Как устроен суперконденсатор. Cуперконденсатор вместо аккумулятора: полноценная альтернатива литий-ионных батарей

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности - гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой - электролит, а изоляцией между обкладками - окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.



Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии - с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.



Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае - емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU 2 /2,
где C - емкость, выраженная в фарадах, U - напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU 2 /7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.



Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе - их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Идея конденсатора большой удельной емкости осваивалась еще в 1960-х годах, но сегодня отмечается новая волна повышенного интереса к данной технологии, что обусловлено уникальным сочетание эксплуатационных свойств конечного продукта. В наши дни на базе этой технологии выпускаются различные модификации ионисторов и ультраконденсаторов, которые вполне могут рассматриваться в качестве полноценного силового аккумулятора. Концепты суперконденсатора, фото с примером которого представлено ниже, говорят о том, что их будущая конкуренция с привычными аккумуляторными блоками (АКБ) не так уже и фантастична.

Что такое суперконденсатор?

В сущности, это оптимизированная электрохимическая батарея, выполненная в виде компактного конденсатора. Даже при беглом сравнении устройства с типовым аккумулятором для автомобиля можно выделить очевидную разницу в габаритах, а на практике эксплуатации также выйдут на поверхность преимущества в виде более высокого срока службы и мощности. Иными словами, суперконденсаторы вместо аккумуляторов вполне могут применяться, хотя и с некоторыми оговорками, обусловленными ограничениями в плане накопления энергетического потенциала. Подобные нюансы пока еще имеют место по причине несовершенства технологического развития ионисторов, однако ситуация меняется под давлением рынка с его растущими требованиями к элементам питания.

Устройство и конструкция изделия

Основу данного конденсатора образуют два электрода, между которыми традиционно размещается электролитическая среда. Отличия от аккумулятора можно наблюдать в структуре материалов для изготовления электродов, пластины которых покрываются пористым активированным углем. Что касается электролита, то в этом качестве могут применяться органические и неорганические смеси. Конструкционно выделяется и техническое решение изоляции в структуре суперконденсаторов. Вместо аккумуляторных алюминиевых обкладок с диэлектрической прослойкой применяются компоненты с оптимальными свойствами ионной и электронной проводимости. Если продолжать концепцию возможного использования суперконденсатора в качестве аккумулятора, то электронным проводником вполне мог бы выступить пористый углерод, а ионным - раствор серной кислоты. Таким образом может обеспечиваться оптимальный слой разграничения зарядов между электродами без дополнительного включения громоздких изоляторов.

Разновидности суперконденсатора

Уже сегодня можно выделить несколько направлений в разработке ионисторов. Наиболее заметны и перспективны следующие разновидности устройства:

  • Двойнослойные конденсаторы. Стандартная модель, при которой используются упомянутые выше электроды из электропроводящего материала, а в качестве электролита применяется специальный сепаратор. Накопление энергетического потенциала происходит в результате разделения заряда на электродах.
  • Псевдоконденсаторы. Перезаряжаемый аккумулятор из суперконденсатора данного типа может стать весьма успешным решением, поскольку в данном случае предполагаются более развитые способы сохранения энергии. Во-первых, задействуется принцип фарадеевского механизма, связанного с процессами аккумуляции энергии в обычных батареях. А во-вторых, сохраняется и базовая схема электростатического взаимодействия между электродами в двойном электрическом слое.
  • Гибридные конденсаторы. Промежуточная концепция, объединяющая отдельные положительные черты аккумуляторов и конденсаторов. В таких устройствах обычно используют сочетание электродов, выполненных из смешанных оксидов и допированных полимеров. Дальнейшее развитие этого направления связывают с применением композитных материалов, дополненных углеродными носителями и проводящими полимерами.

Основные характеристики

На сегодняшний день сложно говорить об устоявшихся эксплуатационных показателях ионисторов, поскольку технология постоянно совершенствуется, причем с поправкой на улучшение и электрохимических источников тока. Но если брать средние данные по основным характеристикам суперконденсаторов, то конкретные показатели будут выглядеть так:

  • Время зарядки - от 1 до 10 сек.
  • Количество циклов зарядки - порядка 1 млн, что соответствует 30 000 ч.
  • Напряжение в ячейке блока - диапазон от 2,3 до 2,75 В.
  • Энергоемкость - стандартное значение 5 Вт*ч/кг.
  • Мощность - порядка 10 000 Вт/кг.
  • Долговечность - до 15 лет.
  • Рабочая температура - от -40 °С до 65 °С.

Сравнение с обычными АКБ

Основные отличительные параметры заключаются в скорости накапливания энергии и степени отдачи электрического заряда. За счет использования двойного слоя электрического потенциала у суперконденсатора при схожих размерах повышается площадь рабочей поверхности электродов. То есть можно говорить о совмещении лучших свойств АКБ и конденсатора как такового. Если же сравнивать распределение токов аккумулятора и суперконденсатора на нагрузку, то равномерность объемов потребляемого тока будет в целом идентичной, но с двумя поправками. При эксплуатации АКБ возможно смещение наибольшего тока в сторону элемента, расположенного в нижней части блока, а в случае с ионисторами в принципе потенциал будет меньше из-за низкого напряжения. Также к существенным различиям можно отнести разницу в рабочем ресурсе - суперконденсаторы примерно на 25-30 % служат дольше по времени, не говоря о более высоком коэффициенте выполнимых рабочих циклов.

Преимущества эксплуатации суперконденсаторов

Если в целом рассматривать положительные эффекты от использования суперконденсаторов вместо аккумуляторов, то на первый план выйдут следующие качества:

  • Высокая плотность энергии суперконденсаторов позволяет их использовать в электронных приборах как источник кратковременного питания.
  • Экологическая безопасность. Конечно, электрохимические компоненты по-прежнему сохраняются в конструкции, однако их токсическое влияние постоянно сокращается.
  • Возможность применения энергии от возобновляемых источников - ветра, солнца, воды и земли.
  • Расширение возможностей для конструкционной интеграции элементов питания - к примеру, для обслуживания сложных силовых установок, гибридных электрических машин, автомобилей на водородном топливе и т. д.

Стоит отметить и некоторые преимущества суперконденсатора по отношению к обычному конденсатору. Их немного, но принципиально важным является большая емкость для накопления энергии. По этому показателю не все модификации ионисторов могут конкурировать с АКБ, однако в сравнении с конденсаторами в параметре электрической вместимости они уверенно выигрывают.

Положительные отзывы о суперконденсаторах

Испытания и частичное применение суперконденсаторов сегодня имеют место в самых разных отраслях. Как показывают отзывы об эксплуатации данных устройств, они подтверждают заявления производителей о высокой надежности, экологической безопасности и высокой емкости. Что особенно важно с точки зрения сравнения суперконденсаторов и аккумуляторов, первые не так требовательны к созданию специальных условий при физическом обращении. Отчасти это связано с той же низкой токсичностью компонентов, но в большей степени эргономика эксплуатации обусловлена высокой степенью защиты корпуса. То есть пользователю не нужно предусматривать специальные приспособления для обслуживания суперконденсаторов в герметизированных условиях. Также и небольшая масса с оптимизированными габаритами облегчает выполнение стандартных манипуляций при обслуживании.

Негативные отзывы о суперконденсаторах

Существуют и слабые места у данного рода конденсаторов, которые также очевидно проявляются на практике эксплуатации. В частности, пользователи указывают на их малую энергетическую плотность, низкую производительность и не всегда достаточный уровень напряжения, что заставляет задействовать несколько элементов для обслуживания одной целевой единицы потребителя. Во многом эти недостатки и не позволяют сегодня применять суперконденсаторы вместо аккумуляторов, хотя, опять же, технологическое развитие с большей вероятностью решит и эти проблемы.

Перспективы развития конденсаторов

По оценкам специалистов и разработчиков элементов питания, уже в скором будущем конденсаторы нового поколения станут использоваться повсеместно. Это станет возможным благодаря активному наращиванию удельной емкости устройств. К этому же стоит добавить и улучшение технико-конструкционных характеристик суперконденсаторов, что в первую очередь касается размеров и веса. Вместе с этим уже сегодня организуются испытания ионисторов мощностью до 2,5 мВт. В будущем подобные системы могут применяться в обслуживании транспортных сетей, промышленных объектов и жилых комплексов.

Заключение

Концепция суперконденсатора считается оптимальным решением в ситуациях, когда есть краткосрочная потребность в энергоснабжении с оперативным зарядом. Отчасти в этом заключается противоречие с идеей электрохимических батарей, которые ориентируются на длительное поддержание питания с определенными параметрами. Но возможно ли применение суперконденсатора вместо аккумулятора на автомобиле с учетом данной эксплуатационной особенности? С высокой долей вероятности передовые автоконцерны и будут использовать конденсаторы высокой удельной емкости, но только в специальных гибридных версиях, объединяющих в себе положительные качества ионисторов как таковых и традиционных электрохимических компонентов. К примеру, сегодня подобные решения применяются в виде сочетания электрохимической свинцово-кислотной структуры и суперконденсатора.

Суперконденсатор (или по-другому ионистор) представляет собой устройство для накопления электрической энергии, занимающее среднее положение между аккумуляторной батареей и электролитом. Правда, в отличие от них, эти изделия имеют несравнимо меньшие размеры и выглядят как обычные электролитические конденсаторы (смотрите рисунок ниже).

По своим характеристикам суперконденсатор (СК) существенно отличается от рядовых электролитических изделий, поскольку он более долговечен и имеет меньшую токовую утечку. Основная цель разработки этих изделий – создание накопителей энергии нового поколения, способных заменить привычные аккумуляторные батареи.

Характерные отличия

Помимо уже перечисленных выше достоинств, суперконденсатор характеризуется более высоким, чем у батарей, показателем удельной ёмкости, что позволяет использовать его в качестве источника питания в электромобилях, например. Благодаря уникальным энергетическим свойствам, время зарядки этого электролитического элемента заметно сокращается (то же самое можно сказать и о периоде его разрядки).

Дополнительная информация. Перечисленные свойства позволяют использовать конденсаторы большой ёмкости в современных источниках возобновляемой энергии (солнечных батареях, ветровых генераторах и т. п.).

При его эксплуатации удаётся добиться более экономичного режима работы за счёт возможности аккумулирования избытков полученной от источников энергии.

Внешне суперконденсатор выглядит как обычный элемент с двумя электродами, используемый вместо аккумулятора.

Подобно АКБ, в своих внутренних полостях он также содержит электролит, который при взаимодействии с пластинами вырабатывает электроэнергию.

Особенности конструкции и производители

Электроды этого изделия изготавливаются из специального пористого материала, покрытого сверху тонким слоем активированного угля. В качестве электролитического состава используются смеси неорганического или органического происхождения. Основные его отличия от привычного конденсатора состоят в следующем:

  • Между обкладками в этом изделии размещается не обычный слой диэлектрика, а вдвое толще, что позволяет получить очень тонкий зазор. Такая конструкция обеспечивает возможность накапливать электроэнергию в больших объёмах (электрическая ёмкость в этом случае значительно возрастает);
  • Далее суперконденсатор, в отличие от других образцов, аккумулирует и расходует заряд достаточно быстро;
  • Благодаря использованию двойного слоя диэлектрика повышается общая площадь электродов, а габариты при этом остаются прежними. Технические характеристики изделия при этом заметно улучшаются.

К особенностям этих конденсаторов, появившихся в 1962 году, также следует отнести энергетическую структуру их электродов, один из которых имеет электронную проводимость, а другой – так называемую «ионную». В результате этого в процессе их зарядки осуществляется разделение противоположных по знаку зарядов, приводящее к накапливанию на обкладках положительного и отрицательного потенциала (смотрите фото).

В 1971 году лицензию на производство этих уникальных изделий получила известная японская корпорация NEC, успешно освоившая к этому времени практически все электротехнические направления. Именно ей удалось продвинуть и окончательно утвердить на рынке электронных изделий уникальную технологию производства суперконденсаторов. С 2000-х годов она успешно освоена практически во всех экономически развитых странах мира.

Виды суперэлектролитов

Все известные образцы электролитических изделий этого класса подразделяются на следующие виды:

  • Двухслойные конденсаторные структуры (ДСК);
  • Гибридные электролитические элементы;
  • Псевдоконденсаторы.

Рассмотрим каждый из них чуть подробнее.

Двухслойные структуры имеют в своём составе два пористых электрода с проводящим углеродным покрытием, разделенных особым составом (электролитным сепаратором). Процесс аккумулирования энергии в этих образованиях осуществляется за счет разделения противоположных по знаку зарядов, сопровождающегося образованием на электродах значительных по амплитуде потенциалов.

На величину электрического заряда таких структур существенное влияние оказывает емкость двойного накопительного слоя, выполняющего функцию своеобразного поверхностного конденсатора. Между собой эти две накопительные системы соединяются в последовательную цепочку посредством объединяющего их электролита.

Дополнительная информация. В данном случае он играет роль проводника с ионным типом проводимости.

Гибридные электролиты можно отнести к категории переходных структур, занимающих промежуточное положение между аккумулятором и конденсатором. Выбор такого названия для этих изделий обусловлен тем, что электроды в них изготавливаются из материалов разного типа, вследствие чего характер накопления зарядов несколько различен.

Обычно функцию катода в них выполняет материал, обладающий так называемой «псевдо ёмкостью», а процесс аккумулирования заряда происходит вследствие протекания окислительно-восстановительных реакций. Такая «архитектура» электролитов этой группы позволяет увеличить суммарную емкость конденсатора, а также расширить диапазон допустимых напряжений.

В этих изделиях чаще всего применяются сложные сочетания материала электродов, представляющих собой комбинацию из особого типа проводящих полимеров (или смешанных оксидов). Ведутся исследования по другим перспективным материалам (композитам, в частности), получаемым методом осаждения оксидов металлов на углеродные основания или полимеры.

Псевдоконденсаторы по своим техническим показателям гораздо ближе к перезаряжаемым аккумуляторным батареям, имеющим два твёрдотельных электрода. В основе их действия лежит сочетание следующих двух механизмов:

  • Процессы заряда и разряда (аналогичные реакциям, происходящим в обычных аккумуляторах);
  • Взаимодействия электростатического характера, присущие структурам с двойным электрическим слоем.

Приставка «псевдо» означает, что емкость этих элементов определяется не столько характером электростатических процессов, сколько зависимостью от реакций, связанных с переносом электролитических зарядов.

Области применения

Наиболее часто изделия этого класса применяются в следующих механизмах, агрегатах и образцах оборудования:

  • В системах с источниками возобновляемой энергии, нуждающихся в аккумулировании накапливаемых потенциалов (солнечные батареи, ветряные генераторы и т. п.);
  • В современных транспортных средствах (электрокарах, например), а также в устройствах запуска двигателей автомобилей на водородном топливе;
  • За счёт высокой энергетической плотности и повышенной удельной емкости эти изделия широко применяются в электронной аппаратуре (в качестве источников кратковременного и мощного импульса);
  • Также они востребованы в системах бесперебойного питания, в которых в полной мере используется их основное преимущество – обеспечивать мгновенную передачу мощности.

Обратите внимание! Сюда же следует отнести развивающиеся отрасли, предполагающие использование систем непрерывного питания на экономичном топливе.

Кроме того, суперконденсаторы могут применяться в следующих устройствах:

  • В системах демпфирования энергетических нагрузок, а также в устройствах запуска электродвигателей;
  • В комплексах, функционирование которых связано с критическими нагрузками (оборудование портов, больничных учреждений, вышек мобильной связи, банковских центров и т. п.);
  • В источниках резервного электроснабжения оборудования ПК и систем сбора данных (микропроцессоров и ЗУ), а также в мобильных телефонах.

Достоинства и недостатки конденсаторных изделий

К числу достоинств изделий рассматриваемого класса следует отнести:

  • Низкую удельную стоимость (из расчета на единицу ёмкости);
  • Высокие показатели ёмкостной плотности и КПД циклов заряда-разряда (до 95% и выше);
  • Надёжность, долговечность и экологическая чистота;
  • Прекрасные показатели удельной мощности;
  • Достаточно широкий диапазон температур, при которых возможна их эксплуатация;
  • Наибольшая из всех возможных для изделий данной категории скорость заряда и разряда;
  • Допустимость полной потери ёмкости (практически до нуля).

Ещё одно немаловажное преимущество СК – их сравнительно малые размеры и вес (по отношению к другим типам электролитических изделий).

Среди присущих им «минусов» хотелось бы отметить следующие недостатки:

  • Относительно малая плотность накапливаемых энергий;
  • Низкий показатель вольтажа, приходящегося на единицу ёмкости элемента;
  • Высокий уровень неконтролируемого саморазряда.

Добавим к этому не до конца проработанную технологию производства изделий.

Перспективы применения

В ближайшем будущем предполагается практически повсеместное использование суперконденсаторов, которые будут внедряться в большинство энергоёмких производств (включая медицинскую отрасль, аэрокосмическую промышленность и военную технику).

Одновременно с их внедрением всё более повышается удельная емкость этих изделий, что в перспективе позволит полностью заменить батареи конденсаторами. Также намечается процесс интегрирования суперконденсаторов в различные структуры современного электронного производства, включая изготовление управляющих и регулирующих элементов.

В заключение отметим, что конденсаторные изделия этого класса позволяют внедрить в жизнь экологически чистые способы экономии энергии, намного более перспективные, чем все известные до сих пор. В ближайшее время предполагается дальнейшее расширение сфер применения этих технологий, которые могут захватить всю автотранспортную отрасль, а также устройства связи и мобильную технику.

Видео

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.

Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.

С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.

Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.

Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.



Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750 .

Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы ! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000: (365х2))= 1млн. : 730= 1369 лет .

Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.


Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ , рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем , что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года .


Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ . Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25 С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.

Плюс номер четыре . Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего » АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.


Более подробно про особенности АТОМ 1750 :

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до и для работы с дизельными моторами до .


МОЩЬ

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.


Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.


МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900 ), а разница в габаритах впечатляет ещё больше.


На боковых гранях АТОМ 1750 расположены:


На передней панели расположен:

Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).


ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2 , длинной 300 мм.


Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.


АТОМ 1750 - подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.


Если при подключении к аккумулятору машины на экране появляется надпись J UMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.

Надпись «REVERSED » сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.


Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.


Первый способ запуска машины с помощьюАТОМ 175 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.


Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.


Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин .


Ну и последний вариант зарядки, если под рукой нет иных источников, - придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А ) – конденсаторы можно зарядить и от сети.


Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ , но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» - операция зарядки ионисторов АТОМ 1750 - абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.


ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении - следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.

После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.

После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.

ATOM 1750 поставляется в картонной коробке.

В комплекте с аппаратом:

    Шнур для зарядки аппарата от прикуривателя автомобиля;

    USB-Кабель.



Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Суперконденсаторы можно назвать ярчайшей разработкой последних лет. В сравнении с конденсаторами обычными они, при тех же габаритах, отличаются на три порядка большей емкостью. За это конденсаторы и получили свою приставку – «супер». За малый промежуток времени они могут отдавать огромное количество энергии.

Выпускаются они различных размеров и форм: от совсем маленьких, крепятся которые на поверхности приборов, не больше монетки по размерам, до очень крупных цилиндрических и призматических. Основным их назначением является дублирование источника основного (батареи) в случае падения напряжения.

Энергоемкие современные электронные и электрические системы к источникам питания выдвигают высокие требования. Появившееся оборудование (от цифровых камер до электронных портативных устройств и электрических трансмиссий транспортных средств) нуждается в аккумулировании и подаче необходимой энергии.

Решается эта задача современными разработчиками двумя путями:

  • Использованием аккумулятора, способного обеспечивать высокий импульс тока
  • Присоединением параллельно батарее в качестве страховки суперконденсаторов, т.е. «гибридное» решение.

В последнем случае суперконденсатор выполняет функцию источника питания при падении напряжения на аккумуляторе. Обусловлено это тем, что батареи обладают высокой плотностью энергии и малой плотностью мощности, в то время как суперконденсаторы, наоборот, характеризуются малой плотностью энергии, но высокой плотностью мощности, т.е. они обеспечивают ток разрядки на нагрузку. Включив суперконденсатор параллельно батарее, можно ее использовать более эффективно, следовательно, продлить срок службы.

Где используют суперконденсаторы

Видео: Тест суперконденсатора 116,6F 15V (6* 700F 2,5В), вместо стартерного аккумулятора в автомобиле

В автомобильных электронных системах их используют для запуска моторов , тем самым сокращая нагрузку на аккумулятор. Также они позволяют уменьшить массу, сократив монтажные схемы. Широкое применение они находят в гибридных авто, где генератором управляет ДВС, а электрический мотор (или моторы) приводят автомобиль в движение, т.е. суперконденсатор (энергетический кэш) используется в качестве источника тока при ускорении и начале движения, а во время торможения происходит его «подзарядка». Перспективно применение их не только в легковом, но и в городском транспорте, поскольку новый вид конденсаторов позволяет на 50% сократить потребление топлива и на 90% сократить выброс вредных газов в окружающее пространство.

Заменить полностью батарею суперконденсаторы пока не могу, но это только вопрос времени. Использовать суперконденсатор вместо аккумулятора – вовсе не фантастика. Если ученые — нанотехнологи из университета QUT идут по правильному пути, то в скором будущее это станет реальностью. Выступать в качестве аккумуляторов смогут панели кузова, внутри которых стоят суперконденсаторы последнего поколения. Сотрудникам этого университета удалось объединить в новом устройстве преимущества батарей литий-ионных и суперконденсаторов. Состоит новый тонкий, легкий и мощный суперконденсатор из карбоновых электродов, находящегося между ними электролита. Новинку, как утверждают ученые, устанавливать можно в любом месте кузова.

Улучшить же благодаря большому крутящему моменту (пусковому) стартовые характеристики при низких температурах и расширить возможности системы питания, им под силу уже сейчас. Целесообразность их использования в системе питания объясняется тем, что время их зарядки/разрядки равно 5-60 секунд. Помимо этого использовать их можно системе распределительной некоторых приборов машины: соленоидов, систем регулировки дверных замков и положения оконных стекол.

Суперконденсатор своими руками

Можно изготовить суперконденсатор своими руками. Поскольку конструкция его состоит из электролита и электродов, нужно определиться с материалом для них. Для электродов вполне подойдет медь, нержавейка или латунь. Можно взять, к примеру, пятикопеечные старые монеты. Нужен будет еще угольный порошок (в аптеке можно купить активированный уголь и измельчить его). В качестве электролита «сгодится» обычная вода, в которой растворить нужно поваренную соль (100:25). Раствор смешивается с угольным порошком, чтобы получилась консистенция замазки. Теперь ее слоем в несколько миллиметров необходимо нанести на оба электрода.

Осталось подобрать прокладку, разделяющую электроды, сквозь поры которой свободно будет проходить электролит, но задерживаться будет угольный порошок. Подойдет для этих целей стеклоткань или поролон.

Электроды – 1,5; обмазка угольно-электролитная – 2,4; прокладка – 3.

В качестве кожуха использовать можно пластмассовую коробочку, просверлив в ней предварительно отверстия для проводов, припаянных к электродам. Подсоединив провода к батарейке, ожидаем, пока зарядится конструкция «ионикс», названная так потому, что на электродах образоваться должна разная концентрация ионов. Проверить заряд проще с помощью вольтметра.

Есть и другие способы. Например, используя оловянную бумагу (станиолевую фольгу – обертку от шоколадки), куски жести и парафинированную бумагу, изготовить которую можно самостоятельно, нарезав и погрузив на пару минут в расплавленный, но не кипящий, парафин полоски папиросной бумаги. Ширина полосок должна быть пятьдесят миллиметров, а длина от двухсот до трехсот миллиметров. Вынув полоски из парафина, необходимо соскоблить тупой стороной ножа парафин.

Пропитанную парафином бумагу складывают в виде гармошки (как на рисунке). С обеих стороны в промежутки вкладываются листы станиолевые, которые соответствуют размеру 45х30 миллиметров. Подготовив, таким образом, заготовку, ее складывают, затем, проглаживают теплым утюгом. Оставшиеся станиолевые концы снаружи соединяют между собой. Можно использовать для этого картонные пластинки и латунные с жестяными обоймами, к которым позже припаиваются проводники для того, чтобы при монтаже можно было припаять конденсатор.

Емкость конденсатора зависит от количества станиолевых листочков. Она равна, например, тысяче пикофарад при использовании десяти таких листков, и двум тысячам, если их количество увеличить вдвое. Такая технология пригодна для изготовления конденсаторов емкостью до пяти тысяч пикофарад.

Если же необходима большая емкость, то необходимо иметь старый микрофарадный бумажный конденсатор, представляет собой который, рулон из ленты, состоящей из полос парафинированной бумаги, между которыми проложена полоса фольги станиолевой.

Для определения длины полос, пользуются формулой:

l = 0,014 С/а, где емкость необходимого конденсатора в пФ — С; ширина полос в см – а: длина в см – 1.

Отмотав от старого конденсатора полоски нужной длины, обрезают со всех сторон на 10 мм фольгу, чтобы между собой не дать соединиться обкладкам конденсатора.

Вновь ленту нужно свернуть, но сначала припаяв многожильные провода к каждой полоске фольги. Сверху конструкцию обклеивают плотной бумагой, а на края бумаги, которые выступают, заделывают два монтажных провода (жестких), к которым припаиваются с внутренней стороны гильзы бумажной выводы от конденсатора (см. рисунок). Последний шаг – заливка конструкции парафином.

Преимущества карбоновых суперконденсаторов

Поскольку шествие электротранспорта по планете сегодня нельзя не замечать, ученые работают над вопросом, связанным с его быстрейшей зарядкой. Идей возникает множество, но претворяются в жизнь единицы. В Китае, например, в городе Нинбо запущен необычный маршрут городского транспорта. Автобус, курсирующий по нему, работает от электромотора, но на зарядку ему требуется всего десять секунд. На ней он преодолевает пять километров и вновь, во время высадки/посадки пассажиров, успевает подзарядиться.

Возможным стало это благодаря использованию нового типа конденсаторов – карбоновых.

Карбоновые конденсаторы выдерживают около миллиона циклов перезарядки, отлично работают в диапазоне температур от минус сорока до плюс шестидесяти пяти градусов. До 80% энергии они возвращают при рекуперации.

Они открыли новую эру в управлении питанием, сократив до наносекунд время разрядки и зарядки, снизив вес автомобиля. К этим достоинствам можно добавить невысокую стоимость, поскольку в изготовлении не применяются редкоземельные металлы и экологичность.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: