Установка служб клиента для netware

CASE-средства проектирования информационных систем

В условиях современности сложность создания информационных систем очень высока. Поэтому при проектировании ИС в настоящее время стало широко использоваться CASE-технология.

CASE-технология – это программный комплекс, автомати­зирующий весь технологический процесс анализа, проектирования, разработки и сопровождения сложных программных средств.

Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.

Наиболее трудоемкими этапами разработки ИС являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают высокое качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют графические средства моделирования предметной области, которые позволяют разработчикам в наглядном виде изучать существующую ИС, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

Интегрированные CASE-средства обладают следующими характерными особенностями :

· обеспечение управления процессом разработки ИС;

· использование специальным образом организованного хранилища проектных метаданных (репозитория).

Интегрированные CASE-средства содержат следующие компоненты:

· графические средства анализа и проектирования, используемые для описания и документирования ИС;

· средства разработки приложений, включая языки программирования и генераторы кодов;

· репозиторий, который обеспечивает хранение версий разрабатываемого проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;

· средства управления процессом разработки ИС;

· средства документирования;

· средства тестирования;

· средства реинжиниринга, обеспечивающие анализ программных кодов и схем баз данных и формирование на их основе различных моделей и проектных спецификаций.

Все современные CASE-средства делятся на две группы. Первую группу организуют средства встроенные в систему реализации, в которых все решения по проектированию и реализации привязаны к выбранной системе управления базами данных. Вторую группу организуют средства независимые от системы реализации, в которых все решения по проектированию ориентированы на унификацию начальных этапов жизненного цикла и средств их документирования. Данные средства обеспечивают большую гибкость в выборе средств реализации.

Основное достоинство CASE-технологии – поддержка коллективной работы над проектом за счет возможности работы в локальной сети, экспорта и импорта отдельных фрагментов проекта между разработчиками, организованного управления проектом.

В качестве этапов создания программных продуктов для информационных систем можно выделить следующие:

1. Определяется среда функционирования. На этом этапе определяются набор процессов жизненного цикла ИС, определяется область примененияИС, определяется размер поддерживаемых приложений, т.е. задается ограничения на такие величины, как количество строк программного кода, размер базы данных, количество элементов данных, количество объектов управления и т.д.

2. Производится построение диаграмм и графический анализ. На этом этапе строятся диаграммы, устанавливающие связь с источниками информации и потребителями, определяющие процессы преобразования данных и места их хранения.

3. Определяются спецификации и требования, предъявляемые к системе (вид интерфейса, тип данных, структура системы, качества, производительности, технические средства, общие затраты и т.д.).

4. Выполняется моделирование данных, т.е. вводится информация, описывающая элементы данных системы и их отношения.

5. Выполняетсямоделирование процессов, т.е. вводится информация, описывающая процессы системы и их отношения.

1.1 Понятие термина – «CASE-средства»

Первоначально под термином «CASE-технология» (Computer – Aided Software Engineering) понималось буквально – «автоматизированная разработка ПО ИС с помощью компьютерных технологий».

В настоящее время под термином CASE-средства понимаются обширный набор программных средств, поддерживающих процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

CASE-технологии представляют собой совокупность методологий и инструментарий аналитиков, разработчиков и программистов, предназначенный для автоматизации процессов проектирования и сопровождения ИС на всем периоде жизненного цикла .

Методология CASE-средства определяет этапы и шаги реализации проекта, а также правила использования методов, которыми разрабатывается проект. МетодCASE-средства –это процедура или техника генерации описаний компонентов информационной системы (проектирование потоков и структур данных). Нотация CASE-средства – отображение структуры системы, элементов данных с помощью специальных графических символов.

CASE-средства – это специальные программы, которые поддерживают одну или несколько методологий анализа и проектирования информационных систем. CASE-технология, в рамках методологии, включает в себя методы, с помощью которых на основе нотаций строятся диаграммы, поддерживаемые конкретным CASE-средством. CASE-технологии не могут считаться самостоятельными, они только обеспечивают высокую эффективность их применения, определяемую временем разработки проекта.

Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования информационных систем: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл программного обеспечения. Наиболее трудоемкими этапами разработки информационных систем являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют методы визуального представления информации. Это предполагает построение структурных или иных диаграмм в реальном масштабе времени, использование многообразной цветовой палитры, сквозную проверку синтаксических правил. Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую информационную систему, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

1.2 Типовая структура CASE-средств

CASE-средства служат инструментарием для поддержки и использования методов структурного анализа в проектировании. Эти инструменты поддерживают работу пользователей при создании и редактировании графического проекта в интерактивном режиме. Они способствуют организации проекта в виде иерархии уровней абстракции, выполняют проверки соответствия компонентов. Фактически CASE-средства представляют собой новый тип графически-ориентированных инструментов, восходящих к системе поддержки ЖЦ ПО. Обычно к ним относят любое программное средство, обеспечивающее автоматическую помощь при разработке ПО, его сопровождении или деятельности по управлению проектом, и проявляющее следующие дополнительные характеристики:

    мощная графика для описания и документирования систем ПО со специфическим интерфейсом пользователя, развивающая творческие возможности специалистов и не отвлекающая их от процесса проектирования на решение второстепенных вопросов;

    интеграция, обеспечивающая легкость передачи данных между средствами и позволяющая управлять всем процессом проектирования и разработки ПО непосредственно через процесс планирования проекта;

    использование компьютерного хранилища (репозитария) для шаблонов частей и отдельных элементов проекта, которые могут использоваться различными разработчиками, как основа для автоматического продуцирования ПО и повторного его использования в будущих системах.

Помимо перечисленных основополагающих принципов графической ориентации, интеграции и локализации всей проектной информации в репозитарии в основе концептуального построения CASE-средств лежат следующие положения :

1. Человеческий фактор, определяющий разработку ПО как легкий, удобный и экономичный процесс.

2. Широкое использование базовых программных средств, получивших массовое распространение в других приложениях (БД и СУБД, компиляторы с различных языков программирования, отладчики, документаторы, издательские системы, оболочки экспертных систем и базы знаний, языки четвертого поколения и др.).

3. Автоматизированная или автоматическая кодогенерация, для различных платформ и различного вида кода: преобразования для получения документации; формирования структуры БД, ввода/модификации данных; получения выполняемых машинных кодов из спецификаций ПО; сборки модулей из словарей и моделей данных и повторно используемых программ.

4. Простота использования, позволяющая получать компоненты, поддающиеся управлению, обозримые и доступные для понимания, а также обладающие простой и ясной структурой.

5. Доступность для разных категорий пользователей.

6. Рентабельность.

7. Эффективное решение задач по сопровождению разработанного проекта, обеспечивающая способность адаптации при изменении требований и целей проекта заказчиком.

В состав практически всех современных CASE-средств входят следующие элементы :

    репозиторий, позволяет обеспечить сохранность шаблонов проекта и его определенных компонентов, синхронизацию информации от разных разработчиков в процессе групповой разработки, проверка метаданных на полноту и непротиворечивость;

    средства разработки приложений, с использованием языков 4GL и генераторов кодов;

    средства тестирования;

    средства документирования;

    графические средства анализа и проектирования, которые дают возможность создавать и редактировать модели информационных систем в виде иерархически связанных диаграмм в реализованной нотации конкретной методологии;

    средства реинжиниринга;

    средства конфигурационного управления;

    средства управления проектом.

1.3 Эволюция развития CASE-технологий

С самого начала CASE-технологии развивались с целью преодоления ограничений «ручного» применения методологии структурного анализа и проектирования 60-70-х годов за счет ее автоматизации и интеграции в поддерживающие средства. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями моделирования, они только делают более эффективными их применение, с точки зрения времени разработки.

Традиционно выделяют шесть периодов, качественно отличающихся применяемой техникой и методами разработки ПО, которые характеризуются использованием в качестве инструментальных средств:

1. Ассемблеров, дампов памяти, анализаторов;

2. Компиляторов, интерпретаторов, трассировщиков;

3. Символьных отладчиков, пакетов программ;

4. Систем анализа и управления исходными текстами;

5. CASE-средств анализа требований, проектирования спецификаций и структуры, редактирования интерфейсов (первая генерация CASE-I);

6. CASE-средств генерации исходных текстов и реализации интегрированного окружения поддержки полного жизненного цикла разработки ПО (вторая генерация CASE-II)

CASE-I является первой технологией, адресованной непосредственно системным аналитикам и проектировщикам, и включающей средства для поддержки графических моделей, проектирования спецификаций, экранных редакторов и словарей данных. Она не предназначена для поддержки полного жизненного цикла и концентрирует внимание на функциональных спецификациях и начальных шагах проекта - системном анализе, определении требований, системном проектировании, логическом проектировании БД .

CASE-II отличается значительно более развитыми возможностями, улучшенными характеристиками и исчерпывающим подходом к полному жизненному циклу разрабатываемого ПО. В инструментарии CASE-II, в первую очередь, используются средства поддержки автоматической кодогенерации, а также, обеспечивается полная функциональная поддержка для выполнения графических системных требований и спецификаций проектирования; контроля, анализа и связывания системной информации и информации по управлению проектированием; построение прототипов и моделей системы; тестирования, верификации и анализа сгенерированных программ; генерации документов по проекту; контроля на соответствие стандартам по всем этапам жизненного цикла. CASE-II может включать свыше 100 функциональных компонент, поддерживающих все этапы жизненного цикла, при этом пользователям предоставляется возможность выбора необходимых средств и их интеграции в нужном составе .

1.4 Методологии проектирования, используемые в CASE–средствах

CASE-средства являются результатом естественного эволюционного развития отрасли инструментальных (или технологических) средств. CASE-технологии начали развиваться с целью преодоления ограничений методологии структурного программирования.

Эта методология, несмотря на формализацию в составлении программ, характеризуется все же сложностью понимания, большой трудоемкостью и стоимостью использования, трудностью внесения изменений в проектные спецификации. Заложенные в ней принципы позволили развивать эту методологию и повысить е эффективность за счет автоматизации наиболее рутинних этапов (рис. 1.1).

Основными стандартами методологий, реализованных в CASE-средствах, являются:

SADT (Structured Analysis and Design Technique) - методология структурного анализа и проектирования. Основана на понятиях функционального моделирования. Отражает такие системные характеристики, как управление, обратная связь и исполнитель;

IDEF0 (Integrated Definition Function Modeling) - методология функционального моделирования. Используется для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, преобразуемые этими функциями. Является подмножеством методологии SADT;

DFD(DataFlow Diagram) - методология моделирования потоков данных.

Рисунок 1.1 – Сравнение традиционной разработки и разработки с использованием CASE-технологий

Следующие стандарты методологий применяются для описания обмена данными между рабочими процессами:

IDEF1 применяется для построения информационной модели, отображающей структуру и содержание информационных потоков, необходимых для поддержки функций системы;

IDEF2 позволяет построить динамическую модель меняющихся во времени поведения функций, информации и ресурсов системы;

IDEF3- методология моделирования потоков работ. Является более детальной по отношению к IDEF0 и DFD. Позволяет рассмотреть конкретный процесс с учетом последовательности выполняемых операций. С помощью IDEF3 описываются сценарий и последовательность операций для каждого процесса;

IDEF1X (IDEF1 Extended) - методология описания данных. Применяется для построения баз данных. Относится к типу методологий «Сущность-связь» (ER - Entity-Relationship) и, как правило, используется для моделирования реляционных баз данных, имеющих отношение к рассматриваемой системе;

IDEF4 - объектно-ориентированная методология. Отражает взаимодействие объектов. Позволяет наглядно отображать структуру объектов и заложенные принципы их взаимодействия. Удобна для создания программных продуктов на объектно-ориентированных языках;

IDEF5- методология онтологического исследования сложных систем. С помощью методологии IDEF5 онтология системы может быть описана при помощи определенного словаря терминов и правил, на основании которых могут быть сформированы достоверные утверждения о состоянии рассматриваемой системы в некоторый момент времени;

ARIS - описывает бизнес-процесс в виде потока последовательно выполняемых работ;

UML - (Unified Modeling Language) унифицированный язык моделирования, основанный на объектно-ориентированном подходе. UML позволяют описать статическую структуру системы и ее динамическое поведение в соответствующих нотациях.

В CASE-средствах широко используются методологии структурного и объектно-ориентированного проектирования. Структурное проектирование основано на алгоритмической декомпозиции, а объектно-ориентированное проектирование – на объектно-ориентированной декомпозиции. Алгоритмическая декомпозиция позволяет определить порядок происходящих событий. Объектно-ориентированная декомпозиция позволяет определить иерархию классов объектов, их методы и свойства. CASE-средства, поддерживающие объектно-ориентированное проектирование используют методологию RUP (Rational Unified Process) и нотации языка UML.

1.5 Методология CASE-средств объектно-ориентированного проектирования

В объектно-ориентированном подходе основная категория объектной модели – класс, объединяет в себе на элементарном уровне, как данные, так и операции, которые над ними выполняются (методы). Именно с этой точки зрения изменения, связанные с переходом от структурного к объектно-ориентированному подходу, являются наиболее заметными. Разделение процессов и данных преодолено, однако остается проблема преодоления сложности системы, которая решается путем использования механизма компонентов.

Данные по сравнению с процессами являются более стабильной и относительно редко изменяющейся частью системы. Отсюда следует главное достоинство объектно-ориентированного подхода, которое Гради Буч сформулировал следующим образом: объектно-ориентированные системы более открыты и легче поддаются внесению изменений, поскольку их конструкция базируется на устойчивых формах. Это дает возможность системе развиваться постепенно и не приводит к полной ее переработке даже в случае существенных изменений исходных требований.

Буч отмечает также ряд следующих преимуществ объектно-ориентированного подхода .

1. Объектная декомпозиция дает возможность создавать программные системы меньшего размера путем использования общих механизмов, обеспечивающих необходимую экономию выразительных средств. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования не только программ, но и проектов, что в конце концов ведет к созданию среды разработки и переходу к сборочному созданию ПО. Системы зачастую получаются более компактными, чем их структурные эквиваленты, что означает не только уменьшение объема программного кода, но и удешевление проекта за счет использования предыдущих разработок.

2. Объектная декомпозиция уменьшает риск создания сложных систем ПО, так как она предполагает эволюционный путь развития системы на базе относительно небольших подсистем. Процесс интеграции системы растягивается на все время разработки, а не превращается в единовременное событие.

3. Объектная модель вполне естественна, поскольку в первую очередь ориентирована на человеческое восприятие мира, а не на компьютерную реализацию.

4. Объектная модель позволяет в полной мере использовать выразительные возможности объектных и объектно-ориентированных языков программирования.

К недостаткам объектно-ориентированного подхода относятся некоторое снижение производительности функционирования ПО и высокие начальные затраты. Объектная декомпозиция существенно отличается от функциональной, поэтому переход на новую технологию связан как с преодолением психологических трудностей, так и дополнительными финансовыми затратами. Безусловно, объектно-ориентированная модель наиболее адекватно отражает реальный мир, представляющий собой совокупность взаимодействующих (посредством обмена сообщениями) объектов. Но на практике в настоящий момент продолжается формирование стандарта языка UML для объектно-ориентированного моделирования, и количество CASE-средств, поддерживающих объектно-ориентированный подход, невелико по сравнению с аналогичными средствами, поддерживающими структурный подход.

Кроме того, диаграммы, отражающие специфику объектного подхода (диаграммы классов и т.п.), гораздо менее наглядны и плохо понимаемы непрофессионалами. Поэтому одна из главных целей внедрения CASE-технологии, а именно снабжение всех участников проекта (в том числе и заказчика) общим языком «для передачи понимания», обеспечивается на сегодняшний день только структурными методами.

При переходе от структурного подхода к объектному, как при всякой смене технологии, необходимо вкладывать деньги в приобретение новых инструментальных средств. Здесь следует учесть и расходы на обучение (овладение методом, инструментальными средствами и языком программирования). Для некоторых организаций эти обстоятельства могут стать серьезными препятствиями. Объектно-ориентированный подход не дает немедленной отдачи. Эффект от его применения начинает сказываться после разработки двух-трех проектов и накопления повторно используемых компонентов, отражающих типовые проектные решения в данной области. Переход организации на объектно-ориентированную технологию - это смена мировоззрения, а не просто изучение новых CASE-средств и языков программирования .

Очевидно, что в конкретном проекте декомпозировать сложную систему одновременно двумя способами невозможно. Можно начать декомпозицию каким-либо одним способом, а затем, используя полученные результаты, попытаться рассмотреть систему с другой точки зрения. Теперь перейдем к рассмотрению взаимосвязи между структурным и объектно-ориентированным подходами. Основой взаимосвязи является общность ряда категорий и понятий обоих подходов (процесс и вариант использования, сущность и класс и др.). Эта взаимосвязь может проявляться в различных формах. Так, одним из возможных подходов является использование структурного анализа как основы для объектно-ориентированного проектирования. Такой подход целесообразен ввиду широкого распространения CASE-средств, поддерживающих структурный анализ. Структурный анализ продолжается до момента, при котором диаграммы потоков данных начинают отражать не только предметную область, но и систему ПО.

После выполнения структурного анализа и построения диаграмм потоков данных вместе со структурами данных и другими результатами анализа можно различными способами приступить к определению классов и объектов. Так, если взять какую-либо отдельную диаграмму, то кандидатами в объекты могут быть внешние сущности и накопители данных, а кандидатами в классы - потоки данных.

Другой формой проявления взаимосвязи можно считать интеграцию объектной и реляционной технологий. Реляционные СУБД являются на сегодняшний день основным средством реализации крупномасштабных баз данных и хранилищ данных. Причины этого очевидны: реляционная технология используется достаточно долго, освоена огромным количеством пользователей и разработчиков, стала промышленным стандартом, в нее вложены значительные средства и создано множество корпоративных БД в самых различных отраслях, реляционная модель проста и имеет строгое математическое основание; существует большое разнообразие промышленных средств проектирования, реализации и эксплуатации реляционных БД. Вследствие этого реляционные БД в основном используются для хранения и поиска объектов в так называемых объектно-реляционных системах. Объектно-ориентированное проектирование имеет точки соприкосновения с реляционным проектированием. Например, как было отмечено выше, классы в объектной модели могут некоторым образом соответствовать сущностям (в качестве упражнения можно предложить детально проанализировать все сходства и различия диаграмм «сущность-связь» и диаграмм классов). Как правило, такое соответствие имеет место только на ранней стадии разработки системы - стадии формирования требований. В дальнейшем, разумеется, цели объектно-ориентированного проектирования (адекватное моделирование предметной области в терминах взаимодействия объектов) и разработки реляционной БД (нормализация данных) расходятся. Таким образом, единственно возможным средством преодоления данного пробела является определение соответствия между объектно-ориентированной и реляционной технологиями, которое в основном сводится к отображению диаграмм классов и диаграмм «сущность – связь» реляционной модели. Одним из примеров практической реализации взаимосвязи между структурным и объектно-ориентированным подходом является программный интерфейс (мост) между структурным CASE-средством Silverrun и объектно-ориентированным CASE-средством Rational Rose, разработанный российской компанией "Аргуссофт" .Это ПО создает диаграммы классов Rational Rose на основе RDM-модели (Relational Data Model - реляционная модель данных) Silverrun и наоборот. Аналогичные интерфейсы существуют также между CASE-средствами ERwin (с одной стороны), Rational Rose и Paradigm Plus (с другой стороны).

1.6 Методология CASE-средств структурного проектирования

Сущность структурного подхода к разработке информационных систем заключается в ее декомпозиции (разбиении) на автоматизируемые функции. Автоматизируемая система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы «снизу-вверх» от отдельных задач ко всей системе целостность теряется, возникают проблемы при информационной стыковке отдельных компонентов.

Все наиболее распространенные методологии структурного подхода базируются на ряде общих принципов. В качестве основных принципов используются:

    принцип декомпозиции - принцип решения сложных проблем путем их разбиения на множество более мелких и независимых задач, легких для понимания и решения;

    принцип иерархического упорядочивания - принцип организации составных частей проблемы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.

    принцип абстрагирования - заключается в выделении существенных аспектов системы и отвлечения от несущественных;

    принцип формализации –- заключается в необходимости строгого методического подхода к решению проблемы;

    принцип непротиворечивости - заключается в обоснованности и согласованности использования элементов системы;

    принцип структурирования данных - заключается в том, что данные должны быть структурированы и иерархически организованы.

В структурном анализе используются в основном две группы средств, иллюстрирующих функции, выполняемые системой и отношения между данными.

Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными из них являются следующие :

    SADT (Structured Analysis and Design Technique) модели и соответствующие функциональные диаграммы;

    DFD (Data Flow Diagrams) диаграммы потоков данных;

    ERD (Entity-Relationship Diagrams) диаграммы «сущность-связь».

На стадии проектирования информационной системы (ИС) модели усложняются, уточняются и дополняются диаграммами, отражающими структуру и архитектуру программного обеспечения, структурные схемы программ и диаграмм экранных форм. Перечисленные модели в совокупности дают полное описание ИС независимо от того, является ли она существующей или вновь разрабатываемой. Состав диаграмм в каждом конкретном случае зависит от необходимой полноты описания системы.

За последнее десятилетие сформировалось новое направление в программотехнике - CASE (Computer-Aided Software/System Engineering) - в дословном переводе - разработка программного обеспечения информационных систем при поддержке (с помощью) компьютера. В настоящее время не существует общепринятого определения CASE, термин CASE используется в весьма широком смысле. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обес­печения, в настоящее время приобрело новый смысл, охватывающий процесс разработки сложных автоматизированных информационных систем в целом. Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения (ПО) (приложений) и баз данных, генерацию кода, тести­рование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

CASE-средства позволяют не только создавать "правильные" продукты, но и обеспечить "правильный" процесс их создания. Основная цель CASE состоит в том, чтобы отделить проектирование ИС от его кодирования и последующих этапов разработки, а также скрыть от разработчиков все детали среды разработки и функционирования ИС. При использовании CASE-технологий изменяются все этапы жизненного цикла программного обеспечения (подробнее об этом будет сказано ниже) информационной системы, при этом наибольшие изменения касаются этапов анализа и проектирования. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих специ­фикации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств. Такие методологии обеспечивают строгое и наглядное описание про­ектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. CASE-технологии успешно применяются для построения практически всех типов ИС, однако устойчивое положение они занимают в следующих областях:

    обеспечение разработки деловых и коммерческих ИС, широкое применение CASE-технологий обусловлены массовостью этой прикладной области, в которой CASE применяется не только для разработки ИС, но и для создания моделей систем, помогающих решать задачи стратегического планирования, управления финансами, определения политики фирм, обучения персонала и др. (это направление получило свое собственное на­звание - бизнес-анализ);

    разработка системного и управляющих ИС. Активное применение CASE-технологий связано с большой сложностью данной проблематики и со стремлением повысить эффективность работ.

CASE - не революция в программотехнике, а результат естественного эволюционного развития всей отрасли средств, называемых ранее инструментальными или технологическими. С самого начала CASE-технологии развивались с целью преодоления ограничений при использовании структурных методологий проектирования 60-70-х гг. XX в. (сложности понимания, большой трудоемкости и стоимости использова­ния, трудности внесения изменений в проектные спецификации и т. д.) за счет их автоматизации и интеграции поддержи­вающих средств. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями, они только развивают структурные методологии и делают более эффективным их применение за счет автоматизации.

Помимо автоматизации структурных методологий и, как следствие, возможности применения современных методов системной и программной инженерии, CASE-средства обладают следующими основными достоинствами:

    улучшают качество создаваемых ИС за счет средств автоматического контроля (прежде всего контроля проекта);

    позволяют за короткое время создавать прототип будущей системы, что позволяет на ранних этапах оценить ожидаемый результат;

    ускоряют процесс проектирования и разработки;

    освобождают разработчика от рутинной работы, позволяя ему целиком сосредоточиться на творческой части разработки;

    поддерживают развитие и сопровождение разработки;

    поддерживают технологии повторного использования компонента разработки.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т. д. В 70-80-х гг. стала на практике применять­ся структурная методология, предоставляющая в распоря­жение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Она основана на наглядной графической технике: для описания раз­личного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений. Однако широкое применение этой методологии и следование ее рекомендациям при разработке контактных ИС встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Это и способствовало появлению программно-технических средств особого класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС.

Необходимо понимать, что успешное применение CASE-средств невозможно без понимания базовой технологии, на которой эти средства основаны. Сами по себе программные CASE-средства являются средствами автоматизации процес­сов проектирования и сопровождения информационных систем. Без понимания методологии проектирования ИС невозможно применение CASE-средств.

За последнее десятилетие сформировалось новое направление в программотехнике: CASE (Computer-Aided Software/System Engi­neering - Технология автоматизированной разработки програм­много обеспечения). CASE-технология представляет собой сово­купность методологий анализа, проектирования, разработки и со­провождения сложных систем программного обеспечения (ПО), поддерживаемую комплексом взаимосвязанных средств автомати­зации. CASE - это инструментарий для системных аналитиков, разработчиков и программистов, позволяющий автоматизировать процесс проектирования и разработки ПО.

Практически ни один серьезный зарубежный программный проект не осуществляется без использования CASE-средств. Изве­стная методология структурного системного анализа SADT (точнее ее подмножество IDEFO) принята в качестве стандарта на разработ­ку ПО Министерством обороны США. Более того, среди менедже­ров и руководителей компьютерных фирм знание основ SADT счи­тается правилом хорошего тона; при обсуждении каких-либо вопро­сов упомянутые работники способны нарисовать простейшую диа­грамму, поясняющую суть дела.

CASE позволяет не только создавать "правильные" продукты, но и обеспечивать "правильный" процесс их создания. Основная цель CASE состоит в том, чтобы отделить проектирование ПО от его кодирования и последующих этапов разработки, а также скрыть от разработчиков все детали среды разработки и функционирования ПО. Предполагается, что чем больше деятельности будет вынесено из кодирования в проектирование, тем лучше,

В большинстве современных CASE-систем применяются мето­дологии структурного анализа и проектирования, основанные на на­глядных диаграммных техниках. При этом для описания модели проектируемой системы используются графы, диаграммы, таблицы и схемы. Такие методологии обеспечивают строгое и наглядное описание проектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структу­ру со все большим числом уровней.

Таким образом, CASE-технологии развивают структурные ме­тодологии и делают более эффективным их применение за счет ав­томатизации.

Помимо автоматизации структурных методологий и, как следствие, возможности применения современных методов сис­темной и программной инженерии, CASE обладают следующими основными достоинствами; они улучшают качество создаваемо­го ПО за счет средств автоматического контроля (прежде всего, контроля проекта); позволяют за короткое время создавать про­тотип будущей системы, что дает возможность оценить ожидае­мый результат на ранних этапах; ускоряют процесс проектирова­ния и разработки; освобождают разработчика от рутинной рабо­ты, позволяя ему целиком сосредоточиться на творческой части разработки; поддерживают развитие и сопровождение разработ­ки; поддерживают технологии повторного использования ком­понентов разработки.

Главная особенность современного подхода к созданию ПО со­стоит в концентрации сложности на начальных этапах ЖЦ (анализ, проектирование) при относительно невысокой сложности и трудо­емкости последующих этапов.

CASE-технологии предлагают новый, основанный на автомати­зации подход к концепции ЖЦ ПО. При использовании CASE изме­няются все фазы ЖЦ, при этом наибольшие изменения касаются фаз анализа и проектирования.

В табл. 3.1 приведены оценки трудозатрат по фазам ЖЦ. В табл. 3.2 представлены основные изменения в ЖЦ при использова­нии CASE-технологий сравнению с традиционной разработкой.

Таблица 3.1

Оценки трудозатрат по базам жизненного цикла изделия. %


Таблица 3.2

Основные изменения в жизненном цикле изделия при использовании

CASE-технологий

Традиционная разработка

CASE-технология

Основные усилия направлены на кодирование и тестирование

Основные усилия направлены на анализ и проектирование

Бумажные спецификации

Быстрое итеративное прототипирование

Ручное кодирование

Автоматическая кодогенерация

Ручное документирование

Автоматическая генерация документации

Тестирование кодов

Автоматический контроль проекта

Сопровождение кодов

Сопровождение спецификаций проектирования

CASE-средства служат инструментарием для поддержки и уси­ления методов структурного анализа и проектирования. Фактически CASE-средства представляют собой новый тип графически-ориен­тированных инструментов, восходящих к системе поддержки ЖЦ ПО. Обычно к ним относят любое программное средство, обеспечи­вающее автоматическую помощь при разработке ПО, его сопровож­дении или деятельности по управлению проектом. Подобное программное средство обычно обладает дополнительными чертами, в число которых входят:

Мощная графика для описания и документирования систем ПО, а также для улучшения интерфейса для пользователя, развивающая творческие возможности специалистов и не отвлекающая их от про­цесса проектирования на поиск решения второстепенных вопросов;

Интеграция, обеспечивающая легкость передачи данных между средствами и позволяющая управлять всем процессом проек­тирования и разработки ПО непосредственно через процесс плани­рования проекта;

Использование компьютерного хранилища (репозитария) для всей информации о проекте; эта информация может разделяться между разработчиками и исполнителями, составляя основу для автоматического продуцирования ПО и повторного его использова­ния в будущих системах.

Помимо перечисленных основополагающих принципов (графи­ческой ориентации, интеграции и локализации всей проектной ин­формации в репозитарии), в основе концептуального построения CASE-средств лежат следующие положения:

широкое использование базовых программных средств, полу­чивших массовое распространение в других приложениях (БД и СУ БД, компиляторы с различных языков программирования, отладчи­ки, документаторы, издательские системы, оболочки экспертных систем и базы знаний, языки четвертого поколения и др.);

автоматизированная или автоматическая кодогенерация, вы­полняющая несколько видов генерации кодов: преобразования для получения документации, формирования БД, ввода/модификации данных, получения выполняемых машинных кодов из специфика­ций ПО, автоматической сборки модулей из словарей и моделей данных и повторно используемых программ, автоматической кон­версии ранее используемых файлов в форматы, соответствующие новым требованиям;

ограничение сложности, позволяющее получать компоненты, поддающиеся управлению, обозримые и доступные для понимания, а также обладающие простой и ясной структурой;

доступность для разных категорий пользователей;

сопровождаемоетъ, обеспечивающая способность адаптации при изменении требований и целей проекта.

Интегрированный CASE-пакет в совокупности должен:

    поддерживать графические модели;

    контролировать ошибки;

    организовывать и поддерживать репозитарии;

Поддерживать процесс проектирования и разработки.

Графическая ориентация CASE заключается в том, что про­граммы представляют собой схематические проекты и формы, кото­рые оказываются намного более простыми в использовании, чем многостраничные описания.

Для CASE существенны четыре типа диаграмм:

    диаграммы функционального проектирования (для этих целей наиболее часто употребляются DFD-диаграммы потоков данных);

    диаграммы моделирования данных (как правило, ERD-диа- граммы "сущность-связь");

3) диаграммы моделирования поведения (как правило, STD-диаграммы переходов состояний);

4) структурные диаграммы (карты), применяемые на этапе про­ ектирования и описывающие отношения между модулями и внутри- модульную структуру,

Создание и модификация подобных диаграмм осуществляется с помощью специальных графических редакторов (диаграммеров), которые представляют собой сервисные средства на этапах анализа требований и проектирования спецификаций.

Важность контроля ошибок на этапах анализа требований и проектирования спецификаций обусловлена возможностью их ав­томатического обнаружения на ранних этапах ЖЦ, CASE-средства обеспечивают автоматическую верификацию и контроль проекта на полноту и состоятельность на ранних этапах ЖЦ, что влияет на успех разработки в целом. В подтверждение можно привести сле­дующие статистические данные, основанные на отчетах фирмы "TRW" по анализу пяти крупных проектов: при традиционной ор­ганизации работ ошибки проектирования и кодирования составля­ют 64 и 32% от общего числа ошибок, соответственно. Обнару­жить ошибки проектирования на этапе сопровождения ПО в 100 раз труднее, чем на этапах анализа требований и проектирования спецификаций.

Основные функции средств организации и поддержки репозитария - хранение, доступ, обновление, анализ и визуализация всей информации по проекту ПО. Содержимое репозитария включает не только информационные объекты различных типов, но и отношения между их компонентами, а также правила использования или обра­ботки этих компонентов.

На основе репозитария осуществляется интеграция CASE-средств и разделение системной информации между разработчиками.

Репозитарий служит базой для стандартизации документов по проекту и контроля состоятельности проектных спецификаций.

Поддержка структурных методологий осуществляется за счет средств их автоматизации на следующих двух уровнях:

    подготовка документации, графическая поддержка построе­ния структурных диаграмм различных типов, продуцирование спе­цификаций для детализации функциональных блоков в диаграммах и структур данных на нижних уровнях;

    корректное использование шагов обработки в методологиях.

Кодогенерация осуществляется на основе репозитария и позво­ляет автоматически построить до 80...90% объектных кодов или текстов программ на языках высокого уровня. Все CASE-средства делятся на типы, категории и уровни. Классификация по типам от­ражает функциональную ориентацию CASE-средств в технологиче­ском процессе.

Анализ и проектирование. Средства этой группы использу­ют для создания спецификаций системы и ее проектирования; они поддерживают широко известные методологии проектиро­вания. К таким средствам относятся CASE. Аналитик (Эйтэкс), The Developer (ASYST Technologies), POSE (Computer Systems Advisers), ProKit *Workbench (McDonnell Douglas), Excelerator (Index Technology), Design-Aid (Nastec), Design Machine (Opti­ma), MicroStep (Meta Systems), VS Designer (Visual Software), Analist/Designer (Yourdon), Design/IDEE (Meta Software), BPWin (Logic Works), SELECT (Select Software Tools), System Architect (Popkin Software & Systems), Westmount I-CASE Yourdon (West-mount Technology B. V. & CADRE Technologies), CASE/4/0 (mic-roTOOL GmbH). Их цель заключается в определении системных требований и свойств, которыми должна обладать система, а также создание проекта системы, удовлетворяющей этим требо­ваниям и обладающей соответствующими свойствами. На выхо­де продуцируются спецификации компонентов системы и ин­терфейсов, связывающих эти компоненты, а также "калька" ар­хитектуры системы и детальная "калька" проекта, включающая алгоритмы и определения структур данных.

Проектирование баз данных и файлов. Средства этой группы обеспечивают логическое моделирование данных, автоматическое преобразование моделей данных в форму, обеспечивающую авто­матическую генерацию схем БД и описаний форматов файлов на уровне программного кода. В число таких средств входят: ERWin (Logic Works), Chen Toolkit (Chen & Associates), S-Designer (SDP), Designer/2000 (Oracle), Silverrun (Computer Systems Advisers).

Программирование. Средства этой группы поддерживают эта­пы программирования и тестирования, а также автоматическую кодогенерацию из спецификаций, получая полностью документиро­ванную выполняемую программу: COBOL 2/Workbench (Mikro Fo­cus), DECASE (DEC), NETRON/CAP (Netron), APS (Sage Software). Помимо диаграммеров различного назначения и средств поддержки работы с репозитарием, в эту группу средств включены и традици­онные генераторы кодов, анализаторы кодов (как в статике, так и в динамике), генераторы наборов тестов, анализаторы покрытия тес­тами, отладчики.

Сопровождение и реинжениринг. К таким средствам относятся документаторы, анализаторы программ, средства реструктурирова­ния и реинжениринга: Adpac CASE Tools (Adpac), Scan/COBOL и Superstructure (Computer Data Systems), Inspector/Recoder (Language Technology). Их цель -корректировка, изменение, анализ, преоб­разование и реинжениринг существующей системы. Средства по­зволяют осуществлять поддержку всей системной документации (включая коды, спецификации, наборы тестов); контролировать по­крытие тестами для оценки полноты тестируемости; управлять фун­кционированием системы и т.п. Особый интерес представляют средства обеспечения мобильности (в CASE они получили название средств миграции) и реинжениринга.

Управление проектом. К этим средствам относятся поддержи­вающие планирование, контроль, руководство, взаимодействие, т.е. функции, необходимые в процессе разработки и сопровождения проектов: Project Workbench (Applied Business Technology).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: