Этапы проектирования базы данных. Пример проектирования базы данных

Суть проектирования баз данных (БД), как и любого другого процесса проектирования, в создании описания новой, прежде не существовавшей в таком виде системы, которая при её реализации способна предполагаемо функционировать в соответствующих условиях. Из этого следует, что этапы проектирования базы данных должны последовательно и логически связано отражать суть этого процесса.

Содержание проектирования баз данных и этапность

Замысел проектирования основывается на какой-либо сформулированной общественной потребности. У этой потребности есть среда её возникновения и целевая аудитория потребителей, которые будут пользоваться результатом проектирования. Следовательно, процесс проектирования баз данных начинается с изучения данной потребности с точки зрения потребителей и функциональной среды её предполагаемого размещения. То есть, первым этапом становится сбор информации и определение модели предметной области системы, а также – взгляда на неё с точки зрения целевой аудитории. В целом, для определения требований к системе производится определение диапазона действий, а также границ приложений БД.

Далее проектировщик, уже имеющий определённые представления о том, что ему нужно создать, уточняет предположительно решаемые приложением задачи, формирует их список (особенно, если в проектной разработке большая и сложная БД), уточняет последовательность решения задач и производит анализ данных. Такой процесс – тоже этапная проектная работа, но обычно в структуре проектирования эти шаги поглощаются этапом концептуального проектирования – этапом выделения объектов, атрибутов, связей.

Создание концептуальной (информационной модели) предполагает предварительное формирование концептуальных требований пользователей, включая требования в отношении приложений, которые могут и не быть сразу реализованным, но учёт которых позволит в будущем повысить функциональность системы. Имея дело с представлениями объектов-абстракций множества (без указания способов физического хранения) и их взаимосвязями, концептуальная модель содержательно соответствует модели предметной области. Поэтому в литературе первый этап проектирования БД называется инфологическим проектированием.

Далее отдельным этапом (либо дополнением к предыдущему) следует этап формирования требований к операционной обстановке, где оцениваются требования к вычислительным ресурсам, способным обеспечить функционирование системы. Соответственно, чем больше объем проектируемой БД, чем выше пользовательская активность и интенсивность обращений, тем выше требования предъявляются к ресурсам: к конфигурации компьютера к типу и версии операционной системы. Например, многопользовательский режим работы будущей базы данных требует сетевого подключения с использованием операционной системы, соответствующей многозадачности.

Следующим этапом проектировщик должен выбрать систему управления базой данных (СУБД), а также инструментальные средства программного характера. После этого концептуальную модель необходимо перенести в совместимую с выбранной системой управления модель данных. Но нередко это сопряжено с внесением поправок и изменений в концептуальную модель, поскольку не всегда взаимосвязи объектов между собой, отражённые концептуальной моделью, могут быть реализованы средствами данной СУБД.

Это обстоятельство определяет возникновение следующего этапа – появления обеспеченной средствами конкретной СУБД концептуальной модели. Данный шаг соответствует этапу логического проектирования (создания логической модели).

Наконец, финальным этапом проектирования БД становится физическое проектирование – этап увязки логической структуры и физической среды хранения.

Таким образом, основные этапы проектирования в детализированном виде представлены этапами:

  • инфологического проектирования,
  • формирования требований к операционной обстановке
  • выбора системы управления и программных средств БД,
  • логического проектирования,
  • физического проектирования

Ключевые из них ниже будут рассмотрены подробнее.

Инфологическое проектирование

Идентификация сущностей составляет смысловую основу инфологического проектирования. Сущность здесь – это такой объект (абстрактный или конкретный), информация о котором будет накапливаться в системе. В инфологической модели предметной области в понятных пользователю терминах, которые не зависят от конкретной реализации БД, описывается структура и динамические свойства предметной области. Но термины, при этом берутся в типовых масштабах. То есть, описание выражается не через отдельные объекты предметной области и их взаимосвязи, а через:

  • описание типов объектов,
  • ограничения целостности, связанные с описанным типом,
  • процессы, приводящие к эволюции предметной области – переходу её в другое состояние.

Инфологическую модель можно создавать с помощью нескольких методов и подходов:

  1. Функциональный подход отталкивается от поставленных задач. Функциональным он называется, потому что применяется, если известны функции и задачи лиц, которые с помощью проектируемой базы данных будут обслуживать свои информационные потребности.
  2. Предметный подход во главу угла ставит сведения об информации, которая будет содержаться в базе данных, при том, что структура запросов может не быть определена. В этом случае в исследованиях предметной области ориентируются на её максимально адекватное отображение в базе данных в контексте полного спектра предполагаемых информационных запросов.
  3. Комплексный подход по методу «сущность-связь» объединяет достоинства двух предыдущих. Метод сводится к разделению всей предметной области на локальные части, которые моделируются по отдельности, а затем вновь объединяются в цельную область.

Поскольку использование метода «сущность-связь» является комбинированным способом проектирования на данном этапе, он чаще других становится приоритетным.

Локальные представления при методическом разделении должны, по возможности, включать в себя информацию, которой бы хватило для решения обособленной задачи или для обеспечения запросов какой-то группы потенциальных пользователей. Каждая из этих областей содержит порядка 6-7 сущностей и соответствует какому-либо отдельному внешнему приложению.

Зависимость сущностей отражается в разделении их на сильные (базовые, родительские) и слабые (дочерние). Сильная сущность (например, читатель в библиотеке) может существовать в БД сама по себе, а слабая сущность (например, абонемент этого читателя) «привязывается» к сильной и отдельно не существует.

Следует разделять понятия «экземпляр сущности» (объект, характеризующийся конкретными значениями свойств) и понятие «тип сущности» – объект, для которого характерно общее имя и список свойств.

Для каждой отдельной сущности выбираются атрибуты (набор свойств), которые в зависимости от критерия могут быть:

  • идентифицирующими (с уникальным значением для сущностей этого типа, что делает их потенциальными ключами) или описательными;
  • однозначными или многозначными (с соответствующим количеством значений для экземпляра сущности);
  • основными (независимыми от остальных атрибутов) или производными (вычисляемыми, исходя из значений иных атрибутов);
  • простыми (неделимыми однокомпонентными) или составными (скомбинированными из нескольких компонентов).

После этого производится спецификация атрибута, спецификация связей в локальном представлении (с разделением на факультативные и обязательные) и объединение локальных представлений.При числе локальных областей до 4-5 их можно объединить за один шаг. В случае увеличения числа, бинарное объединение областей происходит в несколько этапов.

В ходе этого и других промежуточных этапов находит своё отражение итерационная природа проектирования, выражающаяся здесь в том, что для устранения противоречий необходимо возвращаться на этап моделирования локальных представлений для уточнения и изменения (например, для изменения одинаковых названий семантически разных объектов или для согласования атрибутов целостности на одинаковые атрибуты в разных приложениях).

Выбор системы управления и программных средств БД

От выбора системы управления БД зависит практическая реализация информационной системы. Наиболее значимыми критериями в процессе выбора становятся параметры:

  • типа модели данных и её соответствие потребностям предметной области,
  • запас возможностей в случае расширения информационной системы,
  • характеристики производительности выбранной системы,
  • эксплуатационная надёжность и удобство СУБД,
  • инструментальная оснащённость, ориентированная на персонал администрирования данных,
  • стоимость самой СУБД и дополнительного софта.

Ошибки в выборе СУБД практически наверняка впоследствии спровоцируют необходимость корректировать концептуальную и логическую модели.

Логическое проектирование БД

Логическая структура БД должна соответствовать логической модели предметной области и учитывать связь модели данных с поддерживаемой СУБД. Поэтому этап начинается с выбора модели данных, где важно учесть её простоту и наглядность.

Предпочтительнее, когда естественная структура данных совпадает с представляющей её моделью. Так, например, если в данные представлены в виде иерархической структуры, то и модель лучше выбирать иерархическую. Однако на практике такой выбор чаще определяется системой управления БД, а не моделью данных. Поэтому концептуальная модель фактически транслируется в такую модель данных, которая совместима с выбранной системой управления БД.

Здесь тоже находит отражение природа проектирования, которая допускает возможность (или необходимость) вернуться к концептуальной модели для её изменения в случае, если отражённые там взаимосвязи между объектами (или атрибуты объектов) не удастся реализовать средствами выбранной СУБД.

По завершению этапа должны быть сформированы схемы баз данных обоих уровней архитектуры (концептуального и внешнего), созданные на языке определения данных, поддерживаемых выбранной СУБД.

Схемы базы данных формируются с помощью одного из двух разнонаправленных подходов:

  • либо с помощью восходящего подхода, когда работа идёт с нижних уровней определения атрибутов, сгруппированных в отношения, представляющие объекты, на основе существующих между атрибутами связей;
  • либо с помощью обратного, нисходящего, подхода, применяемого при значительном (до сотен и тысяч) увеличении числа атрибутов.

Второй подход предполагает определение ряда высокоуровневых сущностей и их взаимосвязей с последующей детализацией до нужного уровня, что и отражает, например, модель, созданная на основе метода «сущность-связь». Но на практике оба подхода, как правило, комбинируются.

Физическое проектирование БД

На следующем этапе физического проектирования БД логическая структура отображается в виде структуры хранения БД, то есть увязывается с такой физической средой хранения, где данные будут размещены максимально эффективно. Здесь детально расписывается схема данных с указанием всех типов, полей, размеров и ограничений. Помимо разработки индексов и таблиц, производится определение основных запросов.

Построение физической модели сопряжено с решением во многом противоречивых задач:

  1. задачи минимизации места хранения данных,
  2. задачи достижения целостности, безопасности и максимальной производительности.

Вторая задача вступает в конфликт с первой, поскольку, например:

  • для эффективного функционирования транзакций нужно резервировать дисковое место под временные объекты,
  • для увеличения скорости поиска нужно создавать индексы, число которых определяется числом всех возможных комбинаций участвующих в поиске полей,
  • для восстановления данных будут создаваться резервные копии базы данных и вестись журнал всех изменений.

Всё это увеличивает размер базы данных, поэтому проектировщик ищет разумный баланс, при котором задачи решаются оптимально путём грамотного размещения данных в пространстве памяти, но не за счёт средств защиты базы дынных, куда входит как защита от несанкционированного доступа, так и защита от сбоев.

Для завершения создания физической модели проводят оценку её эксплуатационных характеристик (скорость поиска, эффективность выполнения запросов и расхода ресурсов, правильность операций). Иногда этот этап, как и этапы реализации базы данных, тестирования и оптимизации, а также сопровождения и эксплуатации, выносят за пределы непосредственного проектирования БД.

С точки зрения конечного пользователя процесс создания базы данных можно представить в виде четырех этапов:

  • Анализ предметной области
  • Инфологическое (концептуальное) описание данных;
  • Логическое проектирование баз данных;
  • Физическое проектирование баз данных.

На первом этапе необходимо провести подробное словестное описание предметной области и реальных связей, которые присутствуют между описываемыми объектами.

Предметная область отображается моделями данных нескольких уровней. Предметная область может относиться к любому типу организации.

Необходимо различать полную предметную область(крупное предприятие) и организационную единицу этой предметной области. Организационная единица, в свою очередь, может представлять собою предметную область (например, цех по производству или отдел предприятия).

Информация для описания предметной области зависит от реальной модели и может включать в себя сведения о людях, местах, предметах, событиях и понятиях.

Существует два подхода к выбору состава и структуры предметной области:

Функциональный подход - применяется, когда известны функции некоторой группы лиц и комплексов задач, для обслуживания информационных потребностей которых создается рассматриваемая БД.

Предметный подход - когда информационные потребности будущих пользователей БД жестко не фиксируются.

Концептуальное проектирование . Разработка концептуальной модели предметной области основана на анализе информационных потребностей конечных пользователей и тех требований, которые они предъявляют к создаваемой базе данных.

На этом этапе прежде всего решается вопрос о том, какие данные должны храниться в базе и какого типа информационные выборки и отчеты могут потребоваться пользователю БД.

Главными элементами концептуальной модели данных являются объекты и отношения. Объекты представляют аспекты, которые пользователи считают важными в моделируемой части реальности. Отношения связывают два объектных множества. Отношение само по себе является объектным множеством, состоящим из пар объектов-элементов, взятых из двух множеств, которое соединяет отношение.

Концептуальная модель предметной области обычно представляется в виде графической схемы, на которой показан состав и взаимосвязи хранимых данных. В процессе работы инфологическая модель может дополняться новыми данными в связи с изменяющимися потребностями пользователя.

Существует три основных типа отношений:

1) «один-к-одному». Такая связь означает, что каждому значению реквизита А соответствует одно и только одно значение связанного с ним реквизита В, и наоборот. Например, каждому значению реквизита Номер паспорта соответствует единственное значение реквизита ФИО гражданина страны, и наоборот. Такую связь обозначают 1:1, графически в инфологических моделях эта связь изображается одинарными стрелками.

2)«один-ко-многим». Эта связь означает, что каждому значению реквизита А соответствует одно или несколько значений связанного с ним реквизита В, а каждому значению реквизита В соответствует одно и только одно значение реквизита А. Например, для аэропорта , из которого осуществляется множество рейсов, характерна следующая связь между описывающими этот объект реквизитами: одному значению реквизита Название аэропорта вылета соответствует несколько значений реквизита Номер рейса, а каждому значению Номер рейса соответствует только одно Название аэропорта вылета.

3)«многие-ко-многим». Такая связь означает, что каждому значению реквизита А соответствует несколько значений связанного с ним реквизита В, и наоборот. Например, турагентство может работать с несколькими туроператорами, а туроператор обычно имеет разветвленную сеть турагентов. Такую связь обозначают М: М, а графически изображают двойными стрелками.

Аналогичные связи могут быть установлены в БД между реляционными таблицами и практически реализованы за счет наличия в них общих полей (реквизитов). Если общих полей в связываемых таблицах нет, то нужно сделать следующее:

  • если между реляционными таблицами существует связь 1:1 или 1: М, то следует скопировать поле, по которому устанавливается связь, из одной связываемой таблицы в другую;
  • если между реляционными таблицами существует связь М:М, то следует создать новую таблицу и включить в нее ключевые поля связываемых таблиц.

Логическое проектирование заключается в определении числа и структуры таблиц, формировании запросов к БД, определении типов отчетных документов, разработке алгоритмов обработки информации, создании форм для ввода и редактирования данных.

На этом этапе осуществляется выбор подходящей системы управления базами данных и представление инфологической модели предметной области в форме структуры базы данных конкретной СУБД.

Для размещения одной и той же информации могут быть использованы различные модели данных. Их выбор зависит от многих факторов, в том числе от имеющегося технического и программного обеспечения, объемов информации, сложности автоматизируемых задач.

Файловая модель. Представляет собой совокупность не связанных между собой файлов из однотипных записей с линейной (одноуровневой) структурой.

Более сложными моделями внутримашинной организации данных являются сетевые и иерархические модели.

В иерархической модели любой объект (запись, сегмент) может подчиняться только одному объекту вышестоящего уровня. В сетевых – любой объект (запись, файл) может подчиняться нескольким объектам.

Сетевые модели данных по сравнению с иерархическими являются более универсальным средством отображения данных для разных предметных областей. Достоинством сетевых моделей является отсутствие дублирования данных в различных элементах модели.

Реляционные модели данных отличаются от сетевых и иерархических простой структурой данных, удобным для пользователя табличным представлением и доступом к данным. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений. Связи между двумя логически связанными таблицами в реляционной модели устанавливаются по равенству значений одинаковых атрибутов таблиц - отношений.

Физическое проектирование предполагает определение способов и мест размещения базы данных, оценку ее объема и других параметров.

В каждой СУБД по -разному организованы хранение и доступ к данным. В системах баз данных файлы можно классифицировать следующим образом:

Файлы прямого доступа;

Файлы последовательного доступа;

Индексные файлы.


Похожая информация.


Можно выделить следующие этапы разработки баз данных:

· проектирование;

· программная реализация;

· заполнение и эксплуатация.

Этап проектирования – это теоретическое построение исходной информационной модели базы данных. Он включает в себя:

· сбор информации о предметной области, ее структуре, входных и выходных информационных потоках данных, изучение задач автоматизации, анализ и выделение объектов исходной системы, и определение связей между ними;

· определение свойств и характеристик для каждого объекта в БД, которым назначаются поля (атрибуты), составляются исходные таблицы и отношения между ними, выполняется определение элементов данных, включаемых в базу данных, ограничения на значения данных и т.п.

· назначение первичных ключей (полей) для каждого объекта и нормализация (разбиение) исходных таблиц;

· проверку корректности проекта, который должен все выделенные объекты, их атрибуты и описываемые процессы отображать на требуемом уровне детализации, отображать предметную область, требующую решения задачи;

· определение логической структуры базы данных;

· решение вопросов защиты и поддержки целостности базы данных. Под обеспечением целостности данных понимается система мер, направленных на поддержание правильности данных в базе в любой момент времени.

Этап программной реализации связан с разработкой приложений на компьютере, для чего необходимо выполнить следующие действия:

· описать полученные таблицы средствами СУБД и ввести их в компьютер;

· для пользователей информационной системы разработать интерфейсы работы с БД, то есть экранные формы для ввода и отображения данных, отчеты для печати сводных данных, запросы для получения данных;

· выработать порядок ведения и поддержания базы данных в рабочем состоянии, работы конечных пользователей;

· провести тестирование системы, составить инструкции по работе с ней и обучить персонал.

Этап эксплуатации и заполнения начинается с наполнения базы данных конкретными данными. Он включает в себя непосредственное ведение базы данных и её сопровождение.

При разработке БД для крупных предприятий и корпораций анализ и моделирование выполняется с использованием специальных программных средств, например CASE-средств, которые позволяют промоделировать потоки данных, процессы и функции предприятия, выявить узкие места и дать рекомендации по эффективной организации структуры и бизнес-процессов на предприятии.

Кроме построения моделей текущего состояния предприятия и анализа программные средства моделирования позволяют сформировать спецификации и построить проект будущей системы, более того, может быть получен программный код для наиболее распространенных СУБД. Таким образом, стадия моделирования может захватывать этап проектирования и часть этапа реализации информационной системы.

Концептуальное проектирование базы данных

Первая фаза процесса проектирования базы данных называется концептуальным проектированием базы данных. Она заключается в создании концептуальной модели данных для анализируемой части объектов исследуемой системы. Эта модель данных создается на основе информации, записанной в спецификациях требований пользователей. Концептуальное проектирование базы данных абсолютно не зависит от таких подробностей ее реализации, как тип выбранной СУБД, набор создаваемых прикладных программ, используемые языки программирования, тип выбранной вычислительной платформы, а также от любых других особенностей физической реализации. Созданная концептуальная модель данных является источником информации для фазы логического проектирования базы данных.

Логическое проектирование базы данных

Вторая фаза проектирования базы данных называется логическим проектированием базы данных. Ее цель состоит в создании логической модели данных. Концептуальная модель данных, созданная на предыдущем этапе, уточняется и преобразуется в логическую модель данных. Логическая модель данных учитывает особенности выбранной модели организации данных в СУБД (например, реляционная или сетевая модель).

Если концептуальная модель данных не зависит от любых физических аспектов реализации, то логическая модель данных создается на основе выбранной модели организации данных в СУБД. Иначе говоря, на этом этапе уже должно быть известно, какая СУБД будет использоваться - реляционная, сетевая, иерархическая или объектно-ориентированная. Однако на этом этапе игнорируются все остальные аспекты выбранной СУБД - например, любые особенности физической организации ее структур хранения данных и построения индексов.

В процессе разработки логическая модель данных постоянно тестируется и проверяется на соответствие требованиям пользователей. Для проверки корректности логической модели данных используется метод нормализации. Нормализация гарантирует, что выведенные из существующей модели данных отношения не будут обладать избыточностью данных, способной вызвать аномалии обновления после их физической реализации. Помимо всего прочего, логическая модель данных должна обеспечивать поддержку всех необходимых пользователям транзакций.

Построенная логическая модель данных является источником информации для этапа физического проектирования и обеспечивает разработчика физической базы данных средствами нахождения компромиссов, необходимых для достижения поставленных целей, что очень важно для эффективного проектирования. Логическая модель данных также играет важную роль на этапе эксплуатации и сопровождения уже готовой системы. При правильно организованном сопровождении поддерживаемая в актуальном состоянии модель данных позволяет точно и наглядно представить любые вносимые в базу данных изменения и производить оценку их влияния на прикладные программы.

Нормализация базы данных

При проектировании баз данных наиболее важным является определение структур таблиц и связей между ними. Ошибки в структуре данных трудно, а чаще вообще невозможно исправить программным путем. Чем лучше структура данных, тем легче программировать БД. Теория проектирования БД содержит концепцию нормальных форм, предназначенных для оптимизации структуры БД. Нормальные формы - это линейная последовательность правил, применяемых к БД, причем, чем выше номер нормальной формы, тем совершеннее структура БД. Нормализация - это многоступенчатый процесс, при котором таблицы БД организуются, разъединяются и данные приводятся в порядок. Задача нормализации - устранить из БД некоторые нежелательные характеристики. В частности, ставится задача устранить некоторые виды избыточности данных и благодаря этому избежать аномалий при изменении данных. Аномалии изменения данных - это сложности при операциях вставки, изменения и удаления данных, возникающие из-за структуры БД. Хотя существует много уровней, обычно достаточно выполнить нормализацию до Третьей нормальной формы.

Рассмотрим пример нормализации БД управления доставкой заказов. Неупорядоченная БД «Продажи» состояла бы из одной таблицы (рис.7).

Рис.7. БД «Продажи»

В таблице каждая запись содержит сведения о нескольких заказах одного клиента. Поскольку столбец со сведениями о товаре содержит слишком много данных, получить упорядоченную информацию из этой таблицы сложно (например, составить отчет о суммарных закупках по различным видам товаров).

Первая нормальная форма

Первая нормальная форма предопределяет атомарность всех данных, содержащихся в столбцах. Слово "атом" происходит от латинского "atomis", что буквально означает "не подлежащий разделению". Первая нормальная форма задает существование в каждой позиции, определяемой строкой и столбцом, только одного значения, а не массива или списка значений. Преимущества этого требования очевидны: если в одном столбце хранятся списки значений, то не существует простого способа манипулировать этими значениями. Конечно, при этом увеличивается количество записей в таблице.

Выполним нормализацию БД " Продажи" до первой нормальной формы (рис.8).

Рис.8. Первая нормальная форма

3.3.2. Вторая нормальная форма

Ко Второй нормальной форме можно перейти от таблицы, которая уже соответствует первой нормальной форме. Дополнительно должно выполняться следующее условие: каждое не ключевое поле должно полностью зависеть от первичного ключа.

Выполним нормализацию БД " Продажи" до второй нормальной формы. Все сведения, не связанные с отдельными заказами, выделим в отдельную таблицу. В итоге получим вместо одной таблицы " Продажи" получим две - таблицу "Заказы" (рис.9) и таблицу "Товары" (рис.10).

Рис.9. Таблица "Заказы"

Рис.10. Таблица "Товары"

Таким образом, вид товара хранится только в одной таблице. Следует обратить внимание, что при нормализации информация не теряется.

3.3.3. Третья нормальная форма

Считается, что таблица соответствует Третьей нормальной форме, если она соответствует второй нормальной форме и все не ключевые столбцы взаимно независимы. Столбец, значения которого получаются вычислением на основе данных из других столбцов, представляет собой один из примеров зависимости.

Выполним нормализацию БД "Продажи" до третьей нормальной формы. Для этого следует удалить из таблицы "Заказы" столбец "Всего". Значения в этом столбце не зависят ни от одного ключа и могут быть вычислены по формуле ("Цена")*("Количество"). Таким образом, получена БД "Продажи" с оптимальной структурой, которая состоит из двух таблиц (рис.11).

Рис. 11. Нормализованная БД "Продажи"

3.2 Программная реализация базы данных

Программная реализация базы данных осуществляется посредством создания целевой СУБД на языке определения данных (DDL). Команды DDL-языка компилируются и используются для создания схем и пустых файлов базы данных. На этом же этапе определяются и все специфические пользовательские представления.

Прикладные программы реализуются с помощью языков третьего или четвертого поколения. Некоторые элементы этих прикладных программ будут представлять собой транзакции обработки базы данных, записываемые на языке манипулирования данными (DML) целевой СУБД и вызываемые из программ на базовом языке программирования - например, на Visual Basic, С++, Java. Кроме того, на этом этапе создаются другие компоненты проекта приложения - например, экраны меню, формы ввода данных и отчеты. Следует учитывать, что многие существующие СУБД имеют свои собственные инструменты разработки, позволяющие быстро создавать приложения с помощью непроцедурных языков запросов, разнообразных генераторов отчетов, генераторов форм, генераторов графических изображений и генераторов приложений.

На этом этапе также реализуются используемые приложением средства защиты базы данных и поддержки ее целостности. Одни из них описываются с помощью языка DDL, а другие, возможно, потребуется определить иными средствами - например, с помощью дополнительных утилит СУБД или посредством создания прикладных программ, реализующих требуемые функции.

3.2.1. Разработка приложений

Разработка приложений – это проектирование интерфейса пользователя и прикладных программ, предназначенных для работы с базой данных. В большинстве случаев проектирование приложений нельзя завершить до окончания проектирования базы данных. С другой стороны, база данных предназначена для поддержки приложений, а потому между фазами проектирования базы данных и проектирования приложений для этой базы данных должен постоянно происходить обмен информацией.

Необходимо убедиться, что все функциональные возможности, предусмотренные в спецификациях требований пользователей, обеспечиваются интерфейсом пользователя соответствующих приложений. Это относится как к проектированию прикладных программ доступа к информации в базе данных, так и к проектированию транзакций, т.е. проектированию методов доступа к базе данных.

Помимо проектирования способов, с помощью которых пользователь сможет получить доступ к необходимым ему функциональным возможностям, следует также разработать соответствующий пользовательский интерфейс приложений базы данных. Этот интерфейс должен предоставлять необходимую пользователю информацию самым удобным для него образом.

3.2.2 Тестирование базы данных

Тестирование - процесс выполнения прикладных программ с целью поиска ошибок. Прежде чем использовать новую систему на практике, ее следует тщательно проверить. Этого можно добиться путем разработки продуманного алгоритма тестирования с использованием реальных данных, который должен быть построен таким образом, чтобы весь процесс тестирования выполнялся строго последовательно и методически правильно. Задачей тестирования не является процесс демонстрации отсутствия ошибок, оно вряд ли сможет продемонстрировать отсутствие ошибок в программном обеспечении - скорее, наоборот, оно способно лишь показать их наличие. Если тестирование проведено успешно, то обязательно вскроются имеющиеся в прикладных программах и структурах базы данных ошибки. В качестве побочного результата тестирование может лишь показать, что база данных и прикладные программы работают в соответствии с их спецификациями и удовлетворяют при этом существующим требованиям, предъявляемым к производительности. Кроме того, сбор статистических данных на стадии тестирования позволяет установить показатели надежности и качества созданного программного обеспечения.

Как и при проектировании баз данных, пользователи новой системы должны быть вовлечены в процесс ее тестирования. В идеале, тестирование системы должно проводиться на отдельном комплекте оборудования, но зачастую это просто невозможно. При использовании реальных данных важно предварительно создать их резервные копии, на случай их повреждения в результате ошибок. По завершении тестирования процесс создания прикладной системы считается законченным, и она может быть передана в промышленную эксплуатацию.

3.3 Эксплуатация и сопровождение базы данных

Эксплуатация и сопровождение - поддержка нормального функционирования БД.

На предыдущих этапах приложение базы данных было полностью реализовано и протестировано. Теперь система входит в последний этап своего жизненного цикла, называемый эксплуатацией и сопровождением. Он включает выполнение таких действий, как:

· контроль производительности системы. Если производительность падает ниже приемлемого уровня, то может потребоваться дополнительная реорганизация базы данных;

· сопровождение и модернизация (в случае необходимости) приложений баз данных. Новые требования включаются в приложение базы данных при повторном выполнении предыдущих этапов жизненного цикла.

Как только база данных будет введена в эксплуатации, следует постоянно контролировать процесс ее функционирования - это позволит убедиться, что производительность и другие показатели соответствуют предъявляемым требованиям. Типичная СУБД обычно предоставляет различные утилиты администрирования базы данных, включая утилиты загрузки данных и контроля за функционированием системы. Подобные утилиты способны отслеживать работу системы и предоставлять информацию о различных показателях, таких как уровень использования базы данных, эффективность системы блокировок (включая сведения о количестве имевших место взаимных блокировок), а также выбираемые стратегии выполнения запросов. Администратор базы данных может использовать эту информацию для настройки системы с целью повышения ее производительности (например, за счет создания дополнительных индексов), ускорения выполнения запросов, изменения структур хранения, объединения или разбиения отдельных таблиц.

Процесс мониторинга должен поддерживаться на протяжении всего процесса эксплуатации приложений, что позволит в любой момент времени провести эффективную реорганизацию базы данных с целью удовлетворения изменяющихся требований. Подобные изменения предоставляют информацию о наиболее вероятном совершенствовании БД и ресурсах, которые могут потребоваться в будущем. Если в используемой СУБД нет некоторых нужных утилит, то администратору придется либо разработать их самостоятельно, либо приобрести требуемые дополнительные инструменты у сторонних разработчиков.

4. СУБД Microsoft Access

4.1.Назначение и общие сведения о СУБД Microsoft Access

Система Microsoft Access является системой управления БД, использует реляционную модель данных и входит в состав пакета прикладных программ Microsoft Office. Она предназначена для хранения, ввода, поиска и редактирования данных, а также выдачи их в удобном виде.

К областям применения Microsoft Access можно отнести следующие:

· в малом бизнесе (бухгалтерский учет, ввод заказов, ведение информации о клиентах, ведение информации о деловых контактах);

· в крупных корпорациях (приложения для рабочих групп, системы обработки информации);

· в качестве персональной СУБД (справочник по адресам, ведение инвестиционного портфеля, поваренная книга, каталоги книг, пластинок, видеофильмов и т. п.).

Access является одной из самых мощных, удобных и простых систем управления базами данных. Поскольку Access входит в состав Microsoft Office, она обладает многими чертами, характерными для приложений Office, и может обмениваться с ними информацией. Например, работая в Access, можно открывать и редактировать файлы, а также использовать буфер обмена для копирования данных из других приложений.

Средствами разработки объектов в Access являются «мастера» и «конструкторы». Это специальные программы, которые служат для создания и редактирования таблиц, запросов, различных типов форм и отчетов. Как правило «мастер» используется для создания, а «конструктор» - для редактирования объектов. Процесс редактирования предполагает изменение вида некоторого объекта с целью его улучшения. При редактировании формы можно изменить названия и порядок расположения полей, увеличить или уменьшить размер области ввода данных, и т.д. Можно использовать «конструктор» и для создания форм, но это очень трудоемкая работа. В Access включены специальные программные средства, помогающие производить анализ структуры данных, импортировать электронные таблицы и текстовые данные, повышать быстродействие приложений, создавать и настраивать приложения с использованием встроенных шаблонов. Чтобы полностью автоматизировать работу приложений, можно использовать макросы для связывания данных с формами и отчетами.

В Access реализовано управление реляционными базами данных. Система поддерживает первичные и внешние ключи. Обеспечивает целостность данных на уровне ядра, что не разрешает несовместимые операции обновления или удаления данных. Таблицы в Access снабжены средствами проверки допустимости данных, т.е. не разрешается некорректный ввод. Каждое поле таблицы имеет свой формат и стандартные описания, что облегчает ввод данных. Access поддерживает следующие типы полей, в том числе: вкладка, текстовый, числовой, счетчик, денежный, дата/время, MEMO, логический, гиперссылка, поля объектов OLE, вложение и вычисляемый. Если в полях не оказывается никаких значений, система обеспечивает полную поддержку пустых значений.

В Access можно использовать графические средства, как и в Microsoft Word, Excel, PowerPoint и других приложениях, позволяющие создавать различные виды графиков и диаграмм. Можно создавать гистограммы, двухмерные и трехмерные диаграммы. В формы и отчеты Access можно добавлять всевозможные объекты: рисунки, диаграммы, аудио- и видеоклипы. Связывая эти объекты с разработанной базой данных, можно создавать динамические формы и отчеты. Также в Access можно использовать макросы, позволяющие автоматизировать выполнение некоторых задач. Они позволяют открывать и закрывать формы и отчеты, создавать меню и диалоговые окна с целью автоматизации создания различных прикладных задач.

В Access можно получить контекстно-зависимую справку, для получения которой надо нажать , и на экране появится справочная информация по тому вопросу, который интересует пользователя в текущий момент. При этом можно легко перейти к оглавлению справочной системы, конкретной информации, журналу предыдущих обращений и закладкам. Информация базы данных хранится в файле с расширением.accdb.

4.2. Объекты Microsoft Access

При запуске СУБД Access появляется окно для создания новой базы данных или для работы с ранее созданными БД, или уже имеющимися шаблонами (рис.12).

Рис. 12. Запуск Access

Шаблоны представляют собой пустые структуры баз данных, в которых определены типы полей, созданы основные объекты, осуществлена связь между таблицами и т.п.

При создании новой базы данных Access откроет пустую таблицу, содержащую одну строку и два столбца (рис 13).

Рис.13. Окно новой базы данных

В левой части окна (область переходов) показаны все созданные объекты БД, пока мы лишь видим, пустую таблицу, т.к. созданных объектов в новой базе данных больше нет (рис. 13). К основным объектам СУБД Access относятся следующие.

Таблицы . Таблицы являются основными объектами баз данных, так как в них хранятся все данные, и они определяют структуру базы данных. База данных может содержать тысячи таблиц, размеры которых ограничиваются только доступным пространством на жестком диске компьютера. Количество записей в таблицах определяется объемом жесткого диска, а количество полей не более 255.

Таблицы в Access могут быть созданы следующим образом:

· в режиме «конструктора»;

· в режиме ввода данных в таблицу.

Создать таблицу можно путем импорта данных, хранящихся в другом месте, или создания связи с ними. Это можно сделать, например, с данными, хранящимися в файле Excel, в списке Windows SharePoint Services, XML-файле, другой базе данных MS ACCESS. Список SharePoint позволяет предоставить доступ к данным пользователям, у которых не установлено приложение MS ACCESS. При импорте данных создается их копия в новой таблице текущей базы данных. Последующие изменения, вносимые в исходные данные, не будут влиять на импортированные данные, и наоборот. Если осуществляется связывание с данными, в текущей базе данных создается связанная таблица, обеспечивающая динамическое подключение к данным, хранящимся в другом месте. Изменения данных в связанной таблице отражаются в источнике, а изменения в источнике - в связанной таблице.

В режиме таблицы отображаются данные, которые хранятся в таблице, а в режиме «конструктора» отображается структура таблицы.

Если таблицы имеют общие поля, можно воспользоваться подчиненной таблицей, чтобы вставить в одну таблицу записи из другой. Такой подход позволяет одновременно просматривать данные из нескольких таблиц.

Запросы . Запросы - это специальные средства, предназначенные для поиска и анализа информации в таблицах базы данных, отвечающей определенным критериям. Найденные записи, называемые результатами запроса, можно просматривать, редактировать и анализировать различными способами. Кроме того, результаты запроса могут использоваться в качестве основы для создания других объектов Access. Существуют различные типы запросов, наиболее распространенными из которых являются запросы на выборку, параметрические и перекрестные запросы, запросы на удаление записи, изменение и другие. Реже используются запросы на действие и запросы SQL (Structured Query Language). Если нужного запроса нет, то его можно создать дополнительно.

Запросы формируются различными способами, например, с помощью «мастера», также можно создать запрос вручную в режиме «конструктора». Простейшим и наиболее часто используемым видом запросов является запрос на выборку. Эти запросы выбирают данные из одной или нескольких таблиц и формируют из них новую таблицу, записи в которой можно изменять. Запросы на выборку нужны для вычисления сумм, средних значений и нахождения других итоговых значений. Таким образом, запросы используют данные из основных таблиц и создают временные таблицы.

Формы . Формы используются для ввода и редактирования записей в таблицах базы данных. Формы можно отображать в трех режимах: в режиме, предназначенном для ввода данных, в режиме таблицы, где данные представлены в табличном формате, и в режимах «макета» и «конструктора», позволяющих вносить изменения и дополнения в формы.

Основными элементами формы являются надписи, в которых указан текст, непосредственно отображающийся в форме, и поля, содержащие значения полей таблицы. Хотя режим «конструктора» позволяет создать форму с нуля, обычно он используется для доработки и совершенствования форм, созданных с помощью «мастера». Помимо вышеперечисленных средств формы также можно создавать с помощью следующих инструментов:

· «форма»;

· «разделенная форма»;

· «несколько элементов»;

· «пустая форма».

Наиболее эффективно использовать формы для ввода данных в виде специальных бланков, так как форма может иметь вид бланка. Применение форм позволяет вводить данные в удобном для пользователя виде привычных документов. Формы ввода-вывода позволяют вводить данные в базу, просматривать их, изменять значения полей, добавлять и удалять записи. Форма может содержать кнопку, используемую для печати отчета, открытия других объектов или автоматического выполнения других задач.

Отчеты . Отчеты используются для отображения информации в таблицах в отформатированном виде, который наглядно представляется как на экране монитора, так и на бумаге. Отчет является эффективным средством для вывода данных на печать из базы данных в форме, требуемой для пользователя (в виде справок, экзаменационных ведомостей, таблиц и т.д.). Помимо данных, извлеченных из нескольких таблиц и запросов, отчеты могут включать элементы оформления, свойственные печатным документам, как, например, названия, заголовки и колонтитулы.

Отчет можно отобразить в четырех режимах: в режиме «конструктора», позволяющем изменить внешний вид отчета, в режиме просмотра образца, в котором можно отобразить все элементы готового отчета, но в сокращенном виде, в режиме «макета», позволяющем более наглядно отображать (по сравнению с режимом конструктора) и форматировать отчет, и в режиме предварительного просмотра, где отчет отображается в том виде, в каком будет напечатан.

Таблицы, запросы, формы и отчеты представляют собой объекты, которые наиболее широко используются при разработке баз данных Access.

Однако возможности базы данных можно существенно расширить, если воспользоваться страницами доступа, макросами и модулями.

Страницы. Чтобы предоставить пользователям Интернета доступ к информации, в базе данных можно создать специальные страницы доступа к данным. С помощью страниц доступа к данным можно просматривать, добавлять, изменять и обрабатывать данные, хранящиеся в базе данных. Страницы доступа к данным могут также содержать данные из других источников, например, из Excel. Для публикации информации из базы данных в Web Access включают «мастер», который обеспечивает создание страницы доступа.

Макросы. Макросы представляют собой небольшие программы из одной или более макрокоманд, выполняющих определенные операции, с помощью которых обеспечивается, например, открытие формы, печать отчетов, щелчок кнопки и т.п. Это особенно удобно, если предполагается передать базу данных неквалифицированным пользователям. Например, можно написать макросы, содержащие последовательность команд, выполняющих рутинные задачи, или связать такие действия, как открытие формы или печать отчета, с кнопками кнопочной формы.

Модули. Модуль - объект базы данных, который позволяет создавать библиотеки подпрограмм и функций, используемых во всем приложении. Используя коды модулей можно решать такие задачи, как обработка ошибок ввода, объявление и применение переменных, организация циклов и т.п.

Этапы проектирования базы данных

Все тонкости построения информационной модели некоторой предметной области деятельности человека преследуют одну цель – получить хорошую БД. Поясним термин – хорошая БД и сформулируем требования, которым должна удовлетворять такая БД:

1. БД должна удовлетворять информационным потребностям пользователей (организаций) и по структуре и содержанию соответствовать решаемым задачам;

2. БД должна обеспечивать получение требуемых данных за приемлемое время, т.е. отвечать требованиям производительности;

3. БД должна легко расширяться при реорганизации предметной области;

4. БД должна легко изменяться при изменении программной и аппаратной среды;

5. Корректные данные, загруженные в БД, должны оставаться корректными (данные должны проверяться на корректность при их вводе).

Рассмотрим основные этапы проектирования (рис. 3.5):

Первый этап . Планирование разработки базы данных. На этом этапе выделятся наиболее эффективный способ реализации этапов жизненного цикла системы.

Второй этап . Определение требований к системе. Производится определение диапазона действий и границ приложения базы данных, а также производится сбор и анализ требований пользователей.

Третий этап . Проектирование концептуальной модели БД. Процесс создания БД начинается с определения концептуальной модели, представляющей объекты и их взаимосвязи без указания способов их физического хранения. Усилия на этом этапе должны быть направлены на структуризацию данных и выявление взаимосвязей между ними. Этот процесс можно разбить еще на несколько подэтапов:

a) Уточнение задачи. Еще перед началом работы над конкретным приложением у разработчика обычно имеются некоторые представления о том, что он будет разрабатывать. В иных случаях, когда разрабатывается небольшая персональная БД, такие представления могут быть достаточно полными. В других случаях, когда разрабатывается большая БД под заказ, таких представлений может быть очень мало, или они наверняка будут поверхностными. Сразу начинать разработку с определения таблиц, полей и связей между ними явно рановато. Такой подход может привести к полной переделке большей части приложения. Поэтому следует затратить некоторое время на составление списка всех основных задач, которые в принципе должны решаться этим приложением, включая и те, которые могут возникнуть в будущем.

Рис. 3.5. Схема проектирования БД

b) Уточнение последовательности выполнения задач. Чтобы приложение работало логично и удобно, лучше всего объединить основные задачи в группы и затем упорядочить задачи каждой группы так, чтобы они располагались в порядке их выполнения. Группировка и графическое представление последовательности их выполнения поможет определить естественный порядок выполнения задач.

c) Анализ данных. После определения списка задач необходимо для каждой задачи составить подробный перечень данных, требуемых для ее решения. После этапа анализа данных можно приступать к разработке концептуальной модели, т.е. к выделению объектов, атрибутов и связей.

Четвертый этап . Построение логической модели. Построение логической модели начинается с выбора модели данных. При выборе модели важную роль играет ее простота, наглядность и сравнение естественной структуры данных с моделью, ее представляющей. Например, если иерархическая структура присуща самим данным, то выбор иерархической модели будет предпочтительнее. Но зачастую этот выбор определяется успехом (или наличием) той или иной СУБД. То есть разработчик выбирает СУБД, а не модель данных. Таким образом, на этом этапе концептуальная модель транслируется в модель данных, совместимую с выбранной СУБД. Возможно, что отображенные в концептуальной модели взаимосвязи между объектами либо некоторые атрибуты объектов окажутся впоследствии нереализуемыми средствами выбранной СУБД. Это потребует изменения концептуальной модели. Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью . Иногда процесс определения концептуальной и логической моделей называется определением структуры данных.

Пятый этап . Построение физической модели. Физическая модель определяет размещение данных, методы доступа и технику индексирования. На этапе физического проектирования мы привязываемся к конкретной СУБД и расписываем схему данных более детально, с указанием типов, размеров полей и ограничений. Кроме разработки таблиц и индексов, на этом этапе производится также определение основных запросов.

При построении физической модели приходится решать две взаимно противоположные по своей сути задачи. Первой из них является минимизация места хранения данных, а второй – достижение максимальной производительности, целостности и безопасности данных. Например, для обеспечения высокой скорости поиска необходимо создание индексов, причем их число будет определяться всеми возможными комбинациями полей, участвующими в поиске; для восстановления данных требуется ведения журнала всех изменений и создание резервных копий БД; для эффективной работы транзакций требуется резервирование места на диске под временные объекты и т.д., что приводит к увеличению (иногда значительному) размера БД.

Шестой этап . Оценка физической модели. На этом этапе проводится оценка эксплуатационных характеристик. Здесь можно проверить эффективность выполнения запросов, скорость поиска, правильность и удобство выполнения операций с БД, целостность данных и эффективность расхода ресурсов компьютера. При неудовлетворительных эксплуатационных характеристиках возможен возврат к пересмотру физической и логической моделей данных, выбору СУБД и типа компьютера.

Седьмой этап . Реализация БД. При удовлетворительных эксплуатационных характеристиках можно перейти к созданию макета приложения, то есть набору основных таблиц, запросов, форм и отчетов. Этот предварительный макет можно продемонстрировать перед заказчиком и получить его одобрение перед детальной реализацией приложения.

Восьмой этап . Тестирование и оптимизация. Обязательным этапом является тестирование и оптимизация разработанного приложения.

Этап девятый, заключительный . Сопровождение и эксплуатация. Так как выявить и устранить все ошибки на этапе тестирования не получается, то этап сопровождения является обычным для баз данных.

Существует два основных подхода к проектированию схемы данных: нисходящий и восходящий. При восходящем подходе работа начинается с нижнего уровня – уровня определения атрибутов, которые на основе анализа существующих между ними связей группируются в отношения, представляющие объекты, и связи между ними. Процесс нормализации таблиц для реляционной модели данных является типичным примером этого подхода. Этот подход хорошо подходит для проектирования относительно небольших БД. При увеличении числа атрибутов до нескольких сотен и даже тысяч более подходящей стратегией проектирования является нисходящий подход. Начинается этот подход с определения нескольких высокоуровневых сущностей и связей между ними. Затем эти объекты детализируются до необходимого уровня. Примером такого подхода проектирования является использование модели «сущность-связь». На практике эти подходы обычно комбинируются. В этом случае можно говорить о смешанном подходе проектирования.

Прежде чем приступать к созданию базы данных, необходимо потратить какое-то время на ее проектирование .

Основная цель проектирования баз данных (БД) – это сокращение избыточности хранимых данных, а следовательно, экономия объема используемой памяти, уменьшение затрат на многократные операции обновления избыточных копий и устранение возможности возникновения противоречий из-за хранения в разных местах сведений об одном и том же объекте. Так называемый, «чистый» проект БД («каждый факт в одном месте») можно создать, используя методологию нормализации отношений. Нормализация должна использоваться на завершающей проверочной стадии проектирования БД.

Плохая проработка структуры базы почти всегда приводит к бесполезным затратам времени на ее переработку в дальнейшем. Опытные разработчики уделяют проектированию баз данных не меньше времени, чем их созданию. В целом же разработка базы данных включает следующие этапы:

1. Определение назначения базы данных.

2. Принятие решения о том, какие исходные данные база данных должна содержать.

3. Определение исходных таблиц базы данных.

4. Определение полей, которые будут входить в таблицы, и выбор полей, содержащих уникальные значения.

5. Назначение связей между таблицами и окончательный просмотр получившейся структуры.

6. Создание таблиц, связывание их между собой и экспериментальное наполнение базы пробными данными.

7. Создание форм, отчетов и запросов для операций с введенными данными.

Определение назначения базы данных

Разработка каждой базы данных начинается с изучения проблемы, которую она должна разрешить, или потребности, которую она должна удовлетворить.

В качестве примера попробуем создать простейшую базу данных библиотеки художественной литературы «Библиотека». База данных предназначена для хранения данных о приобретенных библиотекой книгах, информации о местонахождении отдельных экземпляров каждого издания и сведений о читателях.

Выбор информации, включаемой в базу

Для ведения библиотечных каталогов, организации поиска требуемых книг и библиотечной статистики в базе должны храниться сведения, большая часть которых размещаются в аннотированных каталожных карточках. Анализ запросов на литературу показывает, что для поиска подходящих книг (по тематике, автору, издательству и т.п.) и отбора нужного (например, по аннотации) следует выделить следующие атрибуты каталожной карточки:

2. Название книги.

3. Место издания (город).

4. Издательство (название издательства).

5. Год выпуска.

6. Аннотация.

К атрибутам, позволяющим охарактеризовать места хранения отдельных экземпляров книг, можно отнести:


1. Номер комнаты (помещения для хранения книг).

2. Номер стеллажа в комнате.

3. Номер полки на стеллаже.

4. Номер (инвентарный номер книги).

5. Дата приобретения.

6. Дата размещения конкретной книги на конкретном месте.

7. Дата изъятия книги с установленного места.

К атрибутам, позволяющим охарактеризовать читателей, можно отнести:

1. Номер читательского билета (формуляра).

2. Фамилия читателя.

3. Имя читателя.

4. Отчество читателя.

5. Адрес читателя.

6. Телефон читателя.

7. Дата выдачи читателю конкретной книги.

8. Срок, на который конкретная книга выдана читателю.

9. Дата возврата книги.

Определение исходных таблиц

Анализ определенных выше объектов и атрибутов позволяет определить для проектируемой базы данных следующие таблицы для построения базы данных:

2. Книги . Таблица предназначена для хранения сведений о книгах.

3. Издательства .Таблица предназначена для хранения сведений об издательствах.

4. Хранилище . Таблица предназначена для описания места хранения книг.

5. Выдача .Таблица предназначена для хранения сведений о выданных книгах.

6. Читатели .Таблица предназначена для хранения сведений о читателях библиотеки.

Выбор необходимых полей таблиц

Определив набор таблиц, входящих в базу, надо продумать, какая информация о каждом объекте будет входить в каждую из таблиц. Каждое поле должно принадлежать одной отдельной таблице. В то же время информация в каждом поле должна быть структурно-элементарной, то есть она должна храниться в полях в виде наименьших логических компонентов.

Исходя из вышесказанного, определяем поля в выбранных таблицах и тип хранимых данных.

Книги:

· код книги – числовое поле, предназначено для однозначного определения каждой конкретной книги в базе данных;

· название книги

· аннотация – текстовое поле;

· дата издания ;

· дата поступления в библиотеку ;

· место хранения .
Издательства:

· код издательства – числовое поле, предназначено для однозначного определения каждого конкретного издательства в базе данных;

· название издательства – символьное поле, не более 256 символов;

· город, где расположено издательство – символьное поле, не более 25 символов.

Хранилище:

· код места – числовое поле, предназначено для однозначного определения каждой конкретной полки в базе данных;

· номер комнаты – числовое поле;

· номер стеллажа – числовое поле;

· номер полки – числовое поле.

Выдача:

· код выдачи – числовое поле, предназначено для однозначного определения каждой конкретной выдачи в базе данных;

· номер выданной книги – числовое поле;

· код читателя – числовое поле;

· дата выдачи ;

· срок выдачи (количество дней);

· дата возврата .

Читатели:

· номер читательского билета – числовое поле, предназначено для однозначного определения каждого конкретного читателя в базе данных;

· фамилия

· имя – символьное поле, не более 50 символов;

· отчество – символьное поле, не более 50 символов;

· адрес – символьное поле, не более 256 символов;

· телефон – символьное поле, не более 20 символов.

Выбор уникальных полей

В реляционной базе данных таблицы могут быть связаны друг с другом. Эта связь устанавливается с помощью уникальных полей. Уникальные поля – это такие поля, в которых значения не могут повторяться. Например, серия и номер паспорта однозначно идентифицируют любого человека, имеющего паспорт. Такое поле (или комбинация полей), которое однозначно идентифицирует запись в таблице, называется первичным ключом .В качестве поля первичного ключа также может выступать порядковый номер записи в каталоге, табельный номер работника предприятия, артикул товара в розничной торговле.

Для нашей базы данных первичными ключами являются следующие поля:

· Книги – код книги .

· Издательства – код издательства .

· Хранилище – код места .

· Выдача – код выдачи .

· Читатели номер билета .

Назначение связей между таблицами

Межтабличные связи увязывают две таблицы с помощью общего поля, которое имеется в обеих таблицах. Существуют три типа таких связей:

· один-к-одному – каждая запись таблицы А не может быть связана более чем с одной записью таблицы Б;

· один-ко-многим – одна запись в таблице А может быть связана со многими записями таблицы Б (например, в каждом классе может быть много учеников);

· многие-ко-многим – каждая запись в таблице А может быть связана со многими записями в таблице Б, а каждая запись в таблице Б – со многими записями в таблице А (например, у каждого учащегося может быть несколько преподавателей, а у каждого преподавателя может быть много учеников).

Реляционные базы данных не позволяют создавать связи типа многие-ко-многим напрямую. Однако в реальной жизни такие связи встречаются очень часто, поэтому их реализуют через вспомогательные таблицы, увязывая несколько таблиц связями типа один-ко-многим.

Для того чтобы связать одну таблицу с другой, надо ввести во вторую таблицу поле первичного ключа из первой таблицы, т.е. ввести во вторую таблицу внешний ключ . Связь двух таблиц выполняется подключением первичного ключа главной таблицы (находящейся на стороне отношения «один») к такому же полю внешнего ключа связанной таблицы (находящейся на стороне отношения «многие»). Поле внешнего ключа в связанной таблице должно иметь тот же тип данных, что и первичный ключ в родительской таблице, но с одним исключением. Если первичный ключ главной таблицы имеет тип данных «Счетчик», то поле внешнего ключа в связанной таблице должно иметь тип данных «Числовой».

В нашей базе данных установим следующие типы связей между таблицами:

1. Авторы – Книги. Здесь связь многие-ко-многим , у любого автора может быть более одной книги, и любая книга может быть написана несколькими авторами. Поэтому вводим вспомогательную таблицу «Авторы–книги» со следующими полями:

· код книги .

2. Книги – Издательства. Здесь связь многие-ко-многим , любая книга может быть издана несколькими издательствами и любое издательство издает не одну книгу. Поэтому вводим еще одну вспомогательную таблицу «Книги–издательства» со следующими полями:

· код книги ;

· код издательства .

3. Хранилище – Книги. Здесь связь один-ко-многим , на одной полке можно расставить множество книг, но любая книга может быть только на одной полке в хранилище. Поэтому поле «Место хранения» в таблице «Книги» определяем как внешний ключ, и связываем таблицы «Хранилище» и «Книги» первичным ключом «Код места» и внешним ключом «Место хранения».

4. Книги – Выдача. Здесь связь один-ко-многим , т.е. одна и та же книга может быть выдана несколько раз в разные даты разным читателям. Поэтому поле «Номер выданной книги» в таблице «Выдача» определяем как внешний ключ, и связываем таблицы «Книги» и «Выдача» первичным ключом «Код книги» и внешним ключом «Номер выданной книги».

5. Читатели – Выдача. Здесь связь один-ко-многим , т.е. одна и та же книга может быть выдана несколько раз разным читателям в разные сроки. Поэтому поле «Код читателя» в таблице «Выдача» определяем как внешний ключ, и связываем таблицы «Читатели» и «Выдача» первичным ключом «Номер читательского билета» и внешним ключом «Код читателя».


Нормализация отношений

Закончив проектирование таблиц и выявив связи, существующие между ними, необходимо тщательно перепроверить полученную структуру, прежде чем приступать к созданию таблиц и вводу информации. Нормализация отношений позволяет существенно сократить объем хранимой информации и устранить аномалии в организации хранения данных.

Правило 1: каждое поле таблицы должно представлять уникальный тип информации.

В спроектированной нами базе данных нет полей в разных таблицах, содержащих одну и ту же информацию (за исключением внешних ключей).

Правило 2: каждая таблица должна иметь уникальный идентификатор, или первичный ключ, который может состоять из одного или нескольких полей.

В спроектированной нами базе данных все таблицы (за исключением вспомогательных «Авторы – книги» и «Издательства – книги») содержат первичный ключ.

Правило 3: для каждого значения первичного ключа значения в столбцах данных должны относиться к объекту таблицы и полностью его описывать.

Это правило используется двояко. Во-первых, в таблице не должно быть данных, не относящихся к объекту, определяемому первичным ключом. Например, хотя для каждой книги требуется информация о ее авторе, но автор является самостоятельным объектом, и данные о нем должны находиться в соответствующей таблице. Во-вторых, данные в таблице должны полностью описывать объект.

Правило 4: должна быть возможность изменять значения любого поля (не входящего в первичный ключ) без воздействия на данные других полей.

Последнее правило позволяет проверить, не возникнут ли проблемы при изменении данных в таблицах. Поскольку в спроектированной нами базе данные, содержащиеся в разных полях таблиц, нигде не повторяются, мы имеем возможность корректировать значения любых полей (за исключением первичных ключей).

Наполнение базы данных, создание форм и отчетов

Чтобы определить, насколько структура базы данных соответствует поставленной задаче и насколько удобно с этой базой работать, необходимо ввести несколько простейших записей. Обычно после этого приходится возвращаться к структуре базы и настраивать ее в соответствии с тем, какие результаты были получены в ходе такого теста.

На заключительном этапе создают формы для ввода информации в базу, отчеты для вывода информации и запросы, с помощью которых производится выборка информации из нескольких таблиц. Если база предназначена для передачи другим пользователям, то, скорее всего, необходимо, чтобы кто-то из посторонних людей проверил, насколько удобно работать с формами и отчетами.

Полученная схема данных разработанной БД в MS Access представлена на рис. 4.1.

Рис. 4.1. Схема данных разработанной БД в Microsoft Access

Контрольные вопросы

1. Дайте определение информационной системы.

2. Поясните понятие базы данных.

3. Что такое предметная область?

4. Дайте определение СУБД.

5. Что такое модель данных?

6. Поясните основные принципы реляционной модели данных.

7. Поясните особенности СУБД Microsoft Access.

8. Каковы основные объекты базы данных Access?

9. Поясните структуру таблицы Access.

10. Поясните понятия: запрос, форма, отчет, страница доступа к данных, макрос, модуль.

11. Каковы основные этапы проектирования базы данных?

12. Каким образом осуществляется выбор информации, включаемой в базу данных?

13. Поясните понятия: первичный ключ, внешний ключ.

14. Каково назначение связей между таблицами?

15. Поясните основные типы связей между таблицами.

16. В чем заключается нормализация отношений базы данных?



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: