной аппаратурой. На рис. 2.3 приведены схемы дуплексной связи по трехпроводной (а) и четырехпроводной (б) линиям. Недостатком трехпроводной линии связи является то, что при обрыве общего провода связь между абонентами нарушается. Наглядный пример дуплексной связи по двухпроводной линии представляет собой обычная телефонная связь (см. рис. 2.3, в). Установленные у каждого абонента телефонные аппараты выполняют функцию разделения...

0 0

12


Ду плекс (лат. duplex - двухсторонний) - способ связи с использованием приёмопередающих устройств (модемов, сетевых карт, раций, телефонных аппаратов и др.). Реализующее дуплексный способ связи устройство может в любой момент времени и передавать, и принимать информацию. Передача и прием ведутся устройством одновременно по двум физически разделённым каналам связи (по отдельным проводникам, на двух различных частотах и др. за исключением разделения во времени - поочередной передачи). Пример дуплексной связи - разговор двух людей (корреспондентов) по городскому телефону: каждый из говорящих в один момент времени может и говорить, и слушать своего корреспондента. Дуплексный способ связи иногда называют полнодуплексным (от англ. full-duplex); это синонимы.

Помимо дуплексной, выделяют полудуплексную и симплексную связь.

Реализующее полудуплексный (англ. half-duplex) способ связи устройство в один момент времени может либо передавать, либо принимать информацию. Как правило,...

0 0

13

27.07.2011

Системы радиосвязи обычного типа. Конвенциональные системы связи.

Конвенциональные системы.

В переводе с английского Conventional radio обозначает - cистема радиосвязи обычного типа.

Система обычного типа - основной тип радио-коммуникационных систем. Как следует из названия, под обычным типом понимается «традиционные» методы использования частот. Обычные рации работают на фиксированной частоте канала, и каждая группа устанавливает свою фиксированную частоту или несколько частот.
Что касается раций с несколькими каналами, то они работают одновременно только на одном канале. Пользователь выбирает надлежащий канал, как правило, используя селектор каналов или кнопки на панели управления рацией.

В многоканальной системе каналы используются для различных целей. Канал может быть зарезервированн для специального использования или использования в определенном географическом регионе. В системе с большим количеством каналов один...

0 0

Одновременно. В режиме полудуплекс - или передавать, или принимать информацию.

Полудуплексный режим

Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы .

В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям .

Дуплексный режим

Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит / , то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

В качестве наглядного примера можно привести разговор двух человек по рации (полудуплексный режим) - когда в один момент времени человек либо говорит, либо слушает, и по телефону (полный дуплекс) - когда человек может одновременно и говорить, и слушать.

Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).


Wikimedia Foundation . 2010 .

Смотреть что такое "Полный дуплекс" в других словарях:

    Двойная спираль с Уотсона-крика дуплекс - Двойная спираль, с. Уотсона крика, дуплекс * падвойная спіраль, с. Уотсана крыка, дуплекс * double helix or d. h. DNA or Watson Crick h. or duplex модель Уотсона Крика, описывающая структуру ДНК как спираль, которая образована из двух… … Генетика. Энциклопедический словарь

    режим полного дуплекса - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] полный дуплекс Одновременная двусторонняя передача. (полный) дуплекс… …

    Кабель UTP с разъемом 8P8C (ошибочно называемый RJ 45), используемый в Ethernet сетях стандартов 10BASE T, 100BASE T(x) и 1 … Википедия

    Название: Teletype network Уровень (по модели OSI): Прикладной Семейство: TCP/IP Порт/ID: 23/TCP Назначение протокола: виртуальный текстовый терминал Спецификация: RFC 854 / STD 8 … Википедия

    Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия

    Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия - сетевая карта сетевой адаптер сетевой интерфейс Компонент компьютера для подключения к вычислительной сети. сетевой адаптер Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС.… … Справочник технического переводчика

Стандарт IEEE 802.3-2012 определяет два режима работы МАС-подуровня:

полудуплексный (half-duple x) – использует метод CSMA/CD для доступа узлов к разделяемой среде. Узел может только принимать или передавать данные в один момент времени, при условии получения доступа к среде передачи;

полнодуплексный (full-duplex ) – позволяет паре узлов, имеющих соединение «точка-точка», одновременно принимать и передавать данные. Для этого каждый узел должен быть подключен к выделенному порту коммутатора.

Метод доступа CSMA/CD

Основная идея Ethernet состояла в использовании шинной топологии на основе коаксиального кабеля. Кабель использовался как разделяемая среда передачи, по которой рабочие станции, подключенные к сети, выполняли широковещательную двунаправленную (во всех направлениях) передачу. На обоих концах кабеля устанавливались терминаторы (заглушки).

Рис. 5.21 Сеть Ethernet

Поскольку использовалась общая среда передачи, то требовался контроль над доступом узлов к физической среде. Для организации доступа узлов к разделяемой среде передачи был использован метод множественного доступа с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access With Collision Detection, CSMA/CD).

Метод CSMA/CD основан на конкуренции (contention) узлов за право доступа к сети и включает следующие процедуры:

● контроль несущей;

● обнаружение коллизий.

Перед тем, как начать передачу, сетевое устройство должно удостовериться, что среда передачи данных свободна. Это достигается путем прослушивания несущей. Если среда свободна, то устройство начинает передавать данные. Во время передачи кадра, устройство продолжает прослушивать среду передачи. Делается это для того, чтобы гарантировать, что никакое другое устройство не начало передачу данных в то же самое время. После окончания передачи кадра все устройства сети должны выдержать технологическую паузу (Inter Packet Gap), равную 9,6 мкс. Эта пауза называется межкадровым интервалом и нужна для приведения в исходное состояние сетевых адаптеров и для предотвращения монопольного захвата среды одним сетевым устройством. После окончания технологической паузы устройства имеют право начать передачу своих кадров, т.к. среда свободна.

Сетевые устройства могут начинать передачу данных в любой момент, когда они определят, что канал свободен. Если устройство попыталось начать передачу кадра, но обнаружило, что сеть занята, оно вынуждено ждать, пока передающий узел не закончит передачу.



Рис. 5.22 Передача кадра в сети Ethernet

Ethernet – это широковещательная среда, поэтому все станции получают все кадры, передаваемые по сети. Однако не все устройства будут обрабатывать эти кадры. Только то устройство, МАС-адрес которого совпадает с МАС-адресом назначения, указанным в заголовке кадра, копирует содержимое кадра во внутренний буфер. Затем устройство проверяет кадр на наличие ошибок, и если их нет, передает полученные данные вышележащему протоколу. В противном случае, кадр будет отброшен. Устройство-отправитель не уведомляется, успешно доставлен кадр или нет.

В сетях Ethernet неизбежны конфликты (коллизии ), т.к. возможность их возникновения заложена в самом алгоритме CSMA/CD. Это связано с тем, что между моментом передачи, когда сетевое устройство проверяет, свободна ли сеть, и моментом начала фактической передачи проходит какое-то время. Возможно, что в течение этого времени какое-нибудь другое устройство сети начнет передачу.

Если несколько устройств в сети начали передачу примерно в одно и то же время, битовые потоки, поступающие от разных устройств, сталкиваются друг с другом и искажаются, т.е. происходит коллизия. В этом случае каждое из передающих устройств должно быть способно обнаружить коллизию до того, как закончит передачу своего кадра. Обнаружив коллизию, устройство прекращает передачу кадра и усиливает коллизию посылкой в сеть специальной последовательности из 32 бит, называемой jam -последовательностью. Это делается для того, чтобы все устройства сети смогли распознать коллизию. После того, как все устройства распознали коллизию, каждое устройство отключается на некоторый случайно выбранный интервал времени (свой для каждой станции сети). Когда время истечет, устройство опять может начать передачу данных. Когда передача возобновится, устройства, вовлеченные в коллизию, не имеют приоритета по передаче данных над остальными устройствами сети.



Если 16 попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить этот кадр.

Рис. 5.23 Обнаружение коллизий в сети Ethernet

Домен коллизий

В полудуплексной технологии Ethernet независимо от стандарта физического уровня существует понятие домена коллизий .

Домен коллизий (collision domain) – это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети она возникла.

Сеть Ethernet, построенная на повторителях и концентраторах, образует один домен коллизий.

Напомним, что повторитель представлял собой устройство физического уровня модели OSI, используемое для соединения сегментов среды передачи данных с целью увеличения общей длины сети.

В сетях Ethernet (спецификации 10BASE2 и 10BASE5) на основе коаксиального кабеля применялись двухпортовые повторители, связывающие два физических сегмента. Работал повторитель следующим образом: он принимал сигналы из одного сегмента сети, усиливал их, восстанавливал синхронизацию и передавал в другой. Повторители не выполняли сложную фильтрацию и другую обработку трафика, т.к. не являлись интеллектуальными устройствами. Также общее количество повторителей и соединяемых ими сегментов было ограничено из-за временных задержек и других причин.

Позже появились многопортовые повторители, к которым рабочие станции подключались отдельным кабелем. Такие многопортовые повторители получили название «концентраторы». Причина появления многопортовых повторителей была следующей. Поскольку оригинальная технология Ethernet использовала в качестве среды передачи коаксиальный кабель и шинную топологию, то было сложно прокладывать кабельную систему здания. Позже международный стандарт на структурированную кабельную систему зданий определил использование топологии «звезда», в которой все устройства подключались к единой точке концентрации с помощью кабелей на основе витой пары. Под эти требования отлично подходила технология Token Ring и поэтому, чтобы выжить в конкурентной борьбе, технологии Ethernet пришлось адаптироваться к новым требованиям. Так появилась спецификация 10BASE-T Ethernet, которая использовала в качестве среды передачи кабели на основе витой пары и топологию «звезда».

Концентраторы работали на физическом уровне модели OSI. Они повторяли сигналы, поступившие с одного из портов на все остальные активные порты, предварительно восстанавливая их, и не выполняли никакой фильтрации трафика и другой обработки данных. Поэтому логическая топология сетей, построенных с использованием концентраторов, всегда оставалась шинной.

В один момент времени в сетях, построенных на повторителях и концентраторах, мог передавать данные только один узел. В случае одновременного поступления сигналов в общую среду передачи возникала коллизия , которая приводила к повреждению передаваемых кадров. Таким образом, все подключенные к таким сетям устройства находились в одном домене коллизий.

Рис. 5.24 Домен коллизий

С увеличением количества сегментов сети и компьютеров в них, возрастало количество коллизий, и пропускная способность сети падала. Помимо этого, полоса пропускания сегмента делилась между всеми подключенными к нему устройствами. Например, при подключении к сегменту с пропускной способностью 10 Мбит/с десяти рабочих станций, каждое устройство могло передавать в среднем со скоростью не более 1 Мбит/с. Встала задача сегментации сети , т.е. разделения пользователей на группы (сегменты) в соответствии с их физическим размещением, с целью уменьшения количества клиентов, соперничающих за полосу пропускания.

Коммутируемая сеть Ethernet

Задача сегментации сети и повышения ее производительности была решена с помощью устройства, называемого мостом (bridge). Мост был разработан инженером компании Digital Equipment Corporation (DEC) Радьей Перлман (Radia Perlman) в начале 1980-х годов и представлял собой устройство канального уровня модели OSI, предназначенное для объединения сегментов сети. Мост был изобретен немного позже маршрутизаторов, но так как он был дешевле и прозрачен для протоколов сетевого уровня (работал на канальном уровне), то стал широко применяться в локальных сетях. Мостовые соединения (bridging ) являются фундаментальной частью стандартов для локальных сетей IEEE.

Мост работал по алгоритму прозрачного моста (transparent bridge ), который определен стандартом IEEE 802.1D. Прежде чем переслать кадры из одного сегмента в другой, он анализировал их и передавал только в том случае, если такая передача действительно была необходима, то есть МАС-адрес рабочей станции назначения принадлежал другому сегменту. Таким образом, мост изолировал трафик одного сегмента от трафика другого и делил один большой домен коллизий на несколько небольших, что повышало общую производительность сети. Однако мост передавал широковещательные кадры (например, необходимые для работы протокола ARP) из одного сегмента в другой, поэтому все устройства сети находились в одном широковещательном домене (Broadcast domain ).

Подробнее алгоритм прозрачного моста будет рассмотрен в главе 6.

Коммутируемая сеть Ethernet (Ethernet switched network ) – сеть Ethernet, сегменты которой соединены мостами или коммутаторами

Рис. 5.25 Соединение двух сегментов сети в помощью моста

Так как мосты были обычно двухпортовыми устройствами, то их эффективность сохранялась лишь до тех пор, пока количество рабочих станций в сегменте оставалось относительно невелико. Как только оно увеличивалось, в сетях возникала перегрузка, которая приводила к потере пакетов данных.

Увеличение количества устройств, объединяемых в сети, повышение мощности процессоров рабочих станций, появление мультимедийных приложений и приложений клиент-сервер требовали большей полосы пропускания. В ответ на эти растущие требования фирмой Kalpana в 1990 г. на рынок был выпущен первый коммутатор (switch ), получивший название EtherSwitch.

Коммутатор представляет собой многопортовый мост и также функционирует на канальном уровне модели OSI. Основное отличие коммутатора от моста заключается в том, что он производительнее, может устанавливать одновременно несколько соединений между разными парами портов и поддерживает развитый функционал.

Рис. 5.26 Локальная сеть, построенная на коммутаторах

В 1993 году фирма Kalpana внедрила полнодуплексную технологию Ethernet (Full Duplex Ethernet Switch, FDES) в свои коммутаторы. Через какое-то время, при разработке технологии Fast Ethernet полнодуплексный режим работы стал частью стандарта IEEE 802.3.

Работа в полнодуплексном режиме обеспечивает возможность одновременного приема и передачи информации, т.к. к среде передачи подключены только два устройства. Прием и передача ведутся по двум разным физическим каналам «точка-точка». Например, по разным парам кабеля на основе витой пары или разным волокнам оптического кабеля.

Благодаря этому исключается возникновение коллизий в среде передачи (больше не требуется метод CSMA/CD, т.к. отсутствует конкуренция за доступ к среде передачи), увеличивается время, доступное для передачи данных, и удваивается полезная полоса пропускания канала. Каждый канал обеспечивает передачу на полной скорости. Например, для спецификации 10BASE-T каждый канал передает данные со скоростью 10 Мбит/с. Для спецификации 100BASE-TX – со скоростью 100 Мбит/с. На концах дуплексного соединения скорость соединения удваивается, т.к. данные могут одновременно передаваться и приниматься. Например, в спецификации 1000BASE-T, в которой данные передаются по каналам со скоростью 1000 Мбит/с, суммарная пропускная способность будет равна 2000 Мбит/с.

Рис. 5.27 Передача данных в дуплексном режиме

Также благодаря полнодуплексному режиму исчезло ограничение на общую длину сети и количество устройств в ней. Осталось только ограничение на длину кабелей, соединяющих соседние устройства.

Работа в полнодуплексном режиме возможна только при соединении сетевых устройств, порты которых его поддерживают. Если к порту устройства подключается сегмент, представляющий собой разделяемую среду, то порт будет работать в полудуплексном режиме и распознавать коллизии. Порты современных сетевых устройств поддерживают функцию автоопределения полудуплексного или дуплексного режима работы.

При работе порта в полнодуплексном режиме, интервал отправки между последовательными кадрами не должен быть меньше технологической паузы, равной 9,6 мкс. Для того чтобы исключить переполнение приемных буферов устройств при работе в полнодуплексном режиме, требуется использовать механизм управления потоком кадров.

Следует отметить, что спецификации 10, 40 и 100 Gigabit Ethernet поддерживают только полнодуплексный режим работы. Это связано с тем, что современные сети стали полностью коммутируемыми, и коммутаторы при взаимодействии с другими коммутаторами или высокоскоростными сетевыми адаптерами практически всегда используют режим полного дуплекса.

Дуплексный режим - наиболее универсальный и производительный способ ра­боты канала. Самым простым вариантом организации дуплексного режима явля­ется использование двух независимых линий связи (двух пар проводников или двух оптических волокон) в кабеле, каждая из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея ле­жит в основе реализации дуплексного режима работы во многих сетевых техно­логиях, например Fast Ethernet или ATM.

Иногда такое простое решение оказывается недоступным или неэффективным, например, когда прокладка второй линии связи ведет к большим затратам. Так, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только одна линия связи с телефонной станцией - двухпроводная. В та­ких случаях дуплексный режим работы организуется на основе разделения ли­нии связи на два логических канала с помощью техники FDM или TDM.

При использовании техники FDM для организации дуплексного канала диапазон частот делится на две части. Деление может быть симметричным и асимметрич­ным, в последнем случае скорости передачи информации в каждом направлении отличаются (популярный пример такого подхода - технология ADSL, исполь­зуемая для широкополосного доступа в Интернет). В случае когда техника FDM обеспечивает дуплексный режим работы, ее называют дуплексной связью с час­тотным разделением (Frequency Division Duplex, FDD).

При цифровом кодировании дуплексный режим на двухпроводной линии орга­низуется с помощью техники TDM. Часть тайм-слотов используется для переда­чи данных в одном направлении, а часть - в другом. Обычно тайм-слоты проти­воположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей. Дуплексный режим TDM получил название дуп­лексной связи с временным разделением (Time Division Duplex, TDD).

В волоконно-оптических кабелях с одним оптическим волокном для организа­ции дуплексного режима работы может применяться технология DWDM. Пере­дача данных в одном направлении осуществляется с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Собственно, решение частной задачи - создание двух независимых спектральных каналов в одном окне прозрачности оптического волокна - и привело к рождению технологии WDM, которая затем трансформировалась в DWDM.

Появление мощных процессоров DSP (Digital Signal Processor), которые могут выполнять сложные алгоритмы обработки сигналов в реальном времени, сдела­ло возможным еще один вариант дуплексной работы. Два передатчика работают одновременно навстречу друг другу, создавая в канале суммарный аддитивный сигнал. Так как каждый передатчик знает спектр собственного сигнала, то он вы­читает его из суммарного сигнала, получая в результате сигнал, посылаемый другим передатчиком.


Выводы

Для представления дискретной информации применяются сигналы двух типов: прямоуголь­ные импульсы и синусоидальные волны. В первом случае используют термин «кодирование», во втором - «модуляция».

При модуляции дискретной информации единицы и нули кодируются изменением амплитуды, частоты или фазы синусоидального сигнала.

Аналоговая информация может передаваться по линиям связи в цифровой форме. Это повы­шает качество передачи, так как при этом могут применяться эффективные методы обнаруже­ния и исправления ошибок, недоступные для систем аналоговой передачи. Для качественной передачи голоса в цифровой форме используется частота оцифровывания в 8 кГц, когда каж­дое значение амплитуды голоса представляется 8-битным числом. Это определяет скорость голосового канала в 64 Кбит/с.

При выборе способа кодирования нужно одновременно стремиться к достижению нескольких целей: минимизировать возможную ширину спектра результирующего сигнала, обеспечивать синхронизацию между передатчиком и приемником, обеспечивать устойчивость к шумам, об­наруживать и по возможности исправлять битовые ошибки, минимизировать мощность пере­датчика.

Спектр сигнала является одной из наиболее важных характеристик способа кодирования. Бо­лее узкий спектр сигналов позволяет добиваться более высокой скорости передачи данных при фиксированной полосе пропускания среды.

Код должен обладать свойством самосинхронизации, то есть сигналы кода должны содержать признаки, по которым приемник может определить, в какой момент времени нужно осуществ­лять распознавание очередного бита.

При дискретном кодировании двоичная информация представляется различными уровнями постоянного потенциала или полярностью импульса.

Наиболее простым потенциальным кодом является код без возвращения к нулю (NRZ), однако он не является самосинхронизирующимся.

Для улучшения свойств потенциального кода NRZ используются методы, основанные на вве­дении избыточных битов в исходные данные и на скремблировании исходных данных.

Коды Хэмминга и сверточные коды позволяют не только обнаруживать, но и исправлять мно­гократные ошибки. Эти коды являются наиболее часто используемыми средствами прямой коррекции ошибок (FEC).

Для повышения полезной скорости передачи данных в сетях применяется динамическая ком­прессия данных на основе различных алгоритмов. Коэффициент сжатия зависит от типа дан­ных и применяемого алгоритма и может колебаться в пределах от 1:2 до 1:8.

Для образования нескольких каналов в линии связи используются различные методы мультип­лексирования, включая частотное (FDM), временнбе (TDM) и волновое (WDM), а также мно­жественный доступ с кодовым разделением (CDMA). Техника коммутации пакетов сочетается только с методом TDM, а техника коммутации каналов позволяет использовать любой тип мультиплексирования.

Обычно к коммутатору подключаются концентраторы, т.е. на отдельный порт подключается целый сегмент. Однако к порту могут подключаться и отдельные компьютеры (микросегментация). В таком случае, коммутатор и сетевая карта компьютера могут работать в полнодуплексном режиме, т.е. одновременно передавать данные во встречных направлениях, увеличивая пропускную способность сети в два раза. Полнодуплексный режим возможен только если обе стороны - и сетевая карта и коммутатор - поддерживают этот режим. В полнодуплексном режиме не существует коллизий. Наложение двух кадров в кабеле считается нормальным явлением. Для выделения принимаемого сигнала, каждая из сторон вычитает из результирующего сигнала свой собственный сигнал.

При полудуплексном режиме работы, передача данных осуществляется только одной стороной, получающей доступ к разделяемой среде по алгоритму CSMA/CD. Полудуплексный режим фактически был подробно рассмотрен ранее.

При любом режиме работы коммутатора (полудуплексном или полнодуплексном) возникает проблема управления потоков кадров. Часто возникает ситуация, когда к одному из портов коммутатора подключен файл-сервер, к которому обращаются все остальные рабочие станции:

Отношение многие порты – к одному.

Если порт 3 работает на скорости 10 Мбит/с, а кадры с остальных четырех компьютеров поступают также со скоростью 10 Мбит/с, то не переданные кадры будут накапливаться в буфере порта 3 и, рано или поздно, этот буфер переполнится. Частичным решением данной проблемы было бы выделение для файл сервера порта 3, со скоростью 100 Мбит/с. Однако это не решает проблему, а лишь откладывает ее: со временем пользователи захотят более высоких скоростей работы сети, и коммутатор будет заменен на новый, у которого все порты будут работать на скорости 100 Мбит/c. Более продуманным решением, реализованном в большинстве коммутаторов, является управление потоком кадров, генерируемых компьютерами. В полнодуплексном режиме используются специальные служебные сигналы "Приостановить передачу" и "Возобновить передачу". Получив сигнал "Приостановить передачу" сетевая карта должна прекратить передачу кадров, вплоть до последующего сигнала "Возобновить передачу" (к сожалению в текущем стандарте 802.3x не предусмотрено частичное уменьшение интенсивности передачи кадров, возможен только полный запрет). В полудуплексном режиме используется "метод обратного давления" (backpressure) и "агрессивное поведение порта коммутатора". Оба метода позволяют реализовать достаточно тонкие механизмы управления потоком кадров, частично снижая их интенсивность, но не уменьшая ее до нуля.

Метод обратного давления (backpressure) состоит в создании искусственных коллизий в сегменте, который чересчур интенсивно посылает кадры в коммутатор. Для этого коммутатор обычно использует jam-последовательность (сигналы-помехи создающие и усиливающие коллизию), отправляемую на выход порта, к которому подключен сегмент (или компьютер), чтобы приостановить его активность.

Метод агрессивного поведения порта коммутатора основан на захвате среды либо после окончания передачи очередного пакета, либо после коллизии. В первом случае коммутатор оканчивает передачу очередного кадра и, вместо технологической паузы в 9,6 мкс, делает паузу в 9,1 мкс и начинает передачу нового кадра. Компьютер не сможет захватить среду, так как он выдержал стандартную паузу в 9,6 мкс и обнаружил после этого, что среда уже занята. Во втором случае кадры коммутатора и компьютера сталкиваются и фиксируется коллизия. Компьютер делает паузу после коллизии в 51,2 мкс, как это положено по стандарту, а коммутатор - 50 мкс. И в этом случае компьютеру не удается передать свой кадр. Коммутатор может пользоваться этим механизмом адаптивно, увеличивая степень своей агрессивности по мере необходимости.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: