Нечеткая логика в арктике. Проектирование систем типа Сугено. Примеры нечетких множеств

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.

Нечеткая логика (fuzzy logic) - это надмножество классической булевой логики. Она расширяет возможности классической логики, позволяя применять концепцию неопределенности в логических выводах. Употребле­ние термина "нечеткий" применительно к математической теории может ввес­ти в заблуждение. Более точно ее суть характеризовало бы название "непре­рывная логика". Аппарат нечеткой логики столь же строг и точен, как и класси­ческий, но вместе со значениями "ложь" и "истина" он позволяет оперировать значениями в промежутке между ними. Говоря образно, нечеткая логика по­зволяет ощущать все оттенки окружающего мира, а не только чистые цвета.

Нечеткая логика как новая область математики была представлена в 60-х го­дах профессором калифорнийского университета Лотфи Заде (Lotfi Zadeh). Пер­воначально она разрабатывалась как средство моделирования неопределенности естественного языка, однако впоследствии круг задач, в которых нечеткая логи­ка нашла применение, значительно расширился. В настоящее время она исполь­зуется для управления линейными и нелинейными системами реального време­ни, при решении задач анализа данных, распознавания, исследования операций.

Часто для иллюстрации связи нечеткой логики с естественными представ­лениями человека об окружающем мире приводят пример о пустыне. Опреде­лим понятие "пустыня" как "бесплодная территория, покрытая песком". Те­перь рассмотрим простейшее высказывание: "Сахара - это пустыня". Нельзя не согласиться с ним, принимая во внимание данное выше определение. Пред­положим, что с поверхности Сахары удалена одна песчинка. Осталась ли Саха­ра пустыней? Скорее всего, да. Продолжая удалять песчинки одну за другой, всякий раз оцениваем справедливость приведенного ранее высказывания. По прошествии определенного промежутка времени песка в Сахаре не останется и высказывание станет ложным. Но после какой именно песчинки его истин­ность меняется? В реальной жизни с удалением одной песчинки пустыня не исчезает. Пример показывает, что традиционная логика не всегда согласуется с представлениями человека. Для оценки степени истинности высказываний ес­тественный язык имеет специальные средства (некоторые наречия и обороты, например: "в некоторой степени", "очень" и др.). С возникновением нечеткой логики они появились и в математике.

Одно из базовых понятий традиционной логики - понятие подмножества. Подобно этому в основе нечеткой логики лежит теория нечетких подмножеств (нечетких множеств). Эта теория занимается рассмотрением множеств, опре­деляемых небинарными отношениями вхождения. Это означает, что принима­ется во внимание не просто то, входит элемент во множество или не входит, но и степень его вхождения, которая может изменяться от 0 до 1.


Пусть S - множество с конечным числом элементов, S ={s 1 , s 2 ,..., s n }, где n - число элементов (мощность) множества S . В классичес­кой теории множеств подмножество U множества S может быть определено как отображение элементов S на множество В = {0, 1}:

U: S => В.

Это отображение может быть представлено множеством упорядоченных пар вида:

{s i ,m ui }, iÎ,

где s i - i-й элемент множества S ; n - мощность множества S ; m Ui - элемент множества В = {0, 1}. Если m Ui = 1, то s i является элементом подмножества U . Элемент "0" множества В используется для обозначения того, что s i не входит в подмножество U . Проверка истинности предиката "s k ÎU " осуществляется пу­тем нахождения пары, в которой s k - первый элемент. Если для этой пары m Uk =l, то значением предиката будет "истина", в противном случае - "ложь".

Если U - подмножество S , то U может быть представлено n-мерным векто­ром (m U 1 , m U 2 ,…, m Un), где i-й элемент вектора равен "1", если соответствую­щий элемент множества S входит и в U , и "0" в противном случае. Таким обра­зом, U может быть однозначно представлено точкой в n-мерном бинарном ги­перкубе В n , В = {0, 1} (рисунок 1).

Рисунок 1 - Графическое представление традиционного множества

Нечеткое подмножество F может быть представлено как отображение эле­ментов множества S на интервал I = . Это отображение определяется мно­жеством упорядоченных пар: {s i ,m F ,(s i)}, iÎ, где s i - i-й элемент множества S ; n - мощность множества S ; m F (s i) Î -степень вхождения элемента s i в множество F . Значение m F (s i), равное 1, озна­чает полное вхождение, m F (s i) = 0 указывает на то, что элемент s i не принадле­жит множеству F . Часто отображение задается функцией m F (x) принадлежнос­ти х нечеткому множеству F . В силу этого термины "нечеткое подмножество" и "функция принадлежности" употребляются как синонимы. Степень истиннос­ти предиката "s k ÎF " определяется путем нахождения парного элементу s k зна­чения m F (s k), определяющего степень вхождения s k в F .

Обобщая геометрическую интерпретацию традиционного подмножества на не­четкий случай, получаем представление F точкой в гиперкубе I n , I = . В отличие от традиционных подмножеств точки, изображающие нечеткие подмножества, мо­гут находиться не только на вершинах гиперкуба, но и внутри него (рисунок 2).

Рисунок 2 - Графическое представление нечеткого множества

Рассмотрим пример определения нечеткого подмножества. Имеется мно­жество всех людей S . Определим нечеткое подмножество Т всех высоких лю­дей этого множества. Введем для каждого человека степень его принадлежно­сти подмножеству Т . Для этого зададим функцию принадлежности m Т (h), оп­ределяющую, в какой степени можно считать высоким человека ростом h сан­тиметров.

(1)

где h - рост конкретного человека в сантиметрах.

График этой функции пред­ставлен на рисунке 3.

Рисунок 3 - График функции принадлежности rn T (h)

Пусть рост Михаила - 163 см, тогда истинность высказывания "Михаил высок" будет равна 0.21. Использованная в данном случае функция принад­лежности тривиальна. При решении большинства реальных задач подобные функции имеют более сложный вид, кроме того, число их аргументов может быть большим.

Методы построения функций принадлежности для нечетких подмножеств довольно разнообразны. В большинстве случаев они отражают субъективные представления экспертов о предметной области. Так, например, кому-то чело­век ростом 180 см может показаться высоким, а кому-то - нет. Однако часто такая субъективность помогает снизить степень неопределенности при реше­нии слабо формализованных задач. Как правило, для задания функций принад­лежности используются типовые зависимости, параметры которых определя­ются путем обработки мнений экспертов. Представление произвольных функ­ций при реализации автоматизированных систем часто затруднено, поэтому в реальных разработках такие зависимости аппроксимируются кусочно-линей­ными функциями.

Необходимо осознавать разницу между нечеткой логикой и теорией веро­ятностей. Заключается она в различии понятий вероятности и степени принад­лежности. Вероятность определяет, насколько возможен один из нескольких взаимоисключающих исходов или одно из множества значений. Например, может определяться вероятность того, что утверждение истинно. Утверждение может быть либо истинным, либо ложным. Степень принадлежности показы­вает, насколько то или иное значение принадлежит определенному классу (под­множеству). Например, при определении истинности утверждения ее возмож­ные значения не ограничены "ложью" и "истиной", а могут попадать и в проме­жуток между ними. Еще одно различие выражено в математических свойствах этих понятий. В отличие от вероятности для степени принадлежности не тре­буется выполнение аксиомы аддитивности.

Судьба нечеткой логики, как нового научного направления, сходна с ее содержимым - необычна, сложна и парадоксальна. В основе нечеткой логики лежит теория нечетких множеств, изложенная в серии работ Заде в 1965-1973 годах.

Параллельно с разработкой теоретических основ новой науки, Заде прорабатывал различные возможности ее практического применения. И в 1973 году эти усилия увенчались успехом - ему удалось показать, что нечеткая логика может быть положена в основу нового поколения интеллектуальных систем управления.

Однако основные результаты использования нечеткой логики были получены в Японии. Японцы довели практическое воплощение нечеткой логики до совершенства, но применяли её в основном в изделиях массового рынка – бытовая техника и т.п.

Особенно, конечно же, хочется отметить программное обеспечение, основанное на принципах нечеткой логики и нечетких множеств, которое активно применяется в финансовых и экономических сферах деятельности человека.

Примеры программ на основе нечеткой логики

1. CubiCalc представляет собой своего рода экспертную систему, в которой пользователь задает набор правил типа "если - то", а система пытается на основе этих правил адекватно реагировать на изменение ситуации. Вводимые правила содержат нечеткие величины, т.е. имеют вид "если Х принадлежит А, то Y принадлежит В", где А и В - нечеткие множества. Например: "Если этому жулику удастся сохранить популярность в регионах, то его шансы на выборах будут весьма высоки". Здесь использованы два нечетких термина - "популярность" и "вероятность избрания", которые практически невозможно задать точным значением, но сравнительно легко отобразить функцией распределения. И аппарат нечеткой логики, заложенный в CubiCalc, дает вам изумительную возможность впоследствии оперировать этими понятиями как точными и строить на их основе целые логические системы, не заботясь о нечеткой природе исходных определений.

CubiCalc и сегодня остается одним из самых продаваемых пакетов на основе нечеткой логики.

2. FuziCalc фирмы FuziWare - это первая в мире электронная таблица, позволяющая работать как с точными числовыми значениями, так и с приблизительными, "нечеткими" величинами.

Если в процессе вычислений вы использовали нечеткие величины, результат также будет иметь вид функции распределения. Однако в любом случае результат будет получен! И он будет точнее и достовернее, чем при использовании любых других доступных вам методов.

3. Триумф-Аналитика - это программа для оперативного и стратегического управления предприятием оптовой и розничной торговли, супермаркетом, сбытовой сетью. Сегодня Триумф-Аналитика - единственный аналитический продукт на российском рынке, предоставляющий возможности анализа, прогноза и оптимизации торговой деятельности. Назначение пакета - дать руководителю торгового предприятия полную и точную картину его бизнеса, быстро выявить скрытые резервы и, в конечном итоге, увеличить доходность и снизить издержки своей фирмы.

Триумф-Аналитика - продукт Корпорации "Парус", разработанный по заказу Корпорации специалистами Национального Альянса Управляющих, Консультантов и Аналитиков. В основу программы легли мощные аналитические алгоритмы, используемые при создании Ситуационных центров крупных корпораций, региональных руководителей.

В пакете Триумф-Аналитика использованы самые современные технологии анализа, прогнозирования и ситуационного моделирования - нейронные сети, нечеткая логика, системная динамика. Использованные в программе технологии не могут быть реализованы неспециалистом, а без их применения качество анализа и прогнозов будет неудовлетворительным. Продукт получился: легким, быстрым, гибким, мощным.

Он позволяет быстро диагностировать все основные виды ошибок в управлении торговым предприятием.

Использование самых современных средств разработки программного продукта и базы данных позволило добиться уникальных характеристик по мощности и быстродействию. Так, экспресс-анализ деятельности крупной оптовой компании за квартал средствами комплекса Триумф-Аналитика занимает менее 30 минут.

4. AnyLogic - первый и единственный инструмент имитационного моделирования, объединивший методы системной динамики, "процессного" дискретно-событийного и агентного моделирования в одном языке и одной среде разработки моделей.

Гибкость AnyLogic позволяет отражать динамику сложных и разнородных экономических и социальных систем на любом желаемом уровне абстракции. AnyLogic включает набор примитивов и объектов библиотек для эффективного моделирования производства и логистики, бизнес-процессов и персонала, финансов, потребительского рынка, а также окружающей инфраструктуры в их естественном взаимодействии. Объектно-ориентированный подход, предлагаемый AnyLogic, облегчает итеративное поэтапное построение больших моделей.

В редакторе AnyLogic Вы можете разработать анимацию и интерактивный графический интерфейс модели. Редактор поддерживает большой набор фигур, элементов управления (кнопок, ползунков, полей ввода и т.д.), импорт растровой графики и векторной графики в формате DXF. Анимация может быть иерархической и поддерживать несколько перспектив. Например, Вы можете определить глобальный взгляд на процесс производства с несколькими агрегированными индикаторами, а также детальные анимации конкретных операций - и переключаться между ними.

В AnyLogic включены средства анализа данных и большой набор элементов бизнес-графики, спроектированных для эффективной обработки и презентации результатов моделирования: статистики, наборы данных, графики, диаграммы, гистограммы.

AnyLogic поддерживает множество разнообразных типов экспериментов с моделями: простой прогон, сравнение прогонов, варьирование параметров, анализ чувствительности, оптимизация, калибровка, а также произвольный эксперимент по пользовательскому сценарию.

5. ITHINK предоставит Вам принципиально новые возможности, которые выходят далеко за рамки разработки стандартных форм документов. Он способен придать Вашим плановым и проектным разработкам новое качество. Программный пакет ITHINK - уникальное средство имитационного моделирования производственных и финансовых проектов и процессов.

В начале 90-х пакет ITHINK стал признанным стандартом структурного моделирования на Западе. Он широко используется в интеллектуальных центрах корпораций, банках, правительственных структурах и проектно-исследовательских учреждениях. В глазах зарубежного инвестора инвестиционный проект, разработанный с использованием системы ITHINK, приобретает дополнительные выигрышные характеристики. Работа с этим элитарным инструментом свидетельствует об определенной “приобщенности” разработчиков к новейшим наиболее тонким технологиям анализа проектов.

С помощью ITHINK решались разнообразные задачи, начиная от анализа причин разрушения дамбы в Юго-Восточной Азии в 1989г. и кончая обслуживанием и распределением пациентов, поступающих в приемный покой клиники. Однако в наибольшей степени ему органичны так называемые “потоковые” задачи. Они охватывают весьма широкую группу ситуаций, встречающихся в повседневной жизни предпринимателей, менеджеров и экспертов в области бизнес-планирования. Дело в том, что большинство развивающихся во времени явлений можно представить как потоковые процессы.

Пакет ориентирован на широкую группу пользователей - от руководителей, решающих сложные управленческие проблемы, до специалистов в области ценных бумаг, консультационных компаний и индивидуальных предпринимателей и исследователей.

6. PolyAnalyst предназначается для получения аналитической информации путем автоматической обработки исходных данных и может использоваться аналитиками, занятыми в различных областях деятельности.

Пакет PolyAnalyst - система, в основу которой положена технология искусственного интеллекта Data Mining. При обработке исходных данных она позволяет обнаруживать многофакторные зависимости, которым придает затем вид функциональных выражений (класс функций в них практически произволен), можно также строить структурные и классификационные правила. При этом анализу подвергаются исходные данные различных типов: действительные числа, логические и категориальные величины. Выводимые правила принимают вид либо функций, либо циклов, либо условных конструкций.

Очень важно, что при работе с пакетом PolyAnalyst аналитику не нужно допускать какие-либо закономерности в данных, за него это сделает программа анализа. Разумеется, пользователь не устраняется полностью из процесса анализа данных - от него, конечно же, требуется указать зависимую и независимую переменные, роль которых играют поля записей в исследуемой базе данных.

Система PolyAnalyst состоит из двух частей. Первая из них - модуль универсальной предварительной обработки данных ARNAVAC. Методы, реализованные в этом модуле, традиционны для автоматизации аналитической обработки данных. ARNAVAC обнаруживает в массивах данных функционально связные кластеры, фильтрует шум и случайные выбросы. Затем автоматический аналитик строит многомерную линейную регрессионную зависимость, как наиболее простое и доступное описание исходных данных, используя при этом универсальный быстродействующий алгоритм, автоматически выбирающий наиболее влияющие параметры с корректным определением их значимости.

Процесс построения гипотез идет автоматически, независимо от их сложности.

7. ExPro Master реализует интуитивно очевидную логику решения человеком аналитических задач оценки, прогнозирования и классификации, которая хорошо согласовывается с общепринятыми принципами исследования сложных систем и, поэтому, может рассматриваться как конструктив решения широкого круга системных задач.

Структура решения отдельной экспертно-аналитической задачи включает в себя следующие основные информационные компоненты:

Концептуальную модель предметной области экспертно-аналитической задачи или систему предпочтений, которая является формализованным представлением эксперта о задаче, ее элементах и связях; - оценки объектов из предметной области или просто объекты реального мира, которые анализируются при решении задачи;

Внешние факторы динамики, представленные в виде статистических данных (которые описывают состояние концептуальной модели и объектов в прошлом) и факторы будущего (которые описывают возможные изменения концептуальной модели и объектов в будущем);

Корректуры или внутренние факторы динамики, которые порождаются самой концептуальной моделью по установленным правилам.

Система предпочтений является важнейшей составляющей экспертно-аналитической задачи и предназначена для формализованного представления осознанных знаний эксперта о структуре, связях и характеристиках элементов предметной области решаемой задачи. Система предпочтений представляется в виде множества вершин и направленных связей между ними. Вершины системы предпочтений описывают понятия, которые задаются экспертом и несут конкретную смысловую нагрузку, зависящую от задачи. Эти понятия, в свою очередь, определяются через другие понятия при помощи связей. Связи можно рассматривать как отношения, которые задают влияние одних понятий на другие.

Для формализации связей понятий системы предпочтений в программном комплексе используется конструктив нечеткой меры по Сугено, которая для каждого контекста каждого понятия задается на множестве его частных понятий. Другими словами, к каждой вершине приписывается несколько нечетких мер по числу ее контекстов. Действительно, любое понятие может иметь различный смысл в различных контекстах.

Нечеткие меры также владеют одним чудесным свойством. Они поддерживают понятие модальности экспертных оценок и могут формализовать не только предпочтения в вершинах системы предпочтений, но и указывать семантический оттенок этих предпочтений (возможно, очень возможно, вероятно, необходимо и так далее). Влияние семантического оттенка настолько велико, что в некоторых случаях может приводить к обратным результатам, что в полной мере подтверждается существующей практикой.

Использование нечетких мер для представления экспертных знаний является отличительной особенностью и достоинством программного комплекса.

Внешние факторы динамики являются одной из основных компонент программного комплекса, которая определяет изменчивость во времени как системы предпочтений, так и оценок объектов. Внешние факторы динамики могут иметь различную физическую природу. Как один из вариантов может быть рассмотрено действие некоторых внешних событий по отношению к исследуемой системе.

Таким образом, внешние факторы динамики являются той составляющей программного комплекса, которая обеспечивает динамику решений в экспертно-аналитических задачах в зависимости от изменения внешних условий функционирования системы.

Корректуры или внутренние факторы динамики также являются одной из основных компонент программного комплекса, которая определяет изменчивость во времени как системы предпочтений, так и оценок объектов. В отличие от внешних, внутренние факторы порождаются самой системой предпочтений на основе оценки состояния одного из объектов в заданные моменты времени. Действие корректур направлено также на контекст вершины или на характеристику объекта. На них также могут влиять несколько корректур, каждая со своей важностью. Корректуры совместно с внешними факторами, образуют единое поле влияний.

8. МаркетЭффект предназначено для выработки эффективных маркетинговых решений коммерческими и государственными предприятиями среднего и крупного масштаба в сфере производства, торговли, оказания услуг. Оно направлено на решение задач, связанных с продвижением (продажей) товаров на рынок, с закупками сырья, материалов, энергоресурсов и т.п.

Приложение функционирует в составе системы FinExpert разработки компании IDM. Учетные данные по объемам продаж (покупок), накапливаемые системой FinExpert, служат в МаркетЭффект исходной точкой для анализа рынка (спроса, предложения, цен).

Приложение ориентировано на руководящий состав предприятий, персонал их служб управления, маркетинга и сбыта, на всех, кто принимает участие в выработке стратегии действий предприятия на рынке.

МаркетЭффект позволяет решать следующие задачи:

Анализ рынка.

Анализ и прогноз продаж (покупок).

Прогнозирование эффективности и рисков.

Планирование и анализ маркетинга.

Поиск эффективных схем и стратегий.

Решение этого спектра задач основано на использовании учетной информации системы FinExpert, данных, импортируемых из других компьютерных программ, а также информации, вводимой непосредственно пользователем приложения МаркетЭффект ; построено на базе нечеткой технологии (fuzzy technology). Это позволяет решать задачи, возложенные на приложение, и обрабатывать весь возможный спектр исходной информации на общей идеологической и инструментальной основе и не ограничиваться при этом использованием только точных, числовых данных о состоянии рынка. Приложение позволяет дополнительно учитывать также очень ценные знания специалистов о рынке и предположения о его развитии, несмотря на то, что эта информация имеет описательный, часто нечисловой, нечеткий характер.

Динамика развития рынка определяется множеством факторов, зависящих от сектора рынка, макроэкономических процессов, активности конкурентов, предпочтений покупателей и т.д. Эти же факторы, в свою очередь, оказывают влияние на работу предприятия, на величины его постоянных и переменных издержек, могут нарушать равновесие в секторе рынка.

Для оптимизации принимаемых решений на предприятии проектируются альтернативные схемы и стратегии, влияющие на изменение эффективности и рисков конкретно анализируемого проекта или их совокупности, и проводятся соответствующие расчеты с учетом прогнозного изменения рыночной ситуации. На основании полученных решений в соответствии с определенной системой предпочтений, отвечающей потребностям предприятия, осуществляется оценка альтернативных схем и стратегий и выбор наиболее эффективного решения.

Использование fuzzy-технологии позволяет получать диапазоны прогнозных значений величин в соответствии с определенной долей уверенности.

Поэтому пользователь приложения всегда имеет возможность оценить степень риска как анализируемого проекта в целом, так и его отдельных показателей.

9. Fuzzy Estimation of Critical Messages (FECM) предназначен для оценки интегрального (совокупного) влияния потока сообщений, поступающих в большом количестве накануне и в процессе валютных торгов, на курсы валют. Как результат - прогнозы этих курсов. Совместно с имеющимися программными продуктами технического анализа, использование FECM позволяет соединить прошлое и будущее при прогнозировании курсов валют и, тем самым, повысить возможность принятия правильных решений участниками валютных торгов и других сфер бизнеса.

Использование программы - прогнозирование и системный анализ фундаментальных факторов при проведении валютных торгов на рынке FOREX.

6 сентября 2017 в возрасте 96 лет умер Лотфи Заде, создатель нечеткой логики.
6 сентября 2017 в компании, которая основана на технологиях нечеткой логики и нейронных сетей, и в которой я пока работаю, начались такие преобразования, которые только в рамках этой самой нечеткой логики и можно как-нибудь описать. И с завтрашнего дня будет расторгнут мой контракт, хотя если с 15 сентября я и становлюсь безработным, то это можно будет оценить только в терминах нечетной логики - на 0,28, на 0,78 или 1,58 - жизнь покажет.
А два года назад, к 50-летию нечеткой логики, Александр Малютин написал заметку на научпоп-сайт «Перельман перезвонит» (nowwow.info). Сайт этот ныне уже умер, и поэтому следует спасти статью. Ведь про нечетную логику написал журналист, который в свое время возглавлял «Известия». Кстати, блогеры-домохозяйки могут не выходить - нечетная логика объясняется на примере стиральной машины. Лучше поучитесь у профи, как надо писать.

К 50-ЛЕТИЮ ОДНОГО ИЗ САМЫХ УДАЧНЫХ МАТЕМАТИЧЕСКИХ ТЕРМИНОВ

Нечеткой логике полвека - в июне 1965 года в журнале Information and Control вышла основополагающая статья «Нечеткие множества» (Fuzzy Sets), которую написал американский математик азербайджанского происхождения Лотфи Заде. Долгих ему лет. Жаль, до юбилея не дожил британский математик танзанийского происхождения Ибрагим Мамдани, который в 1975 году представил первую реальную систему управления с нечеткой логикой - контроллер, следящий за работой парового двигателя. После чего технология стала активно развиваться, найдя применение во многих областях.

Заде 50 лет назад предложил математическое описание живой человеческой логики. В обычной математической логике есть только «истина» (обозначаемая еще числом 1) или «ложь» (0). В нечеткой логике степень истинности высказывания может быть любой - точнее, любым числом от 0 до 1. Красива ли вон та девушка? Ни да, ни нет, а «0,78; что красива».

Непривычно звучит. Как это вообще понять? Для простоты можно считать, что кто-то провел опрос, в котором 78% респондентов назвали девушку красивой, а остальные нет. А может ли быть от таких конструкций практическая польза? Вполне. Допустим, нужно принять решение, отправлять ли девушку на конкурс мисс чего-нибудь (серьезные расходы!), а для этого нужно оценить ее шансы на призовое место. Тогда-то и пригодятся оценки не только красоты, но и других важных для победы и тоже нечетких параметров: остроумия, эрудированности, доброты и т. п. Нужно только понять, откуда брать степени истинности и как оперировать с нечеткими данными. Заде понял. Необходимый для практики математический аппарат он разработал к 1973 году. Мамдани на его основе и сделал свой контроллер.

Заслуга Лотфи Заде не только в том, что он разработал новую теорию. Он ее крайне удачно назвал, выбрав общеупотребительное слово. Если бы вместо «нечеткой» взяли заумный термин, например, «континуальнозначная логика» (что, кстати, так и есть), у него не было бы шансов на широкую известность. Неспециалисты просто не употребляли бы это словосочетание, поскольку кто ж его знает, что оно означает.

Другое дело, когда у научного понятия есть бытовой омоним. Тогда обывателю кажется, что он понимает, о чем речь, особенно если посмотрел про это кино. Таких «понятных» терминов в математике и физике тоже немало. Черная дыра. Магический квадрат. Горизонт событий. Очарованный кварк. Теорема о двух милиционерах. Ну и конечно - матрица! Кто же не знает, что матрица - это когда Киану Ривз бегает по потолку. И не надо нам рассказывать про какие-то таблицы с числами.

Для развития науки вульгарные представления широких масс полезны. Обычных слов следовало бы даже добавить. Фильмов про горизонт событий снять побольше. Натяжек и ляпов не бояться. Главное, чтобы зритель ощущал прикосновение к переднему краю науки и величие человеческого, а, значит, и своего личного разума. Особенно если от такого зрителя зависит принятие решений о финансировании исследований.

Выдающийся советский ядерщик Георгий Флеров говорил: «Объяснять важному начальству научную проблему нужно не так, как правильно, а так, как ему будет понятно. Это ложь во благо». Правильно. Руководство не нужно смущать лекциями про «спонтанные нарушения электрослабой симметрии». Расскажите лучше про «частицу Бога» и «Великую тайну гравитации». Вранья, кстати, в этом особого нет - а инвестиции есть. Не беда, что околонаучные сказки порождают завышенные ожидания и, как следствие, избыточное вливание денег, заканчивающееся разорением. Общая польза в итоге перевешивает. Пузырь доткомов в 2001 году лопнул, но интернет-технологии получили мощнейший импульс.

Нечеткой логике в этом смысле повезло не только с собственным названием, но и с причислением к списку наук и технологий, объединенных названием «искусственный интеллект» - наряду с нейронными сетями, логическим программированием, экспертными системами и др. Это уже большая маркетинговая игра, где участники списка получают эффект от пакетной рекламы в рамках раскрутки единого научного мегабренда. Шутка ли: искусственный интеллект! Вот уж чарующая перспектива понятней некуда. Каждому в дом по железному слуге. Пусть умные кибернетические организмы делают всю работу, а мы будем только вводить пин-коды и пить пина-колады. Ради такого света в конце тоннеля не жаль никаких денег.

Флеровская «ложь во благо» на примере искусственного интеллекта сработала на 100%. Японское правительство с 1982-го по 1992 год потратило полмиллиарда долларов на разработку «компьютера пятого поколения» с элементами «мышления». Как задумывалось, не получилось. В частности, скис язык логического программирования Prolog, которому в 1980-е прочили первые роли. Ну и ладно. Все ж как с доткомами: роботов в некоторых странах в итоге все равно научились делать отличных.

Сегодня кибернетические системы видят, слышат и читают почти как люди, обыгрывают шахматных гроссмейстеров и зачастую эффективнее дипломированных специалистов управляют производственными процессами. Спасибо за столь мощное развитие темы помимо непосредственных разработчиков нужно сказать авторам удачной терминологии, а также Айзеку Азимову, Артуру Кларку, братьям Вачовски и всему коллективу киностудии имени Горького, подарившей советским детям образы роботов-вершителей.

Никаких разумных киборгов при этом на самом деле не создано. Пока даже нельзя уверенно сказать, что, пытаясь их сотворить, мы движемся в правильном направлении. Чтобы убедиться в этом, давайте посмотрим, как в самых общих чертах работает «умная» стиральная машина, которая благодаря блоку управления с нечеткой логикой умеет определять, когда одежда стала уже «достаточно чистой», чтобы слить воду и начать отжим. Пример любопытен еще и тем, что показывает, как практический результат достигается на стыке нескольких дисциплин: физики, химии и математики.
Задача управляющего устройства машины состоит в следующем. Принять на вход данные о степени загрязнения одежды и типе загрязнения. Проанализировать их и сформировать выходной параметр: время стирки.

За оба входных показателя отвечает оптический датчик, который определяет, насколько прозрачен моющий раствор. По степени его прозрачности можно судить о степени загрязнения: чем более грязная одежда загружена в бак, тем менее прозрачен раствор. А тип загрязнения определяется по скорости изменения прозрачности раствора. Жирные вещества плохо растворяются, поэтому чем медленнее изменяется концентрация раствора, тем с более жирным загрязнением приходится иметь дело. Все, датчик работу закончил.

Отметим, что он выдал два точных параметра, два конкретных числа: степень прозрачности раствора и скорость изменения прозрачности раствора. А вот дальше начинает работать алгоритм Ибрагима Мамдани.

На первом этапе, который называется фаззификацией (введением нечеткости), оба числа превращаются в нечеткие понятия. Допустим, мы ввели три градации загрязнения: «слабое», «среднее» и «сильное». Тогда вместо уровня прозрачности раствора появляются три нечетких суждения о загрязнении, скажем: «0,3; слабое», «0,6; среднее», «0,1; сильное».

Что значат эти цифры? Как и в случае с девушкой, чью нечеткую красоту мы обсуждали в начале текста, их можно считать результатами некоего референдума, на котором 30% граждан проголосовали, что загрязнение при данном уровне прозрачности раствора слабое, 60% - что среднее, 10% - сильное. А что, кто-то этот референдум проводил? Можно считать, что да.

В ходе разработки изделия собрались эксперты по машинной стирке и прикинули, как разложатся голоса «избирателей» в зависимости от уровня прозрачности раствора. А не шарлатанство ли это, спросите вы, математика же точная наука, какие еще эксперты по стирке? Да вот такие. Если вы всерьез хотите решить задачу, то найдете стоящих специалистов, чьи прикидки и оценки будут осмысленными и полезными.

Итак, у нас есть один нечеткий параметр «степень загрязнения», теперь нужен второй: «тип загрязнения». Проводим еще один «референдум». Допустим, он показал, что при такой скорости изменения концентрации раствора, которую нам выдал датчик, загрязнение следует считать, например, «0,2; малой жирности», «0,5; средней жирности», «0,3; большой жирности».

Наступает второй этап алгоритма: применение нечетких правил. Теперь вместе с экспертами мы обсуждаем, каким должно быть время стирки в зависимости от степени и типа загрязнения. Перебирая все возможные варианты, получаем - трижды три - девять правил следующего вида: «если загрязнение сильное и средней жирности, то время стирки - большое». Далее по законам логики (мы их для простоты пропустим) подсчитываем степень истинности для времени стирки. Пусть в результате нечеткое время стирки получилось таким: «0,1; малое», «0.7; среднее», «0,2; большое». Можно приступать к заключительному этапу.

Он называется дефаззификацией, то есть ликвидацией нечеткости - нам ведь необходимо дать машине точную вводную, сколько времени вращать барабан. Подходы есть разные, один из распространенных заключается в вычислении «центра тяжести». Допустим, эксперты сказали, что малое время стирки это 20 минут, среднее - 40 минут, большое - 60 минут. Тогда с учетом «веса» каждого значения получаем итоговый параметр: 20*0,1 + 40*0,7 + 60*0,2 = 42. Одежда будет «достаточно чистой» после 42 минут стирки. Ура.

Ибрагим Мамдани придумал красивую штуку, не правда ли? На первый взгляд, чуть ли не шаманство. У вас есть точные исходные цифры и нужно из них получить другие точные цифры. Но вы не корпите над выводом формул, а погружаетесь в мир нечетких понятий, как-то там ими оперируете, а потом возвращаетесь обратно в «точный» мир - с готовым ответом на руках.

Производители стиральных машин даже принялись рекламировать применение нечеткой логики и прямо на изделиях или в инструкциях писать Fuzzy Logic, Fuzzy Control, Logic Control. Бизнесмены люди прагматичные и не размещают каких попало слов на своем товаре. Так что если вы увидели на машине надпись Fuzzy Logic, это значит: она «продает» товар. Технология помимо своих сугубо потребительских свойств гипнотизирует покупателя еще и названием, мотивируя на расставание с лишней сотней долларов. Уж не знаю, получает ли с этого роялти Лотфи Заде, но это было бы справедливо. Ни один другой раздел математики на бытовой технике не упоминается.

Но вы же заметили, наверное, что по ходу описания работы стиральной машины с нечеткой логикой не встретилось ни одного места, где можно было бы заподозрить, что у машины появился собственный разум. Только инструкции вроде служебных, только решение запрограммированных задач. Машина будет вовремя сливать воду. Но она не будет понимать, что она делает и зачем. В ее микропроцессорную голову никогда не придет мысль перестать стирать и ради прикола устроить в ванной потоп. Если только эта мысль не посетит программиста, который для прикола встроит в машину еще какую-нибудь Funny Logic. Сама же машина до такого додуматься не может.

Вот вам и весь искусственный интеллект. Роботы учатся только имитировать человеческую деятельность, пусть даже такую, на которую мы сейчас тратим интеллектуальные усилия, например, на перевод с другого языка. Пусть даже они переводят лучше. Вы же не обижаетесь на подъемный кран, что он сильнее вас. И появление кранов не привело к исчезновению штангистов. Только теперь поднятие тяжестей это спорт и удовольствие, а таскать на себе мешки с цементом на стройке не надо. С переводами то же самое. Программа не умнее нас, просто мы смогли формализовать и эффективно сгрузить на нее некоторые наши умения, и теперь можем не тратить свои интеллектуальные усилия на технические переводы, а заняться, скажем, Шекспиром.
Считать, что машины приобретают интеллект благодаря передовым достижениям кибернетики - все равно что верить в карго-культ. Помните, как жители затерянного острова, увидев в небе самолет, сделали такую же фигуру из соломы и думали, что полетит? Они тогда ничего не знали о металлах и керосине, не говоря уже о подъемной силе - и поди объясни.

Так и у нас с «искусственным интеллектом». Роботы скоро смогут водить автомобили и наверняка когда-нибудь обыграют команду людей в футбол - тем более, что этот момент приближают не только японские инженеры, но и наша сборная. Но это будет не более чем имитация разумных действий на поле. Как те аборигены, мы не знаем пока чего-то критически важного, что позволило бы создать разумное существо.

У нас, говоря словами Станислава Лема, обязательно получится Усилитель Умения Водить Авто - как уже получился Усилитель Умения Остановить Стирку. А вот Усилитель Интеллекта, появление которого предсказывал великий фантаст, на основе нынешних технологий «искусственного интеллекта», в том числе нечеткой логики, несмотря на все ее изящество и полезность, не получится. Нечеткая логика это всего лишь способ сократить объем вычислений при решении некоторого класса задач. И на том спасибо.

Можно не бояться роботов-вершителей. Муки творчества, благородные порывы, научный поиск, мечтательность, достоинство, самопожертвование, готовность к подвигу, авантюризм, честь, дружба, гордость, предубеждение, зависть, алчность, жлобство, чванство, подлость, пошлость, доносительство, разводки, сливы, подставы - во всех этих номинациях мы с вами еще долго будем выступать куда круче наших меньших полупроводниковых собратьев.

Задумывались ли вы когда-нибудь о том, как мыслит человек? Какими словами мы обычно пользуемся, чтобы объяснить меру чего-либо? Выражения «Немного посолить», «слегка остудить», «пройти чуть дальше», «налить много», «принести мало» — совершенно обычны для человека. Именно такими категориями мы воспринимаем окружающую действительность. В нашей обычной жизни мы крайне редко пользуемся чёткими правилами и алгоритмами. У человека нет точных датчиков и измерительных приборов. Вместо этого у нас есть органы чувств и наше врождённое чувство меры. Но это нельзя назвать нашим недостатком, наоборот – в этом заключается наше главное преимущество. Это позволяет нам быть адаптивными. Дело в том, что окружающий мир настолько сложен, что ни одна супер-мега-крутая вычислительная машина не сможет учесть все его зависимости. Поэтому для точных компьютерных вычислений мы обычно упрощаем задачу, идеализируем её, отбрасываем несущественные факторы, принимаем какие-то допущения и т.д. Мы можем это сделать, именно потому, что наше чувство меры позволяет нам оценить «навскидку», какие факторы вносят значительный вклад, а какие несущественны. Однако существует довольно много задач, которые достаточно сложно формализовать, составить для них «чёткий» алгоритм.

Например, сложно представить, что какая-то автоматика будет печь пирожки вкуснее, чем бабушка Зина. Слишком много «нечётких» факторов в этом деле: и дрожжи каждый раз разные, и мука; от влажности и температуры в помещении тоже многое зависит. Только опытная бабушка сможет учесть все эти факторы.

Вот почему во многих случаях полезно наделить управляющее устройство «нечётким мышлением». В системе, где все влияющие на неё факторы учесть сложно или невозможно, — это позволяет заменить человека-эксперта, имеющего большой практический опыт, автоматикой. Сейчас на простом примере разберём, как это делается в технических системах.

На заводе «N» работает крановщик Василий. Трудится он на этом предприятии 40 лет, с того самого момента, как окончил ПТУ. Его задача состоит в том, чтобы поднимать краном паллеты с готовой продукцией и ставить на место складирования. Делать это умеет только Василий. За многие годы практики он чётко научился определять, с какой скоростью нужно двигаться на кране в зависимости от того, какой груз у него на крюке, за сколько метров до цели нужно начать останавливаться, как регулировать угол наклона стрелы крана, чтобы уменьшить раскачивание паллеты на крюке и т.д. Весь этот опыт позволяет ему каждый раз опускать груз точно в цель и делать это на оптимальной скорости.

Однако, Василию скоро на пенсию, а заменить его некому. К тому же, руководство завода взяло курс на автоматизацию производственного процесса. Для того, чтобы заменить крановщика интеллектуальным устройством, необходимо наделить его «нечёткой логикой» и экспертными знаниями Василия. Поехали…

Входы и выходы системы управления

Для начала определим входные и выходные параметры нашей будущей системы управления. Входами будут те критерии, с помощью которых Василий обычно оценивает текущее состояние системы:

  • Расстояние до цели
  • Амплитуда раскачивания груза на крюке крана

Выходы – управляющие воздействия, которые может вносить в систему крановщик, чтобы менять её текущее состояние:

  • Педаль газа — регулирует скорость, влияет на амплитуду раскачивания груза
  • Педаль тормоза — влияет на плавность остановки (амплитуду раскачивания груза)
  • Ручка управления стрелой крана – регулирует угол наклона стрелы, компенсирует раскачивание груза

Теперь обратимся к самому Василию, чтобы «добыть» из него бесценные экспертные знания.

Спрашиваем:

— «Василий, скажите, с какой скоростью нужно двигаться, чтобы максимально быстро доставлять груз до цели, но при этом не приходилось резко тормозить перед финишем, заставляя груз сильно раскачиваться?»

Василий ответит примерно следующее:

— «Ну, так это… как только зацепил груз, пока до места еще далеко — давлю газ в пол. В середине пути чуть убавляю и плавненько иду, чтоб не шаталась верёвка. Если сильно шатает – газ жму совсем чуть-чуть и немного наклоняю стрелу в противоход. Когда близко подъезжаю – совсем уже газ отпускаю, наоборот притормаживаю малеху».

Вот мы и получили первые нечёткие правила от Василия. Продолжая общение с ним, узнаем и остальные. Представим все полученные правила, в виде таблицы:

– это перевод входного параметра системы в «нечёткую» область.

Первый входной параметр – «расстояние до цели». В терминах «нечёткой логики» — это лингвистическая переменная , поскольку она принимает в качестве значений не числа, а слова. А в понимании вычислительной машины «расстояние до цели» — вполне чёткий параметр, измеряемый в метрах.

Поэтому на этом этапе нам необходимо выяснить у Василия, что для него «близко», а что «очень близко» — определить его нечёткие диапазоны в цифрах. Например, 15 метров – для него будет однозначно близко. А вот насчёт 6 метров – он будет путаться в показаниях, причисляя это значение то к «близко», то к «очень близко». Поэтому «нечёткие диапазоны» могут перекрывать друг друга. Посмотрим, как это выглядит на графике:

Функцию M(x) называют функцией принадлежности . Она показывает степень принадлежности параметра к одному из нечётких значений. Как видно из графика, расстояние 32 метра со степенью принадлежности 0,2 относится к значению «средне» и со степенью принадлежности 0,65 к значению «близко».

Чем больше степень принадлежности, тем больше вероятность, что вычислительная машина присвоит переменной соответствующее нечёткое значение. Однако не стоит путать функцию принадлежности с функцией вероятностного распределения – это не одно и то же. Поэтому, в частности, сумма степеней принадлежности одного входного параметра к различным нечётким значениям не обязательно равна 1.

Точно такие же функции принадлежности нужно определить и для остальных входных и выходных параметров системы, снова используя экспертные знания крановщика Василия.

Принятие решения

Как только система управления фазифицирует все входные параметры по заданным функциям принадлежности, блок принятия решения найдёт соответствующие значения выходных параметров, пользуясь нечёткими правилами (см. таблицу выше).

Дефазификация

На этом этапе система управления будет делать обратное преобразование из нечётких значений выходных параметров (найденных по таблице) – к чётким цифрам. Математические алгоритмы этих преобразований разнообразны и зависят от конкретной задачи. Подробно на них заморачиваться не имеет смысла — пусть этим занимаются суровые математики. Инженеру нужно лишь реализовать один из известных алгоритмов.


В качестве контроллера нечёткой логики можно использовать уже готовое микропроцессорное устройство, поддерживающее описанные выше алгоритмы. Такому устройству необходимо задать только функции принадлежности всех лингвистических переменных и нечёткие правила. Конечно, если хочется поупражняться – можно взять обычный микроконтроллер и «суровую» книгу по математическим алгоритмам, применяемым в нечёткой логике, и реализовать всё это самому.

В любом случае структура контроллера нечёткой логики будет примерно такой:

Заключение

В этой статье мы рассмотрели базовые понятия нечёткой логики, которая является составной частью более широкого понятия «Искусственный интеллект». Нечёткая логика широко применяется при построении экспертных систем, систем поддержки принятия решений, систем управления, основанных на экспертных знаниях. На очереди статья, в которой мы расскажем, в каких приборах и устройствах, используемых нами в повседневной жизни, применяется нечёткая логика. Да-да, я не оговорился, каждый из нас ежедневно пользуется приборами, обладающими искусственным интеллектом. Но об этом позже, а на сегодня всё! Помните, читая LAZY SMART , вы становитесь ближе к миру новых технологий! До свидания!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: