Модули расширения для raspberry pi 3. Делаем модуль расширения для Raspberry Pi с Arduino на борту. PicoBorg — управляй моторчиками с помощью Raspberry Pi

Этот одноплатный компьютер, первая версия которого была представлена в 2011 г., набирает обороты и его популярность превзошла все ожидания. Сегодня попробуем разобраться, что такое Raspberry Pi и одноплатные компьютеры вообще, зачем они нужны, в чем их преимущества по сравнению с традиционными компьютерами, что нужно, чтобы начать работать с Raspberry Pi и где купить Raspberry Pi . А дальше вас ждет серия уроков по Raspberry Pi для начинающих и интересные идеи по использованию устройства в роботах и робототехнике.

Raspberry Pi – одноплатный компьютер, то есть различные части компьютера, которые обычно располагаются на отдельных платах, здесь представлены на одной.

Первый проект будущей Raspberry Pi был представлен в 2011 г., промышленное производство началось в 2012 г. В названии продукта объединены Raspberry — малина и Pi — число Пи. Изображение малины стало логотипом проекта.

Изначально проект создавался как образовательный, Raspberry Pi отлично подходит для изучения основ электроники — все видно, доступно и цена не велика. На сайте проекта присутствует весомый с подробными инструкциями и методиками. Raspberry Pi Foundation постоянно акцентирует внимание на обучающих возможностях компьютера, в их официальном твиттере вы найдете огромное множество юных счастливых обладателей устройства и их достижения.

Для чего нужны одноплатные компьютеры?

Одноплатные компьютеры обычно небольшого размера, энергоэффективны и имеют относительно небольшую стоимость. Все это относится и к Raspberry Pi. Многие пользователи используют Raspberry Pi как сервер, ведь она потребляет мало энергии и совершенно бесшумна. Благодаря небольшому размеру ее можно встроить в различные корпусы и использовать, например, как мозг для робота. Поэтому проект «Занимательная робототехника» и обратился к рассмотрению этого устройства. В целом с Raspberry Pi можно сделать основную массу всего того, что вы делаете на обычном настольном компьютере, но с некоторой спецификой, в основном связанной с несовместимостью со многими операционными системами.

Выглядит Raspberry Pi так, размер платы схож с кредитной картой:

Плата Raspberry Pi

Сегодня Raspberry Pi популярен не только в обучении, но и среди взрослых и вполне серьезных дяденек, которые создают иногда такие вот безумные проекты — всего каких-то 64 Raspberry Pi, немного -деталей и супер-компьютер готов!

Немного технических деталей Raspberry Pi

Размеры Raspberry Pi: 85,6x56x21 мм, вес 45 г.

RaspberryPi выпускается в двух версиях — A и B. Версия В на сегодняшний день более популярна.

Сравнение версий и основные характеристики Raspberry Pi:

  • Процессор ARM11,Broadcom BCM2835,700 МГц;
  • Оперативная память — 256 Мб у А, 512 Мб у В;
  • USB входы/выходы — 1 у А, 2 у В;
  • SD вход;
  • RCA выход (“тюльпан”);
  • HDMI выход;
  • Ethernet вход/выход — есть только у В;
  • Audio выход;
  • GPIO контакты.

Как видно, Raspberry Pi имеет только оперативную память. В качестве постоянной памяти предполагается использование SD-карт.

Стоимость и где купить Raspberry Pi?

Официальный дилер и некоторые другие интернет-магазины в России продают модель B в районе 2300-2500 рублей + доставка.

Самый экономичный способ купить Raspberry Pi в России — это по-прежнему крупные китайские интернет-магазины (я сам делаю именно так).

По состоянию на момент написания статьи модель B на сайте AliExpress стоит $44 , на DealExtreme — $49. И там, и там бесплатная доставка. Если нет времени ждать посылку из Китая — рекомендуем интернет-магазины и DESSY .

Цены этих магазинов постоянно меняются, появляются какие-то скидки и спецпредложения. Сам я заказывал на DealExtreme недавно за $54 и тогда это было лучшее предложение. Поэтому, если вы раздумываете о покупке, то текущий вариант на AliExpress очень выгодный.

Что касается работы почты и таможни, то от заказа до получения в этот раз у меня прошло чуть меньше месяца. Предыдущие посылки из Китая приходили недели за три. Т.е. сроки вполне адекватные.

Плата была упакована в картонную фиременную коробку, интернет-магазин дополнительно упаковывает в противоударный пакет, поэтому поломаться в дороге ничего не должно.

Что еще нужно для начала работы с Raspberry Pi?

Чтобы начать работу с Raspberry Pi помимо самой платы вам понадобиться:

  • SD-карта, с которой вы загрузите операционную систему; производитель рекомендует использовать карту от 8 до 32 Gb, реально работают и на меньших картах;
  • монитор или телевизор с разъемами HDMI, DVI или RCA («тюльпан») (VGA не подходит), и, соответственно, кабель HDMI-HDMI, HDMI-DVI или RCA-RCA;
  • USB-клавиатура;
  • USB-мышь.

Я подключил Raspberry Pi к 24-дюймовому телевизору, выглядит это так (сама Raspberry Pi выделена овалом):

Raspberry Pi, подключенная к телевизору

Raspberry Pi поставляется без ОС, ее нужно скачать с сайта производителя и загрузить на SD, что мы опишем подробнее в следующей статье. Так же продаются SD-карты с уже закачанной туда ОС. Я особого смысла в этом не вижу.

В статье мы рассмотрим плату расширения GPIO Shield, которая добавит возможность подключения аналоговых датчиков и плат расширения Arduino к Raspberry Pi (Рисунок 1). Напряжение питания на плату GPIO Shield может поступать от Raspberry Pi (5 В) или от внешнего источника (12 В), но более подробно мы рассмотрим этот вопрос ниже. Плата подключается к Raspberry Pi посредством GPIO-совместимого разъема, а для подключения типовых контроллеров Arduino и плат расширения имеются соответствующие штыревые контакты. Другими словами, предлагаемое аппаратное решение является своего рода мостом между Raspberry Pi и Arduino.

Принципиальная схема

При разработке платы расширения преследовались следующие цели:

  • Повышение функциональности портов GPIO за счет добавления непосредственно на плату расширения 4-канального АЦП с дифференциальными или несимметричными входами, а с дополнительным модулем - 16 цифровых линий ввода/вывода и ЦАП;
  • Использование напряжения питания 5 В платы Raspberry Pi или внешнего источника 12 В для совместимости с платами расширения Arduino;
  • Преобразование логических уровней 3.3 В - 5 В цифровых линий ввода/вывода и интерфейсов передачи данных I 2 C/SPI;
  • Возможность использования аналоговых входов АЦП в дифференциальном и линейном режиме;
  • Обеспечение совместимости с Raspberry Pi посредством установки 26-контактного разъема GPIO;
  • Установка разъемов для прямого подключения Arduino и будущих плат, которые планируются к выпуску;
  • Возможность установки дополнительных разъемов для подключения внешних адаптеров USB-I 2 C, USB-SPI.

На Рисунке 2 изображена принципиальная схема GPIO Shield, реализующая перечисленные цели на практике.

Регулятор напряжения выполнен по классической схеме с использованием микросхемы стабилизатора . Перемычка EXT/INT предназначена для выбора способа питания платы расширения: внешний источник 12 В через регулятор 7805 или внутренний источник 5 В с контакта 2 разъема GPIO Raspberry Pi. Следует помнить, что используемая для питания внешней периферии схема регулятора напряжения на плате Raspberry Pi способна обеспечить выходной ток 500 мА для версии A и 300 мА для версии B. Поэтому для внешних модулей и датчиков с бóльшими токами потребления или для плат расширения с напряжением питания 12 В следует использовать внешний источник питания, и соответствующим образом установить перемычку EXT/INT.

Рассмотрим схему преобразования логических уровней, в которой использованы два разных приема.

Преобразование логических уровней цифровых линий ввода/вывода выполняется с помощью 8-разрядной двунаправленной микросхемы сдвига уровней компании , имеющей две раздельные шины питания и автоматически определяющей направление передачи данных.

Порты A микросхемы подключаются к интерфейсу Raspberry Pi (разъем GPIO которого обозначен на схеме как RPY), порты B подключаются к разъемам IOL и IOH портов ввода/вывода Arduino. На выводы VCCA и VCCB подаются опорные напряжения для преобразования уровней, подключенные к шинам 3.3 В и 5.0 В, соответственно. Высокий логический уровень на выводе OE разрешает работу микросхемы, поэтому он подтянут через резистор к напряжению VCCA. Низкий уровень на этом выводе переводит все выходы микросхемы в высокоимпедансное состояние. Соответствие выводов разъемов Arduino и Raspberry Pi представлено в Таблице

Что касается линий интерфейсов I 2 C, SPI и последовательного порта UART, для преобразования логических уровней мы выбрали решение на полевых N-канальных MOSFET , работающих в режиме обогащения с пороговым напряжением 1.3 В.

Схемы преобразования уровней идентичны для каждой сигнальной линии. В качестве примера рассмотрим линию SDA шины I 2 C. Затвор транзистора T7 подключен к шине питания 3.3 В, исток подключен к линии низкоуровневого сигнала (3.3 В), сток - к линии высокоуровневого сигнала (5.0 В).

Таблица 1. Соответствие выводов разъема
GPIO Raspberry Pi и разъема Arduino

Порты
Arduino

Разъем GPIO
Raspberry Pi rev.1

Разъем GPIO
Raspberry Pi rev.2

Теперь рассмотрим узел аналого-цифрового преобразования, для которого мы выбрали микросхему компании .

При разработке этого узла платы мы пошли на некоторый компромисс при распределении сигналов по выводам разъемов Arduino. Дело в том, что Arduino имеет 6 аналоговых входов, но два из них (A4, A5) используются совместно с интерфейсом I 2 C. При разработке проекта в среде Arduino IDE мы можем программно переопределять назначение выводов в соответствии с требованиями приложения. Для Raspberry Pi такой возможности нет, как нет и встроенного АЦП. В нашем случае мы выбрали внешнюю микросхему АЦП, которая подключается к микроконтроллеру по шине I 2 C через указанные выводы порта, оставляя свободными только 4 аналоговых входа. Но, в то же время, микросхема MCP3428 предоставляет 16-разрядную точность измерений линейных или дифференциальных сигналов.

Выводы микросхемы CH1+ … CH4+ подключаются к контактам A0 … A3, соответственно, разъема АЦП Arduino. Выводы CH1- … CH4- подключены к отдельному разъему, и с помощью перемычек J0 … J3 могут индивидуально замыкаться на «землю». Таким образом каждый вывод можно сконфигурировать на прием как линейных, так и дифференциальных сигналов. Сигналы SDA и SCL выведены на соответствующие контакты разъема Arduino, а также на разъем GPIO Raspberry Pi (выводы 5 и 3) через преобразователи уровней на транзисторах Q7 и Q8. Для установки адреса микросхемы на шине I 2 C используются входы ADR0 и ADR1. Указанному на схеме состоянию этих входов соответствует адрес 0x68 (см. техническое описание MCP3428).

Линии последовательного порта с выводов 8 и 10 разъема GPIO через преобразователи уровней подключаются к контактам TXD и RXD разъема Arduino.

Raspberry Pi для домашней автоматизации. Релейный модуль

Raspberry Pi для домашней автоматизации. Релейный модуль

ВНИМАНИЕ!!! Сайт переносится на новый ресурс - https://whp.home.blog

Пока продолжается процесс адаптации контроллеров системы домашней автоматизации для работы со стандартным Modbus RTU, немного поговорим о подключении к Raspberry Pi различных готовых модулей. Начнем с самого простого - подключение к портам GPIO релейного модуля.

В продаже можно найти различные модификации релейных модулей на 1, 2, 4, 8 и более каналов. Все они, как правило, выполнены по одинаковой схеме и имеют «на борту» гальваническую развязку на оптронах,транзисторные ключии электромагнитные реле либо на , либо на 12В .

Оказавшиеся в моем распоряжении два 4-х канальных модуля были выполнены на реле с напряжением 12В (рис.1)

Рис.1

В описании полученных релейных модулей было указано, что для управления реле в качестве активног о используется низкий уровень. Т.е. при низком уровне на входе канала модуля соответствующее реле включено , а при высоком - отключено . Для более детального рассмотрения этого вопроса обратимся к принципиальной схеме, которая была составлена по печатной плате модуля (рис. 2). На схеме показан только один канал, остальные каналы идентичные.

Рис.2

При высоком уровне на входе модуля светодиод во входной цепи и светодиод оптрона выключены, на базе транзистора Q1 присутствует низкий уровень, транзистор закрыт и реле отпущено. При подаче на вход низкого уровня светодиоды включаются, транзистор открывается и реле подтягивается. Диод, шунтирующий обмотку реле, служит для подавления самоиндукции, возникающей при коммутационных процессах.

Обратите внимание, что при установленной перемычке JD питание оптрона составляет 12В . Это неприемлемо при работе с ТТЛ уровнями или уровнями 3,3В . Поэтому, для работы рассматриваемого здесь модуля необходимо перемычку снять и подключение к портам GPIO Raspberry Pi выполнить в соответствии с рис.3:

Рис.3

Так как реле включается при низком управляющем уровне на входе, следовательно, на портах GPIO, которые управляют реле, при загрузке Raspberry Pi должны устанавливаться высокие уровни. Для этого достаточно внести изменения в конфигурационный файл - вместо x = OUT 0 указать x = OUT 1 , где х - номер порта (рис.4)

Рис.4

Так же хотелось бы остановиться на схемной организации управления нагрузками, потребляющими большой ток, например, мощными электронагревателями или вентиляторами. Обычно для таких нагрузок мощности контактов электромагнитного реле модуля недостаточно и их применяют в качестве промежуточных реле , управляющих пускателями (контакторами), которые в свою очередь уже непосредственно коммутируют нагрузку. Для повышения надежности в таких системах имеет смысл использовать 2-х релейные схемы управления, где одно реле (К1) отвечает за включение нагрузки, а второе (К2) - за отключение . Принципиальная схема 2-х релейной схемы управления приведена на рис.5:

Рис.5

Принцип работы 2-х релейной схемы предельно прост. В исходном состоянии реле К1 , К2 и пускатель ПМЛ отпущены, нагрузка отключена. При кратковременном срабатывании реле К1 его нормально-разомкнутые контакты К1.1 подают напряжение на катушку пускателя, пускатель подтягивается, подает питание на нагрузку через контакты ПМЛ-1 и своими блок-контактами ПМЛ-БК становится на «самоподхват». Для отключения нагрузки необходимо кратковременно включить реле К2 , его нормально-замкнутые контакты К2.1 разорвут цепь питания катушки пускателя, нагрузка отключится и схема вернется в исходное состояние.

Преимущество управления с помощью 2-х релейной схемы в том, что электромагнитные реле К1 и К2 включаются только на 1-2 секунды во время включения или отключения нагрузки, остальное время они находятся в отпущенном состоянии. Это предотвращает бесполезную нагрузку на блок питания релейного модуля и повышает надежность управления в целом.

Как недостаток следует отменить необходимость использования для управления нагрузкой двух каналов релейного модуля (т.е получается, что 4-х канальный релейный модуль обеспечит управление только двумя нагрузками). Но тут уже в каждом конкретном случае нужно оценивать что важнее - количество каналов или надежность управления.

Так же в системах управления «высокой ответственности» крайне желательно сделать сигнализацию включенного/отключенного состояния нагрузки. Реализовать такую функцию можно с помощью трансформатора тока, включенного в цепь нагрузки, или, что более просто, с помощью ещё одного реле, подключенного параллельно нагрузке. Контакт реле включается на вход Raspberry Pi и позволяет реально идентифицировать включенное или отключенное состояние нагрузки.

Когда не хватает мощности Arduino, на помощь мейкеру приходит тяжелая артиллерия в виде микрокомпьютеров Raspberry Pi . Чаще всего “малиновые пироги” или “малинки”, как их еще называют, используются в задачах обработки видео, аудио информации и сложных коммуникаций. В этой статье мы познакомимся с Raspberry, узнаем, что такое микрокомпьютер, какие модели сегодня актуальны и как можно использовать это устройство в своих проектах.

С помощью Raspberry Pi можно сделать умного робота, распознающего своего хозяина или домашний сервер умного дома, передающего по WiFi или Ethernet. Вы можете подключить к микрокомпьютеру датчики, двигатели, реле и многое другое. Таким образом, сферы применения Raspberry и Arduino в DIY проектах сильно пересекаются.

Что такое одноплатные микрокомпьютеры?

Микрокомпьютер – это устройство, имеющего архитектуру полноценного компьютера, но отличающееся своими размерами. Сегодня на рынке представлены сотни(!) различных моделей (включая клоны Raspberry) от десятков производителей и этим рынок одноплатников существенно отличается от рынка обычных компьютеров, на котором между лидерами давно уже распределены все доли рынка.

Микрокомпьютеры чаще всего создаются под конкретные задачи, они не могут конкурировать с обычными компьютерами, уступая им в мощности и удобстве. Но зато они более дешевы, просты, имеют компактный размер и потребляют меньше энергии. Это делает микрокомпьютер важным элементом мобильных автоматизированных систем.

Raspberry Pi является сегодня наиболее известным представителем семейства одноплатных микрокомпьютеров. Это достаточно дешевая и доступная плата начального уровня, которую можно купить во множестве интернет-магазинов. Азиатские производители создали большое количество клонов (Orange Pi, Banana Pi и другие), которые можно использовать в своих проектах. И другим очень важным преимуществом “малинки” является огромное сообщество разработчиков, занимающихся развитием архитектуры и программного обеспечения. Выпущено множество книг, учебных пособий, операционных систем и удобных инструментов, существенно облегчающих начинающим начало работы с системой. Поэтому именно с этим микроконтроллером рекомендуется начинать работу тем, кому уже стал “мелковат” ардуино.

Что такое Raspberry Pi?

Raspberry Pi представляет собой недорогой компьютер размером с кредитную карту, который присоединяется к монитору ПК или телевизору и использует стандартную клавиатуру и мышь. Внешне компьютер представляет собой небольшую четырехслойную печатную плату с USB, HDMI и другими разъемами, слотом для Micro SD, а также гребенкой контактов GPIO. Корпус, карту памяти, клавиатуру, мышь, монитор, блок питания нужно приобретать дополнительно.

При помощи “малинки” можно научиться программировать на языках Scratch и Python. Изначально микрокомпьютер разрабатывался с целью применения для обучения в школах и университетах, поэтому для него существует множество программных пакетов и даже специальная операционная система для детей.

Ключевой особенностью Raspberry является возможность присоединения к нему внешних устройств и управления ими с помощью различных программных пакетов (наиболее популярным является Python). Всевозможные датчики, светодиоды, двигатели, реле и другие электронные компоненты могут подключаться через GPIO контакты так же, как к Arduino. Поэтому мы можем существенно расширять функционал микрокомпьютера, создавая из него рабочую станции для каждого конкретного проекта.

История появления Raspberry

Разработчиком прибора является британская фирма Raspberry Pi Foundation. Первый образец был представлен Дэвидом Брэбеном в мае 2011 года. Начало производства первой партии модели В датируется январем 2012 годом. С тех пор ежегодно компьютер модернизировался, и в продажу поступали более совершенные компьютеры.

История выпуска моделей:

  • 29 февраля 2012 года – старт продаж Model В.
  • 14 декабря 2012 года – начало производства модели Raspberry Pi «A».
  • 14 июля 2014 года – выпуск третей версии Raspberry Pi «B+».
  • 2 февраля 2015 года – выпуск Raspberry Pi «2B».
  • 26 ноября 2015 года – выпуск нового микрокомпьютера Raspberry Pi Zero, оснащенного несмонтированным разъемом GPIO.
  • 29 февраля 2016 года – выпуск модели Raspberry Pi 3, отличающейся 64-битным процессором, наличием WI-FI и Bluetooth.
  • 28 февраля 2017 года – модернизированная версия Raspberry Pi Zero W с WI-FI и Bluetooth.

Распиновка платы Raspberry Pi model A+

Model A+ является бюджетной версией платы Raspberry Pi. Устройство выпущено в 2014 году на замену оригинальной Model A. Плата представлена на рисунке ниже.

В отличие от предыдущей модели А+ обладает следующими характеристиками:

  • Большим количеством выходов GPIO – теперь их стало 40.
  • Micro SD-разъемом.
  • Пониженное потребление энергии – линейные регуляторы напряжения были заменены на переключающиеся регуляторы, и это позволило сэкономить энергию.
  • Усовершенствованная аудиосистема – в плате присутствует отдельный источник питания с пониженным шумовым уровнем.
  • Уменьшенный форм-фактор – композитный аудиовыход встроен 3,5-мм аудиовыход, наличие крепежных отверстий, USB-разъем расположен на краю платы.

Распиновка представлена на рисунке

1, 17 контакты – питание 3,3 В.

2, 4 контакты – напряжение питания 5 В. Подключено напрямую к входному напряжению платы.

3 – выход SDA (один из I2C-пинов на плате).

5 – SCl (также одни из I2C-выходов на плате).

6, 9, 14, 20, 25,30, 34, 39 – Земля. Все заземляющие контакты соединены, можно использовать любой выход, который ближе к оставшимся элементам.

8 – TXD, один из 2 UART-выходов, отвечающий за передачу данных. UART-контакты обычно используют для взаимосвязи Ардуино и Raspberry Pi. Важно правильно соединять платы, так как Pi питается от напряжения 3,3 В, а ардуино – от 5 В.

10 – RXD, выход для UART, отвечающий за прием данных.

11, 13, 15, 16, 18, 22, 29, 3, 32, 33, 36, 37 – зарезервированные контакты.

12 – PCM_C вывод, который используется совместно со специальным ШИМ-методом. Обеспечивает прямой доступ к памяти.

19, 38 – MOSI-контакты.

21, 35 – MISO-контакты.

23, 40 – SCLK-контакты.

24, 26 – CS0 и CS1 выходы.

27,28 – ID_SD, зарезервированы для I2C коммуникации с энергонезависимой памятью.

Плата Raspberry Pi Model A+ используется в проектах, в которых важно поддерживать низкое энергопотребление и где не требуется наличие интерфейса Ethernet.

Плата Raspberry Pi 3 model B

Raspberry Pi model B является наиболее распространенной платой. По сравнению со своим предшественником Pi 2 Model B обладает 64-битным процессором ARM Cortex-A53 и встроенным Wi-Fi и Bluetooth. Плата имеет 1 ГБ оперативной памяти, которая делится с графической системой. Способов применения платы множество – с их помощью можно создавать игровые приставки, охранные системы, планшеты и прочие электронные устройства.

Для подключения наушников и колонок имеется 3,5-миллимитровый разъем. Также имеется 4 USB-выхода, к которым можно присоединять периферию. Подключение различных модулей осуществляется через 15-пиновые слоты:

  • DSI – предназначен для присоединения дисплея;
  • CSI-2 – присоеднинение камеры через интерфейс MIPI.

Для низкоуровневых интерфейсов используются выходы:

  • Общего назначения – 40 портов ввода/вывода;
  • UART;
  • Входы питания и земля.

Для коммуникации используются интерфейсы Ethernet, Wi-Fi 802.11n и Bluetooth 4.1. В качестве жесткого диска плата использует microSD-карту с установленной на ней операционной системой. Карту памяти лучше использовать объемом в 8 ГБ. Raspberry Pi model B использует операционную систему Linux.

Питание устройства осуществляется адаптером на 5 В через USB разъем или выходы питания. Специальный выключатель питания отсутствует на Raspberry Pi, чтобы включить устройство, достаточно просто подключить кабель питания.

Плата Raspberry Pi model Zero

Серия плат model Zero отличается от своих предшественников меньшими размерами. Существует 2 вида плат этого вида – model Zero и новая версия Zero W. Вторая отличается только наличием Wi-fi и Bluetooth на борту.

Технические характеристики Raspberry Zero:

  • 512 МБ оперативной памяти;
  • Одноядерный процессор ARMv6Z ARM1176JZF-S с тактовой частотой 1 ГГц;
  • Мини HDMI порт;
  • 2 микро USB порта, один для подключения к компьютеру;
  • Wi-Fi 802.11n;
  • Bluetooth 4.1

Расположение выходов и распиновка представлены на рисунке. Плата оснащена 40 портами входа-выхода общего назначения, UART, I2C, SPI, выходами питания 3,3 В и 5 В и землей. Важно отметить, что разъем не припаян и требуется самостоятельный монтаж.

Новая модель Zero W использует microSD, в отличие от старшей модели, которая использует miniSD для работы. Флеш-карта используется в качестве носителя, ее объем должен быть не менее 2 ГБ. Питание платы осуществляется при помощи 5-вольтового адапрета через пины питания или микро-USB вход.

Из недостатков можно отметить малую скорость выполнения по сравнению с Raspberry Pi 3 model B. Но по сравнению с B Zero обладает меньшими размерами, что позволяет использовать его в миниатюрных разработках. Используется Raspberry Pi model Zero в тех же сферах, что и остальные компьютеры этого семейства. Плата может быть оснащена периферийными устройствами, блоком питания, экраном. С помощью этих микрокомпьютеров создаются системы видеонаблюдения, игровые системы, бытовые приборы. Наличие Wi-Fi и Bluetooth позволяет расширить диапазон применения. Одновременно с выпуском Raspberry Pi model Zero W компания представила линейку корпусов для компьютера. Корпусы оснащены отверстием для разъема GPIO и установки камеры.

Сравнение моделей Raspberry Pi

Оперативная память

Платы Model A и Model A+ обладают наименьшим объемом памяти – всего 256 МБ. Model B до октября 2012 года также обладала объемом в 256 МБ, после объем был увеличен до 512 МБ, как и у Model B+. В плате Raspberry Pi 3 – наибольший размер памяти, 1 ГБ.

USB порты

Платы Model A и Model A+ оснащены одним портом USB 2.0, в версии Model B количество портов увеличено до двух, а в Model B+ и Pi 3 до четырех. Наиболее заметные изменения у Raspberry Pi Zero – в ней появился один разъем 1 Micro USB OTG.

Аудиовыходы

По этому параметру также отличается модель Raspberry Pi Zero – в этой плате 3,5-миллиметровый джэк, HDMI заменен на многоканальный HD звук через HDMI.

Формат карты памяти

Для моделей A и B использовались карты памяти SD / MMC / SDIO. Все последующие модели используют MicroSD карту.

Количество портов

Модели A и B оснащены 26-выводным GPIO разъёмом, в следующих моделях это число увеличено до 40.

Потребление энергии

Самым энергосберегающим устройством является Raspberry Pi Zero – она использует всего 160 мА. Наибольшее потребление энергии – у платы Raspberry Pi 3 (800 мА-2.5 мА,4 Вт). Первая модель А потребляет 300 мА (1,5 Вт), модели B, A+, B+ требуют порядка 600-700 мА.

Размеры

Самое миниатюрное устройство – Raspberry Pi Zero, его габариты 65.0 x 30.0 мм x 5мм. Немного больше модель А+, у которой размеры равны 65.0 x 56.0 мм x 12мм. Остальные платы обладают примерно одинаковым размером 85.0 x 56.0 мм x 17мм.

Где купить Raspberry Pi

Благодаря огромной популярности микрокомпьютеров Raspberry Pi их можно приобрести в любой точке мира в любом магазине. Но официальными продавцами считаются только 2 европейские фирмы – это «RS Components» и «Element 14». Обе фирмы поставляют мини-компьютеры в упаковках с различным дизайном, но товары от обоих поставщиков сделаны в Англии.

Со временем появились и китайские аналоги, которые можно купить на AliExpress. Сразу же возникает вопрос о подлинности этих гаджетов. Анализ китайской и английской версии можно провести, сравнив их рабочие характеристики, производительность процессора, памяти.

Процессор в оригинальной английской версии работает немного быстрее китайского аналога, то же самое касается и оперативной памяти. Отличия в работе минимальны, из чего можно сделать вывод, что китайская версия Raspberry Pi не хуже по своим рабочим параметрам.

Примеры проектов с Raspberry Pi

Управление портативной метеостанцией. При помощи Raspberry Pi можно реализовать устройство, которое будет записывать все метеоданные – скорость ветра, температуру, осадки. Можно запрограммировать устройство на автообновление сайта с погодными условиями.

Цифровая фоторамка. При помощи Raspberry P можно самостоятельно изготовить рамку для фотографий, сэкономив при этом примерно половину стоимости. Фоторамка – это медиа-панель, которая управляется Raspberry P. Рамку можно модернизировать – она будет показывать не только фотоснимки, но и дату и время, воспроизводить аудиозаписи, показывать прогноз погоды.

Система автоматизации в доме. Если совместить Raspberry Pi с Ардуино и программой Node.js, можно создать эффективный способ управления всеми электронными устройствами в доме. Вариантов работы много – автоматическое включение и выключение света при помощи датчика освещения, включение/выключение телевизора, регулирование температурного режима в доме.

При помощи платы Raspberry Pi можно реализовывать самые разные проекты – от музыкальных инструментов до фотоаппаратов и планшетов. Причем использование этой платы может существенно снизить стоимость самодельного прибора.

Raspberry-Pi становится действительно универсальным мини-компьютером.
Предлагаем вашему вниманию доступный по цене и простой в обращении и установке модуль расширения X100, превращающий Ваш Raspberry в мощнейший инструмент, благодаря насыщенной коммуникативности данного модуля и наличия на борту часов реального времени.

Вид X100 сверху: назначение разъёмов и выводов.


Вид платы X100 снизу: место микро SD карточки и Rpi RESET.

Описание интерфейсного модуля X100

Плата расширения X100 предназначена для использования на Raspberry Pi (RPI), которая устанавливается в верхней части Raspberry Pi, имеет стабилизатор питания 5 вольт для RPI, от источника напряжения с широким входным диапазоном и несет на себе: выход VGA, RTC, три USB порта, слот SD карты, слот карты памяти, разъем RS232 DB9, и 8 портов для сервомашинок.


Главное и неоспоримое достоинство это видео-вывод VGA и множество других возможностей Х-100.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ платы расширения X100

Непосредственно вставляемый сверху Raspberry Pi, используя модуль использует GPIO разъем, и не требует проводов, и пайки
.Дублированный 26-контактный разъем R-Pi, позволяет чтобы устанавливать существующие платы расширения
.Входное напряжение от 6 В до 23 В преобразуется в 5 В, 3 А через понижающий DC / DC преобразователь для питания Raspberry Pi

VGA - HDMI конвертер для VGA с поддержкой до UXGA (1600 x 1200) и 1080p с 10-битным ЦАП
.USB - автономный концентратор USB с 3 портами
.Хранение - SD и микро SD разъемы для карт
.RTC - На основе NXP PCF2127AT / PCF2129AT с вставленной батареей CR2032
.Отладка - RS232 DB9 разъем (на чипе MAX3232), используется с нуль-модемным кабелем
.I / O - Кнопка сброса для RPI , контакты для доступа S1 & S5 на вершине Raspberry Pi
.Servo поддержка - 8-канальный чип драйвер (ULN2803)
.Разное - DIP переключатель для подключения контактов RPI
.Размеры - 85 х 56 мм (Точно как Raspberry Pi)
. Этот Модуль подходит для Raspberry Pi Rev 2 модели B .

ПИТАНИЕ

X100 поставляется с встроенным стабилизатором +5 В через разъем GPIO с впаянным 2 A авто восстанавливающимся предохранителем. С широким диапазоном входного напряжения. Стабилизатор может получать питание от широкого спектра внешних источников, таких как батареи, 12 V адаптеры питания, солнечных источников батареи и т.д. Дополнительные +5 В выходы также доступны на серво портах.
Рекомендуемые источники питания: 110 ~ 240 В входного переменного тока, 12 VDC 2 ~ 3 A выходного тока.
Размер выходного отверстия (Блок: мм)

HDMI TO VGA

Описание доступно на http://elinux.org/RPi_Screens#RGB_analog.2FVGA
Любой HDMI в VGA адаптер без внешнего блока питания может работать не большое время, но потом сожжет D1, поэтому не используйте преобразователи HDMI с питанием от порта HDMI! Проблема решается использованием преобразователей только с внешним питанием.
X100 не использует питание от RPI HDMI порта и имеет множество функций.
Характеристики:
. Простота в использовании: Нет необходимости кабеля и установки
. Конверсия: Она может конвертировать полный HDMI в VGA видео
. Поддержка 165 MHz / 1,65 Гбит на канал (6.75 Gbps весь канал) для входа HDMI
. Поддержка выхода Аналоговый видео до UXGA и 1080p с 10-битный ЦАП

RS232 MASTER PORT

Порт RS232 соединен с портом UART на Raspberry Pi с использованием интерфейса MAX3232. MAX3232 преобразует порт 3,3 В UART к RS232 напряжениям и позволяет устанавливать связь с RS232 совместимыми устройствами по последовательному кабелю DB9 или с использованием нуль-модемного кабеля, плата обеспечивает терминальный доступ с Linux на Raspberry Pi, используя приложение терминала. Порт RS232 может быть доступен через порт DB9.

Терминальное приложение - конфигурация PuTTY (COMx, X = Серийный номер порта)

ЧАСЫ РЕАЛЬНОГО ВРЕМЕНИ (RTC)

Предназначены для использования в Raspbian. Это очень точные часы реального времени, которые соединяются через порт GPIO на Raspberry Pi. Они используют контакты GND, SDA и SCL.
Они используют высокоточный чип / PCF2129AT и NXP PCF2127AT:
. Очень точный хронометраж (обычно ± 3 ppm или <2 минуты отклонения в год)
. Интегрированный кристалл, компенсирует температуру и возраст
. Поставляемый аккумулятор будет держать время в течение очень долгого времени, если устройство не используется.
. 512 байт статического ОЗУ, защищенные резервной батареи
. Батарея в комплекте!

ULN2803 8-канальный RC SERVO PORT

Этот чип Драйвер содержит 8 выходов, которые могут обеспечивать 500 мА от выбираемого входного напряжения питания 5 В или постоянного входного тока и имеет на всех выходах диоды включенные внутри для управления катушками. Это позволяет вашим маленьким микроконтроллером или микрокомпьютером питать соленоиды, двигатели постоянного тока (в одном направлении) и униполярные шаговые двигатели.ULN2803 подключаются к входам GPIO через коммутатор DIP, с его выводов собирается два массива Wire-To-Board заголовке. Кроме того, эти порты могут быть использованы для питания +5 В или входного напряжения для другой внешней схемы, или встроенных устройств.
Пожалуйста, обратите внимание, что этот драйвер с «открытым коллектором» - его можно использовать только для подключения нагрузки к земле и будет 1 Вольт (или более) падение напряжения через внутренние транзисторы.

USB HUB И КАРТРИДЕР

Полностью протестированы на совместимость с Raspberry Pi
. Полностью совместим с USB-концентратор спецификации версии 2.0 и обратно совместим со спецификацией USB-концентратор 1.1
. Поддержка трех автономным питанием входных порта
. Очень низкое энергопотребление
. USB класса устройств для Mass Storage, Bulk-транспортного V1.0
. Поддержка SD спецификации до версии. 2.0 (SDHC)
. Оборудование DMA драйвера интегрировано для повышения производительности
Примечание: SD-карта и Micro-SD карта не могут производить чтение / запись одновременно.
X100 также может быть подключен к USB-порту компьютера при помощи прилагаемого USB кабеля, чтобы записать образ ОС на карту SD.

Инсталляцию модуля производите согласно этим картинкам:

HDMI адаптер и USB адаптер поставляются в комплекте.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: