Первые процессоры intel. Процессоры. Архитектуры процессора Intel

Что представляет собой процессор?

Если не вдаваться в подробности, то это центральный элемент системы, который отвечает за все информационные преобразования и управляет вычислительным процессом.

Мобильная версия чипа (ARM) мало чем отличается от стационарного аналога. Единственные различия заключаются в размерах, мощности и тактовой частоте.

У последних эти показатели ниже.

Все они достигли успехов в этой отрасли, но основная борьба ведется между китайской компанией MediaTek и американской Qualcomm.

Qualcomm

Силиконовый гигант основали еще в 1985 году. Компания занималась выпуском телефонов, GPS-модулей и беспроводных устройств.

Мы же будем ее рассматривать в качестве крупнейшего производителя мобильных чипов.

В 2005 году они лицензировали технологии ARM, выкупив права на создание ядра Cortex A8. На его основе был разработан собственный чип.

Топовая линейка чипов носит имя Snapdragon.

Эти процессоры устанавливаются в такие флагманские девайсы, как Sony Xperia линейки Z, HTC One, LG G2 и G3 и некоторые модели Samsung.

А вот последний топовый чип Snapdragon 810 вызвал немало дискуссий. Некоторые говорили, что он сильно перегревается, за счет чего страдает производительность.

Но этот факт так и остался незадокументированным.

8 ядер, LTE-чип Cat 6, дающий скорость до 300 Мбит/с, поддержка 4К видео, а также сенсоров до 55 Мп. Показатели впечатляющие.

MediaTek

Они берут не только качеством, но и массовостью, поставляя продукцию во все смартфоны, стоимостью до 200$.

Самый известный «камень», а именно MT6592, устанавливаемый на бюджетные телефоны вроде Lenovo, в частности S860 и не только.

Они первые разработали 10-ядерный процессор под названием Xelio X20. На данный момент - это самая мощная однокристальная система в мире.

Набирает в AnTuTu более 70000 «попугаев». Серийно пока не выпускается.

Спецификации включают 3 блока ядер: 2х2,5 ГГц, 4х2 ГГц и 4х1,4 ГГц. Графика Mali 800 и поддержка 2 сенсоров на 13 Мп. Поддержка Wi-Fi 802.11 ас и LTE Cat 6.

Apple

Купертиновцы всегда славились закрытостью. Их неофициальный девиз можно трактовать так: «Тебе не нужно знать, что внутри. Просто бери и пользуйся».

И это касается всей продукции компании.

Что касается мобильного подразделения, то ситуация здесь не менее запутанная.

Известно лишь, что компания сама разрабатывает процессоры для смартфонов и планшетов, присваивая им индекс А и порядковый номер.

В частности, самыми мощными мобильными камнями считаются A8 и A8X. Ими комплектуются iPhone 6/6 Plus и iPad Air соответственно.

Несмотря на 2 ядра по 1,4 ГГц и сопроцессор M8, показатели впечатляют.

Intel

Несмотря на то, что сей гигант возглавляет рейтинг мобильных процессоров для ноутбуков, на поприще мобильных разработок он фактически сидит на лаве запасных.

Хотя тот факт, что смартфоны , комплектуемые чипами Intel Atom, пользуются повышенным спросом, можно сказать, что компания делает успехи.

Сейчас самый сильный чип, который используется серийно, имеет индекс Z3580. 4 ядра на частоте 2,33 дадут фору даже таким «игрокам», как Snapdragon 801 и Apple A7.

Спецификации: 4х2,33 ГГц, поддержка DDR-1600 и фирменная графика от Intel.

Nvidia

Ситуация с компанией, которая славится геймерскими и оверклокерскими видеокартами сродни с Nvidia.

На своем главном поприще они добились выдающихся результатов, а вот с мобильным сегментом не заладилось.

В частности, чипы Tegra имеют хороший потенциал, но вот ведущие производители не спешат закупать процессоры пачками.

Да, железо от Nvidia по достоинству оценят геймеры.

Вот только большинство пользователей смартфонов – бизнесмены, молодежь в возрасте от 20 лет и девушки, которые вряд ли захотят «рубиться в Doom на ультра».

В 1995 году Intel выпустила на рынок микропроцессор Pentium Pro. Несмотря на название, он имел мало общего с обычным Pentium. Одним из главных нововведений в Pentium Pro стало то, что в нём инструкции x86 не исполнялись напрямую, а декодировались в последовательности простых внутренних микроопераций. Иными словами, Pentium Pro «внутри» был больше похож на современные ему RISC-процессоры, чем на предыдущие чипы семейства x86.

Подобная архитектура позволила Intel реализовать множество мер, которые привели к росту производительности. В частности, Pentium Pro стал первым x86-процессором, который получил внеочередное исполнение. При внеочередном исполнении микрооперации сначала поступают в буфер операций, где сортируются и отправляются в вычислительные блоки не в порядке поступления, а в порядке готовности к исполнению. Подобный подход позволил практически исключить простой вычислительных блоков процессора. Разрядность шины адреса была увеличена до 36 бит, что в сочетании с технологией PAE позволило увеличить максимальный объём оперативной памяти до 64 ГБ. (Впрочем, эта функциональность была реализована только в серверных наборах системной логики, к тому же максимальный объём памяти, доступной одному процессу, по-прежнему был равен 4 ГБ.) Также Pentium Pro получил встроенную кеш-память второго уровня объёмом от 256 кБ до 1 МБ, которая работала на полной тактовой частоте процессора. В результате, на момент выхода на рынок Pentium Pro стал самым быстрым в мире 32-битным микропроцессором, опередив разработанные альянсом AIM (Apple-IBM-Motorola) чипы PowerPC.

Изначально планировалось, что Pentium Pro полностью заменит Pentium, но этого не произошло как раз из-за уже упомянутой кеш-памяти. Оказалось, что выход годных микросхем быстрой памяти SRAM, способной работать на полной частоте процессора, невысок, поэтому Pentium Pro имел очень высокую себестоимость. В результате, наследником Pentium стал вышедший в 1997 году Pentium II, получивший набор инструкций MMX и кеш-память, работающую на половинной частоте процессора. Кроме того, в Pentium II была улучшена производительность при работе с 16-битным кодом (на тот момент это было важно, поскольку Windows 95 и Windows 98, по-прежнему, содержали большое количество 16-битного кода).


Pentium III Tualatin: самый быстрый Pentium III

В 1999 году на смену Pentium II пришёл Pentium III, который был практически идентичен ему архитектурно, но получил новый набор дополнительных инструкций, известный как SSE. Pentium III пережил несколько итераций, поздние чипы этого семейства имели тактовую частоту выше 1 ГГц и 512 кБ кеш-памяти, работавшей на полной частоте процессора.

«Сетевой взрыв»

Несмотря на успешность микроархитектуры P6 (лежавшей в основе Pentium Pro, Pentium II и Pentium III), Pentium 4 был построен по совсем другому принципу. Вместо сложного ядра с высоким IPC (Instructions Per Clock - количеством исполняемых инструкций на такт) и относительно невысокой тактовой частотой было решено перейти к более простому ядру с длинным конвеером и более низким IPC, но более высокой тактовой частотой. Если поздние процессоры Pentium III имели конвеер длиной 10 ступеней, то в Pentium 4 длина конвеера составляла от 20 до 31 ступени (в зависимости от версии чипа). Чтобы компенсировать низкую производительность процессорного ядра, целочисленные вычислительные блоки (ALU) внутри процессора работали на удвоенной тактовой частоте. Например, в процессоре Pentium 4 с частотой 3 ГГц блоки ALU работали на частоте 6 ГГц. Изначально планировалось, что процессоры с микроархитектурой NetBurst достигнут тактовой частоты 4 ГГц, но на деле частота 3.8 ГГц оказалась предельной.

Микроархитектуру NetBurst можно считать относительно неудачной, но на счету процессоров на её базе сразу несколько достижений: Pentium 4 стал первым x86-процессором, достигшим тактовой частоты 3 ГГц, и первым 64-битным x86-процессором Intel. Кроме того, на базе Pentium 4 был создан процессор Pentium D, который стал первым двухъядерным процессором Intel.

Pentium M и его потомки

Практически сразу после появления мобильных Pentium 4 стало понятно, что архитектура NetBurst, в силу высокого тепловыделения и энергопотребления, не подходит для ноутбуков. Поэтому в 2003 году появился процессор Pentium M, который, по сути, был усовершенствованной и осовремененной версией ядра P6. Этот процессор стал основой крайне успешной мобильной платформы Intel Centrino, которая включала в себя процессор, чипсет и беспроводный адаптер Intel. Именно платформа Centrino сделала возможным создание первых тонких и лёгких ноутбуков. На это же время пришлись усилия Intel по продвижению беспроводных сетей, в частности, в Украине под эгидой компании в середине 2000-х годов были реализованы проекты по построению сетей Wi-Fi в Киевском национальном университете им. Т. Г. Шевченко и международном аэропорту «Киев-Борисполь».


Samsung X10: один из первых тонких и легких ноутбуков на базе Centrino

В 2004-2005 годах стало понятно, что процессоры Pentium M обеспечивают более высокую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. Именно поэтому использованные в них архитектурные решения легли в основу микроархитектуры Core, которая использовалась как в настольных, так и в мобильных процессорах. В 2006 году был выпущен первый настольный 4-ядерный процессор Intel - им стал Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 МБ кеш-памяти второго уровня.

От Core"ки до Core"ки

В 2008 году Intel представила бренд Core i7, под которым продавались топовые процессоры на базе новой микроархитектуры Nehalem. Эти процессоры получили новую системную шину, интегрированную графику, а также встроенные контроллеры памяти и шины PCIe. В 2009-2010 годах были также представлены бренды Core i5 и Core i3, а процессоры Core 2 и их производные вытеснены из всех ценовых сегментов.

В 2011 году на рынок вышли процессоры на базе архитектуры Sandy Bridge, в 2012 году была представлена усовершенствованная версия Sandy Bridge под названием Ivy Bridge, которая стала первым процессором Intel, использующим техпроцесс 22 нм и 3D-процессоры. В 2013 году были представлены процессоры Haswell, а в 2014 и 2015 годах - Broadwell. Процессоры Broadwell производятся по техпроцессу 14 нм. К ним относится, в том числе, процессор Core M, который имеет расчётное тепловыделение всего 4.5 Вт, что позволяет использовать его в устройствах с пассивным охлаждением.

Можно отметить, что темпы роста чистой производительности процессоров в последнее время несколько снизились: в принципе, даже процессоров Core 2 (не говоря уже о Core i7/i5 первого поколения) достаточно практически для любых задач. Это связано с тем, что производители уделяют больше внимания повышению энергоэффективности процессоров и такому параметру, как «производительность на ватт». В результате, современные ноутбуки, построенные на энергоэффективных процессорах Intel, работают от аккумулятора по 9-12 часов и при этом обеспечивают производительность, достаточную практически для любых задач. Ещё 3-4 года назад такое было невозможно.

Atom: нетбуки, планшеты, смартфоны...

Параллельно с высокопроизводительными процессорами Core компания Intel развивает и линейку энергоэффективных процессоров Atom. Они впервые появились в 2008 году в качестве процессоров для нетбуков (то есть, низкопроизводительных и дешёвых ноутбуков), но с тех пор нашли применение в качестве чипов для смартфонов и планшетов на базе операционных систем Android и Windows. По сути Atom, на сегодняшний день, является единственным конкурентом различных чипов на базе архитектуры ARM. В 2014 году было выпущено 46 миллионов планшетов на базе процессоров Atom.

Quark: меньше, чем Atom


Intel Galileo: плата для разработки с процессором Quark

Новейшим семейством процессоров Intel является линейка Quark. Это совсем простые процессоры, архитектурно близкие к оригинальному Pentium. Каждый процессор также включает все контроллеры, необходимые для построения законченного устройства. Эти процессоры предназначены, в первую очередь, для создания встроенных решений, объединённых в «интернет вещей». Для энтузиастов и разработчиков Intel выпускает платы Intel Galileo с процессорами Quark, эти платы совместимы с Arduino и могут использоваться для создания собственных проектов и выполнения различных задач по автоматизации.

Сегодня мы настолько привыкли к современным реалиям, что воспринимаем их как данность. Смартфон в нашем кармане или ноутбук в сумке кажется нам не чудом технологий, а чем-то обыденным. Но всё начиналось с крошечного чипа, содержащего 2300 транзисторов и работавшего на тактовой частоте 740 кГц. Иногда стоит оглянуться назад, чтобы оценить масштабы проделанного пути.

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Липецкий государственный технический университет»

Кафедра электропривода

КУРСОВАЯ РАБОТА

по дисциплине:”Микропроцессорные средства.”

на тему:”История развития процессоров INTEL .Процессоры INTEL ATOM .Ноутбуки на базе технологии INTEL ATOM .”

Выполнила Верзилина О.Н.

Студентка группа ОЗЭП-04-1

Проверил

Преподаватель Пличко Н.П.

Липецк 2008


1.История развития фирмы INTEL………………………………………3

1.1.Развитие и выпуск процессоров INTEL……………………………..9

2.Обзор технологии ATOM………………………………………………20

3.Обзор процессоров INTELATOM……………………………………..22

4.Процессоры INTELATOM 230,Z520…………………………………..24

4.1.Материнская плата GigabyteGC230D………………………………..24

4.2.Материнская плата IXT………………………………………………..32

5.Процессор INTELATOM 330…………………………………………...42

6.Ноутбуки на базе процессоров INTELATOM…………………………43

6.1.Ноутбук MSI Wind U100-024RU………………………………………43

6.2.Ноутбук ASUS Eee 1000H……………………………………………...48

6.3.Ноутбук Acer One AOA 150-Bb………………………………………..51

6.4.Ноутбук Gigabyte M912V………………………………………………53

6.5.Ноутбук Asus N10………………………………………………………54

6.6.Ноутбук SatelliteNB 105……………………………………………….55


1. История создания фирмы INTEL .

12 декабря 2002 года исполнилось 75 лет со дня рождения Роберта Нойса, изобретателя микросхемы и одного из основателей фирмы Intel.

Началось все с того, что в 1955 году изобретатель транзистора Уильям Шокли открыл собственную фирму Shockley Semiconductor Labs в Пало-Альто (что, кроме всего прочего, послужило началом создания Кремниевой долины), куда набрал довольно много молодых исследователей. В 1959 году по ряду причин от него ушла группа в восемь инженеров, которых не устраивала работа “на дядю” и они хотели попробовать реализовать собственные идеи. “Восьмерка предателей”, как их называл Шокли, среди которых были в том числе Мур с Нойсом, основала фирму Fairchild Semiconductor.

Боб Нойс занял в новой компании должность директора по исследованиям и разработкам. Позднее он утверждал, что придумал микросхему из лени – довольно бессмысленно выглядело, когда в процессе изготовления микромодулей пластины кремния сначала разрезались на отдельные транзисторы, а затем опять соединялись друг с другом в общую схему. Процесс был крайне трудоемким – все соединения паялись вручную под микроскопом! – и дорогим. К тому моменту сотрудником Fairchild, тоже одним из сооснователей – Джином Герни (Jean Hoerni) уже была разработана т.н. планарная технология производства транзисторов, в которой все рабочие области находятся в одной плоскости. Нойс предложил изолировать отдельные транзисторы в кристалле друг от друга обратносмещенными p-n переходами, а поверхность покрывать изолирующим окислом, и выполнять межсоединения с помощью напыления полосок из алюминия. Контакт с отдельными элементами осуществлялся через окна в этом окисле, которые вытравливались по специальному шаблону плавиковой кислотой.

Причем, как он выяснил, алюминий отлично приставал как к кремнию, так и к его окислу (именно проблема адсорбции материала проводника к кремнию до последнего времени не позволяла использовать медь вместо алюминия, несмотря на ее более высокую электропроводность). Такая планарная технология в несколько модернизированном виде сохранилась до наших дней. Для тестирования первых микросхем использовался единственный прибор – осциллограф.

Между тем выяснилось, что Нойса в благородном деле создания первой микросхемы опередили. Еще летом 1958-го сотрудник Texas Instruments Джек Килби продемонстрировал возможности изготовления всех дискретных элементов, включая резисторы и даже конденсаторы, на кремнии.

Планарной технологии в его распоряжении не было, поэтому он использовал так называемые меза-транзисторы. В августе он собрал работающий макет триггера, в котором отдельные изготовленные им собственноручно элементы соединялись золотыми проволочками, а 12 сентября 1958 г. предъявил работающую микросхему – мультивибратор с рабочей частотой 1,3 МГц. В 1960 году эти достижения демонстрировались на публике – на выставке американского Института радиоинженеров. Пресса очень холодно встретила открытие. В числе прочих отрицательных особенностей “integrated circuit” называлась неремонтопригодность. Хотя Килби подал заявку на патент еще в феврале 1959, а Fairchild сделала это только в июле того же года, последней патент выдали раньше – в апреле 1961 г., а Килби – только в июне 1964 г. Потом была десятилетняя война о приоритетах, в результате которой, как говорится победила дружба. В конечном счете, Апелляционный Суд подтвердил претензии Нойса на первенство в технологии, но постановил считать Килби создателем первой работающей микросхемы. В 2000 Килби получил за это изобретение Нобелевскую премию (среди двух других лауреатов был академик Алферов).

Роберт Нойс и Гордон Мур ушли из компании FairchildSemiconductor и основали свою фирму, а вскоре к ним присоединилсяЭнди Гроув. Тот же финансист, который ранее помог создать Fairchild, предоставил $2.5 млн, хотя бизнес-план на одной страничке, собственноручно отпечатанный на пишущей машинке Робертом Нойсом, выглядел не слишком впечатляюще: куча опечаток, плюс заявления весьма общего характера.

Выбор имени оказался нелегким делом. Предлагались десятки вариантов, но все они были отброшены. Кстати, вам ничего не говорят названия CalCompили CompTek? А ведь они могли бы принадлежать не тем популярным фирмам, которые носят их сейчас, а крупнейшему производителю процессоров - в свое время их отвергли среди прочих вариантов. В итоге было решено назвать компанию Intel, от слов «интегрированная электроника». Правда, сначала пришлось выкупить это название у группы мотелей, зарегистрировавшей его ранее.

Итак, в 1969 году Intel начинала работу с микросхем памяти и добилась некоторого успеха, но явно недостаточного для славы. В первый год существования доход составил всего $2672.

Сегодня Intel производит чипы в расчете на рыночные продажи, но в первые годы своего становления компания нередко делала микросхемы на заказ. В апреле 1969 года в Intel обратились представители японской фирмы Busicom, занимающейся выпуском калькуляторов. Японцы прослышали, что у Intel самая передовая технология производства микросхем. Для своего нового настольного калькулятора Busicom хотела заказать 12 микросхем различного назначения. Проблема, однако, заключалась в том, что ресурсы Intel в тот момент не позволяли выполнить такой заказ. Методика разработки микросхем сегодня не сильно отличается от той, что была в конце 60-х годов XX века, правда, инструментарий отличается весьма заметно.

В те давние-давние годы такие весьма трудоемкие операции, как проектирование и тестирование, выполнялись вручную. Проектировщики вычерчивали черновые варианты на миллиметровке, а чертежники переносили их на специальную вощеную бумагу (восковку). Прототип маски изготовляли путем ручного нанесения линий на огромные листы лавсановой пленки. Никаких компьютерных систем обсчета схемы и ее узлов еще не существовало. Проверка правильности производилась путем "прохода" по всем линиям зеленым или желтым фломастером. Сама маска изготавливалась путем переноса чертежа с лавсановой пленки на так называемый рубилит - огромные двухслойные листы рубинового цвета. Гравировка на рубилите также осуществлялась вручную. Затем несколько дней приходилось перепроверять точность гравировки. В том случае, если необходимо было убрать или добавить какие-то транзисторы, это делалось опять-таки вручную, с использованием скальпеля. Только после тщательной проверки лист рубилита передавался изготовителю маски. Малейшая ошибка на любом этапе - и все приходилось начинать сначала. Например, первый тестовый экземпляр "изделия 3101" получился 63-разрядным.

Словом, 12 новых микросхем Intel физически не могла потянуть. Но Мур и Нойс были не только замечательными инженерами, но и предпринимателями, в связи с чем им сильно не хотелось терять выгодный заказ. И тут одному из сотрудников Intel, Теду Хоффу (Ted Hoff), пришло в голову, что, раз компания не имеет возможности спроектировать 12 микросхем, нужно сделать всего одну универсальную микросхему, которая по своим функциональным возможностям заменит их все. Иначе говоря, Тед Хофф сформулировал идею микропроцессора - первого в мире. В июле 1969 года была создана группа по разработке, и работа началась. В сентябре к группе присоединился также перешедший из Fairchild Стэн Мазор (Stan Mazor). Контролером от заказчика в группу вошел японец Масатоси Сима (Masatoshi Shima). Чтобы полностью обеспечить работу калькулятора, необходимо было изготовить не одну, а четыре микросхемы. Таким образом, вместо 12 чипов требовалось разработать только четыре, но один из них - универсальный. Изготовлением микросхем такой сложности до этого никто не занимался.


Итальяно-японское содружество

В апреле 1970 года к группе по выполнению заказа Busicom присоединился новый сотрудник. Он пришел из кузницы кадров для Intel - компании Fairchild Semiconductor. Звали нового сотрудника Федерико Фэджин (Federico Faggin). Ему было 28 лет, но уже почти десять лет он занимался созданием компьютеров. В девятнадцать лет Фэджин участвовал в построении мини-ЭВМ итальянской компании Olivetti. Затем он попал в итальянское представительство Fairchild, где занимался разработкой нескольких микросхем. В 1968 году Фэджин покинул Италию и перебрался в США, в лабораторию Fairchild Semiconductor в Пало-Альто.
Стэн Мазор показал новому члену группы общую спецификацию проектируемого набора микросхем и сказал, что на следующий день прилетает представитель заказчика.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: