Интегратор на оу принцип работы. Операционный усилитель. Принципиальные схемы и основные выражения

«Пароли и формы». Первая строка — включение автозаполнения одним кликом, рассчитана на ускоренный способ регистрации — создается учетная запись данных и на основе нее, заполняются поля в различных анкетах при регистрации. Чтобы создать такую запись, нажимаем на строчку «Настройки автозаполнения».

В появившемся окне можно создать шаблон для заполнения адреса или для заполнения данных о кредитной карте.

Создадим шаблон для заполнения адреса. Для этого нажимаем кнопку «Добавить почтовый адрес». В окне заполнения шаблона, вводим все свои данные в форму. По мере заполнения анкеты могут появляться дополнительные поля. Можно добавить несколько адресов электронной почты и несколько имен контакта. Не обязательно заполнять все поля. После заполнения нажимаем кнопку «ОК».

Точно таким же образом можно добавить еще шаблоны для заполнения анкет. Созданные шаблоны можно редактировать или удалять, для этого наводим курсор мышки на нужный шаблон, появляются дополнительные кнопки. Кликаем по нужной кнопке для удаления или редактирования.

Для заполнения данных о кредитной карте нажимаем «Добавить кредитную карту». В появившемся окне вводим имя владельца (и фамилию), номер карты (шестнадцать цифр) и дата истечения срока действия (срок действия указывается на лицевой части карты под номером). После заполнения нажимаем кнопку «ОК»

Таким же образом можно добавить другие карты. При наведении на запись о карте, появляется кнопка, для редактирования данных, и крестик, для удаления записи. Кнопку «Готово» нажимать не обязательно, данные уже сохранены, можно просто закрыть это окошко, кликнув по крестику в правом верхнем углу.

«Предлагать сохранение паролей для сайтов» — если флажок установлен в этой строке, то при вводе пароля на любом сайте, Вам будет предлагаться сохранить пароль в память браузера.

При следующем входе на этот сайт, можно кликнуть в поле для ввода логина, в выпадающем меню покажутся все сохраненные логины для этого сайта. Выбираем нужный, кликаем по нему левой клавишей мышки, а графа пароль заполняется автоматически, то есть не нужно снова вводить логин и пароль, только выбрать из сохраненных.

Такое сохранение действует не только

Надоело постоянно заполнять веб-формы одной и той же информацией? Функция автозаполнения Google Chrome позволяет заполнять формы с помощью одного клика .

Использование автозаполнения Google Chrome

  • В Google Chrome хранятся сведения о вашем адресе . Во время первого заполнения формы Google Chrome автоматически сохраняет введенную контактную информацию , например имя, адрес, номер телефона или электронный адрес как запись автозаполнения. Можно хранить несколько адресов как отдельные записи.
  • Данные кредитной карты можно надежно хранить . Браузер может сохранять данные вашей кредитной карты только с вашего четко выраженного разрешения. При вводе данных кредитной карты в форму вверху страницы Google Chrome появится вопрос, хотите ли вы сохранить эти данные. Нажмите Сохранить данные , если нужно сохранить данные кредитной карты в виде записи автозаполнения.
  • Чтобы заполнить форму, достаточно одного клика . Когда вы начнете заполнять форму, в меню отображаются записи автозаполнения, соответствующие введенному тексту. Выберите запись для автозаполнения формы информации из записи.

    Google Chrome также сохраняет текст, введенный в определенные поля формы. В следующий раз при заполнении того самого поля в меню отображается текст, введенный ранее. Просто выберите текст, который нужно использовать, чтобы вставить его непосредственно в поле.

  • Просмотрите форму, прежде чем заполнять ее . Чтобы увидеть, каким именно данными Google Chrome заполнит форму, прежде чем это произойдет, наведите курсор на запись автозаполнения. Поля, которые можно заполнить автоматически, выделяются желтым.

Примечание : Важно использовать автозаполнение только на проверенных сайтах , поскольку некоторые веб-страницы могут внести ваши данные в скрытые или неразборчивые поля. Некоторые веб-сайты не позволяют браузеру сохранять введенный текст, поэтому Google Chrome не сможет заполнять формы на этих сайтах.

Управление записями автозаполнения Google Chrome

  1. В диалоговом окне, можно создать множество профилей.
    • Чтобы сохранить новую запись адреса , перейдите в конец раздела «Адреса» и нажмите Добавить новый адрес .
    • Чтобы сохранить новую запись кредитной карты , перейдите в конец раздела «Кредитные карты» и нажмите Добавить новую кредитную карт .
    • Чтобы изменить существующую запись , дважды щелкните его в списке, чтобы открыть диалоговое окно редактирования.
    • Чтобы удалить существующую запись , выберите его в списке и нажмите значок × , который появится в конце строки.

Примечание : если адрес будет сохранен в Google Payments, вы не cможете его удалить из автозаполнения. Чтобы изменить или удалить адрес, нажмите кнопку Изменить и выполните вход. Затем введите изменения в Google Payments.

Добавление и редактирование кредитных карт

Покупки в интернете с помощью автозаполнения

В момент оплаты покупки в интернете кредитные карты, сохраненные в Chrome и Google Payments появляются в списке.

Если при заполнении формы вы не видите предложения автозаполнения, возможно, сайт не отвечает требованиям безопасности и функция не может быть использована.

Проверка кредитной карты при оформлении платежа

При выборе карты может быть предложено ввести номер CVC. У вас есть только две попытки. Затем придётся подождать.

Если вы не хотите, чтобы Chrome проверял право владения кредитной картой каждый раз, отключите проверку:

  1. При заполнении формы выберите из предложенных кредитных карт, которую вы хотите использовать.
  2. Когда появится запрос, введите номер CVC. Как правило, он находится на обратной стороне кредитной карты.
  3. Установите флажок Сохранить копию этой карты на вашем устройстве .
  4. Нажмите Подтвердить .

Сохранение кредитных карт в Google Payments

Если вы вошли в Chrome, карты и адреса, сохраненные в Google Payments, будут отображаться в виде предложений автозаполнения.

Чтобы остановить запись в Google Payments данных кредитных карт, отключите синхронизацию. Информация о платежах по-прежнему будет храниться в Chrome.

Удаление данных формы автозаполнения

Если при заполнении формы вы увидите предложение автозаполнения, вы можете удалить его на странице.

Всем доброго времени суток. В одной из своих статей я рассказывал о простых RC-цепях и о влиянии на прохождении сигналов различной формы через эти цепи. Сегодняшняя статья несколько дополнит предыдущую в сфере операционных усилителей.

Интегратор

Различные разновидности интеграторов применяются во многих схемах, например, в активных фильтрах или в системах автоматического регулирования для интегрирования сигнала ошибки.

Простой RC-интегратор имеет два серьёзных недостатка:

  1. При прохождении сигнала через простой RC-интегратор происходит ослабление входного сигнала.
  2. RC-интегратор имеет высокое выходное сопротивление.

Интегратор на основе ОУ лишён данных недостатков, поэтому на практике применяется чаще. Он состоит из ОУ DA1, входного резистора R1 и конденсатора С1, который обеспечивает обратную связь.

Работа интегратора основана на том, что инвертирующий вход заземлён, согласно принципу виртуального замыкания. Через резистор R1 протекает входной ток I BX , в тоже время для уравновешивания точки нулевого потенциала, конденсатор будет заряжаться током одинаковым по величине I BX , но с противоположным знаком. В результате на выходе интегратора будет формироваться напряжение, до которого конденсатор заряжается этим током. Входное сопротивление интегратора будет равно сопротивлению резистора R1, а выходное сопротивление будет определяться параметрами ОУ.

Основные соотношения интегратора


Основным недостатком интегратора на ОУ является явление дрейфа выходного напряжения. В основе данного явления лежит то, что конденсатор С1, кроме заряда входным током заряжается различными токами утечки и смещения ОУ. Последствием данного недостатка является появление напряжения смещения на выходе схемы, которое может привести к насыщению ОУ.

Для устранения данного недостатка может быть применено три способа:

  1. Использование ОУ с малым напряжение смещения.
  2. Периодически разряжать конденсатор.
  3. Шунтировать конденсатор С1 сопротивление RP.

Реализация данных способов показана на рисунке ниже


Включение резистора R СД между землёй и неинвертирующим входом позволяет снизить входное напряжение смещения, за счёт уравновешивания падения напряжения на входах ОУ, величина R СД = R1||RP, либо R СД = R1 (при отсутствии RP).

Величина резистора R P выбирается из того, что постоянная времени R P С1 должна быть значительно больше, чем период интегрирования, то есть R1С1


Конденсаторы, применяемые в интеграторах, должны иметь очень малый ток утечки, особенно если частота интегрирования составляет единицы Гц.

Дифференциатор

Дифференциатор, выполняет функцию противоположную интегратору, то есть на выходе дифференциатора напряжение пропорционально скорости изменения входного напряжения. Так же как и интегратор, дифференциатор находит широкое применение в активных фильтрах и схемах автоматического регулирования. Дифференциатор получается из интегратора путем перемены местами резистора и конденсатора.



Простой дифференциатор имеет два существенных недостатка: большое выходное сопротивление и ослабление входного сигнала, поэтому в современных схемах он почти не применяется. Для дифференцирования сигналов применяют дифференциатор на ОУ, состоящий из ОУ DA1, входного конденсатора С1 и резистора R1, через который осуществляется положительная обратная связь с выхода ОУ на его вход.

При поступлении сигнала на вход дифференциатора конденсатор С1 начинает заряжаться током I BX , за счёт принципа виртуального замыкания ток такой же величины будет протекать и через резистор R1. В результате на выходе ОУ будет формироваться напряжение пропорционально скорости изменения входного напряжения.

Параметры дифференциатора определяются следующими выражениями


Основной недостаток дифференциатора на ОУ состоит в том, что на высоких частотах коэффициент усиления больше, чем на низких частотах. Поэтому на высоких частотах происходит значительное усиление собственных шумов резисторов и активных элементов, кроме того возможно возбуждение дифференциатора на высоких частотах.

Решение данной проблемы является включение дополнительного резистора на вход дифференциатора. Сопротивление резистора должно составлять несколько десятков Ом (в среднем порядка 50 Ом).

Теория это хорошо, но без практического применения это просто слова.

Интегрирование является одной из основных математических операций, и ее электрическая реализация означает построение схемы, в которой скорость изменения выходного напряжения пропорциональна входному сигналу. В графической интерпретации выходное напряжение оказывается пропорциональным площади под кривой входного напряжения. Те или иные разновидности интеграторов встречатюся во многих аналоговых системах. Наиболее часто они применяются в активных фильтрах, а также в системах автоматического регулирования для интегрирования сигнала ошибки. Интегратор можно рассматривать как ФНЧ первого порядка, у которого наклон АЧХ составляет -20 дБ/декада. Две простейшие схемы интеграторов представлены на рис. 7.1.

Рис. 7.1. Основные схемы интеграторов: а) простой RC-интегратор, б) интегратор с ОУ.

У простого RC-интегратора, показанного на рис. 7.1 а, имеются два серьезных недостатка. Во-первых, он значительно ослабляет входной сигнал и, во-вторых, имеет высокое выходное сопротивление. В результате такая схема на практике применяется редко. Стандартный интегратор с ОУ, показанный на рис. 7.1 б, содержит входной резистор и конденсатор Си включенный в цепь обратной связи ОУ А. Ток, поступающий на инвертирующий вход ОУ, определяется сопротивлением резистора За счет большого собственного коэффициента усиления ОУ его инвер тирующий вход оказывается виртуальной землей. В результате входной ток определяется только входным напряжением и резистором Следо ватсльно, практически весь входной ток (с точностью до входною тока ОУ - прим. ред.) протекает через конденсатор заряжая его; при этом реализуется операция интегрирования.

Передаточная функция интегратора:

Диапазон рабочих частот:

нижияя частота:

верхняя частота:

где - коэффициент усиления ОУ, а - произведение коэффициента усиления на полосу пропускания.

Входное сопротивление схемы:

Скорость дрейфа выходного напряжения (наихудший случай):

из-за напряжения смещения и входного тока смещения :

из-за утечки через сопротивление

из-за входного дифференциального сопротивления ОУ :

Конечное значение выходного напряжения смещения:

Основной проблемой в аналоговых интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора Q токами утечки, входными токами смещения и входным напряжением смещения ОУ . Схема фактически интегрирует "неидеальности" ОУ и других элементов. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. Можно предложить три способа решения этой проблемы.

Если интегратор является частью большей схемы, охваченной общей обратной связью, например фильтра с переменными параметрами из гл. 6, то дрейф интегратора не вызывает особых осложнений, так как компенсируется общей обратной связью.

Если интегрируемый сигнал не содержит постоянной составляющей, то в цепь обратной связи ОУ можно специально включить резистор показанный на рис. 7.1. Этот резистор обеспечивает путь для входных токов смещения в обход конденсатора Си Такой прием используется только в случаях, когда нижняя частота спектра входных сигналов превышает 1 Гц, так как при меньших частотах понадобится слишком большой резистор Сопротивление должно быть с одной стороны достаточно малым, чтобы уменьшить выходное смещение до приемлемого уровня, а с другой - достаточно большим для того, чтобы схема работала как интегратор во всем диапазоне частот входного сигнала.

Если требуется интегрировать сигналы Постоянного тока, в цепь обратной связи можно ввести ключ сброса для периодического разряда конденсатора

Чтобы продемонстрировать величину возможного дрейфа, предположим, что используется КМОП-ОУ с периодической коррекцией дрейфа с конденсатором обратной связи и резистором . Для таких ОУ типичными значениями являются . При таких параметрах схемы скорость дрейфа выходного

напряжения составит 0,4 мВ/час. Для снижения дрейфа необходимо тщательно продумать монтаж и конструкцию интегратора, так как, кроме входного тока смещения инвертирующего входа интегратора, на работу схемы оказывают влияние и другие токи утечки. Рекомендуется предусмотреть охранные кольца с обеих сторон платы вокруг инвертирующего входа. Плату необходимо тщательно очистить. Чтобы достичь сверхмалых токов утечки при монтаже инвертирующего входа интегратора можно использовать изолирующие фторопластовые стойки.

Если для разряда конденсатора применяется аналоговый ключ, его собственный ток утечки должен быть меньше входного тока ОУ. Для уменьшения токов утечки можно использовать последовательное соединение полевых транзисторов или аналоговых ключей.

Идеальный интегратор имеет частотную характеристику с постоянной крутизной спада -20 дБ/декада во всем диапазоне частот. Характеристики реальных интеграторов отличаются от идеальных, что показано на рис. 7.2 для случая малых входных сигналов. Нижняя рабочая частота определяется либо конечным коэффициентом усиления ОУ, либо конечным значением сопротивления утечки Интегратор может оказаться неработоспособным на низких частотах из-за большого выходного дрейфа. Верхняя рабочая частота интегратора ограничена конечным произведением коэффициента усиления на ширину полосы пропускания ОУ. Чтобы схема работала как интегратор, спектр входного сигнала должен с определенным запасом лежать в рабочем диапазоне частот (например, в 10 раз выше нижней и ниже 1/10 верхней предельных частот).

Как было отмечено, верхний предел частотной характеристики интегратора ограничивается конечной шириной полосы пропускания ОУ, который создает дополнительный полюс на АЧХ на частоте, примерно равной , где - произведение коэффициента усиления на ширину полосы пропускания ОУ. Этот дополнительный полюс вызывает появление на высоких частотах погрешности фазового сдвига и коэффициента усиления. Один из способов коррекции этой погрешности состоит во включении небольшого конденсатора параллельно резистору для устранения дополнительного полюса. Учитывая, что значение выбирается из условия Добиться полной коррекции трудно, так как точное значение как правило, неизвестно; этим способом можно уменьшить погрешности примерно на порядок, но при слишком большом значении схема может возбудиться.

В случае больших входных сигналов в схеме появляются искажения, связанные с ограниченной скоростью нарастания выходного напряжения ОУ. Необходимо убедиться, что максимальная скорость изменения выходного напряжения интегратора не превышает скорости нарастания выходного напряжения ОУ, и не ограничивается величиной тока, которым

Рис. 7.2. Частотная характеристика интегратора для малых сигналов.

ОУ может заряжать емкостную нагрузку. Особенно это важно в быстродействующих схемах при больших емкостях конденсатора Q. Максимальная скорость изменения выходного напряжения ограничивается величиной где - максимальный выходной ТОК ОУ, - емкость нагрузки.

Рис. 7.3. Применение Т-образного соединения резисторов.

изолированы друг от друга, возможно, с применением защитных печатных дорожек. Сопротивления утечки и емкости, параллельные резисторам в, оказывают меньшее влияние, так как оба эти резистора могут иметь сравнительно небольшие сопротивления, в чем, собственно, и заключается преимущество Т-образного соединения. Отметим, что Т-образное соединение можно использовать и для получения больших эквивалентных сопротивлений резистора

Базовую схему интегратора легко видоизменить для интегрирования суммы нескольких сигналов, подаваемых на инвертирующий вход (рис. 7.4). Наибольшее число сигналов ограничивается суммарной проводимостью резисторов, присоединенных к инвертирующему входу; соответствующее эквивалентное сопротивление равно

Это значение подставляется вместо в расчетное соотношение для выходного напряжения смещения; из него следует, что увеличение количества входов увеличивает дрейф выходного напряжения.

Для интегрирования разности двух сигналов применяется схема, показанная на рис. 7.5. Она очень похожа на схему дифференциального усилителя, но в ней два резистора заменены на два конденсатора. В схеме требуется тщательное согласование резисторов и конденсаторов, иначе мы получим плохой коэффициент ослабления синфазного сигнала (КОСС). Значение КОСС (комплексное - прим. ред.) при рассогласовании элементов определяется выражением:

где - разность постоянных времени Дрейф выходного напряжения описывается выражением:

Рис. 7.4. Суммирующий интегратор

Рис. 7.5. Интегрирование разности двух входных сигналов.

Рис. 7.6. Дифференциальный интегратор с высоким КОСС.

Если требуется дифференциальный интегратор с высоким КОСС, к суммирующему интегратору подключается еще один ОУ, действующий как инвертор (рис. 7.6). КОСС этой схемы намного выше, так как он зависит только от согласования резисторов, а не конденсаторов.

Для получения неинвертирующего интегратора можно либо заземлить инвертирующий вход дифференциального интегратора (рис. 7.5), либо включить после интегратора инвертирующий каскад. Инвертор лучше включать после интегратора для сохранения динамического диапазона (по скорости нарастания выходного напряжения - прим. ред.), поскольку интегратор ослабляет высокочастотные сигналы.

Исключив входной резистор (рис. 7.7 а), базовый интегратор можно превратить в интегратор тока (см. гл. 3 об усилителях заряда). Можно построить также дифференциальный интегратор тока (рис. 7.7 б). Дифференциальный интегратор тока имеет несколько серьезных недостатков, таких, как необходимость тщательного согласования конденсаторов и применение источника тока с высоким выходным сопртивлением. Эти проблемы решаются включением еще одного ОУ (рис. 7.7 в); в этом случае один ОУ действует как интегратор тока, а дополнительный - как токовое зеркало.

На рис. 7.8 приведены две Схемы для сложения интеграла от входного сигнала с самим сигналом. Надо иметь в виду, что скорость дрейфа выходного напряжения в этих схемах такая же, как в базовом интеграторе.

Если необходимо произвести операцию двойного интегрирования, например, выходного сигнала акселерометра для определения смещения, вместо использования двух интеграторов рассмотрим вариант применения ФНЧ второго порядка с наклоном АЧХ -40 дБ/декада. Реализующая этот вариант схема представлена на рис. 7.9.

Рис. 7.7. Интеграторы тока: а) простой с виртуальной землей, б) дифференциальный, в) дифференциальный с виртуальной землей.

Схема описывается следующей передаточной функцией:

При выборе компонентов - (при этом полюсы и нули компенсируются), получим:

Рис. 7.8. Суммирование входного сигнала и его интеграла: а) неинвертирующее, б) инвертирующее.

Рис. 7.9. Применение фильтра нижних частот в качестве двойного интегратора.

Отметим, что компенсация полюсов и нулей происходит на. частоте, которая обычно близка к середине рабочего диапазона частот. Для получения хорошей компенсации требуется очень точное согласование элементов. Дрейф выходного напряжения описывается выражением:

Другой способ интегрирования аналогового сигнала с использованием элементов цифровой техники показан на рис. 7.10. Здесь входной сигнал преобразуется в частоту с помощью преобразователя напряжения в частоту

Рис. 7.10. Цифро-аналоговый интегратор.

ПНЧ). После этого интеграл от входного сигнала определяется путем подсчета импульсов выходной частоты ПНЧ с помощью двоичного счетчуса. Значение интеграла преобразуется в аналоговую форму с помощью ЦАП. Достоинство этой схемы состоит в том, что значение интеграла хранится не в виде заряда на конденсаторе, а в счетчике в цифровом виде и не подвержено дрейфу.

В прошлый раз я пытался вкратце объяснить основные принципы работы операционных усилителей. Но я просто не могу отказать в просьбе о продолжении темы. На этот раз схемы немного сложнее, но постараюсь не растягивать нудные математические выводы.
Интеграторы и дифференциаторы
Представьте, что Вам приходится считать интеграл напряжения. Страшно, не правда ли? И кому это вообще надо?
Так вот, для этих целей как раз и нужен интегратор .
В общем случае (для идеального операционника) рассматривается этот вариант:

Помните формулу заряда конденсатора?

Учитывая, что заряд будет изменяться по времени, можем смело предположить:

Далее… Неинвертирующий вход подключен на «землю». Напряжение на конденсаторе равняется противоположному напряжению на выходе, другими словами
. Это значит, что

Далее, решая и интегрируя, получаем (почти) финальную формулу:

Это, так сказать, в общем виде. В итоге, хочу обратить внимание на то, что напряжение на выходе играет существенную роль для каждого момента времени t. Его мы возьмем как свободный элемент:

Логично предположить, что интеграция идет по времени от t0 до t1

Вот Вам задачка. Конденсатор разряжен. Выходное напряжение равно нулю. Схема выключена. Конденсатор имеет емкость 1мкФ. Резистор 30кОм. Входное напряжение сначала равно -2В, затем 2В. Полярность меняется каждую секунду. Иными словами, на вход мы подали генератор импульсов.
Итак, решаем. Собираем быстренько схему в Протеусе. Рисуем график. Заносим в качестве функций входное и выходное напряжения. Нажимаем «Симулировать график». Получаем:


Вышел «пилообразный» сигнал. Обращаем внимание, что конденсатор влияет на резкость спада. Он должен колебаться в разумных пределах, чтоб успевать заряжаться/разряжаться, и чтоб не разряжаться/разряжаться * слишком быстро. Кстати, логично будет предположить, что сигнал усиливается в пределах питания нашего ОУ.

Далее, перейдем к дифференциаторам .
Тут не сложнее, чем в интеграторах.
Дифференциатор:


А вот и формула аналогового вычисления:

И снова скучные формулы…
Ток через конденсатор равен

Раз операционный усилитель близок к идеальному, то можно предположить, что ток через конденсатор равен току через резистор.
, а значит, если подставить значение тока, то получаем:

Как и в предыдущем примере, рассмотрим более практический пример. Конденсатор емкостью 50мкФ. Резистор 30кОм. На вход подаем «пилу». (Честно говоря, в протеусе не получилось сделать пилу стандартными средствами, пришлось прибегнуть к инструменту Pwlin.
Как результат, получаем график:

Подведем итоги.
Интегратор. «Прямоугольник» -> «Пила»
Дифференциатор. «Пила» -> «Прямоугольник»
P.S. Дифференциаторы и интеграторы будут рассмотрены позже в совершенно ином обличии.

Компараторы
Компаратор - это такое устройство, которое сравнивает два входных напряжения. Состояние на выходе меняется скачкообразно в зависимости от того, какое напряжение больше. Тут нет ничего особенного, просто приведу пример. На первый вход подаем постоянное напряжение, равное 3В. На второй вход - синусоидальный сигнал с амплитудой 4В. Снимаем напряжение с выхода.


График содержит исчерпывающую информацию, которая не нуждается в комментариях:

Логарифмический и экспоненциальный усилители
Для получения логарифмической характеристики необходим элемент ею обладающий. Для таких целей вполне подходит диод или транзистор. Дабы не усложнять, далее будем использовать диод.
Для начала, как обычно, приведу схему…


… и формулу:

Обращаем внимание, что е - это заряд электрона, Т - температура в Кельвинах и k - постоянная Больцмана.
Снова придется вспомнить курс физики. Ток через полупроводниковый диод можно описать как:
(изображение сделал немного больше, т.к. степень у формулы получалась «криво»)
Тут U - напряжение на диоде. I0 - ток утечки при малом обратном смещении. Прологарифмируем и получим:

Отсюда получаем напряжение на диоде (которое идентично напряжению на выходе):

Стоит сделать заметку, что при температуре 20 градусов Цельсия:

Проверим, как работает эта схема графически. Запустим протеус. Настроим входной сигнал:


Ток на диоде будет изменятся следующим образом:


Напряжение на выходе изменяется по логарифмическому закону:

Следующий пункт - экспоненциальный усилитель я оставлю без комментариев. Надеюсь, тут все будет понятно.

Вместо заключения

В этой части я старался свести математические выводы к минимуму, а сделать упор на практическое применение. Надеюсь, Вам понравилось:-)

*UPD.: Время заряда/разряда конденсатора определяется как: , где - это время переходного процесса. Для RC-цепи справедлива формула . За время Т конденсатор будет полностью заряжен/разряжен на 99%. Иногда для расчетов используют время 3



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: