Пример решения прямой и двойственной задачи симплекс методом. Задача линейного программирования. Симплекс-метод. Применение надстройки «Поиск решения» в MS Excel

Задание . Реализуйте все нижеприведенные шаги в табличном процессоре Excel, необходимые для решения задачи ЛП.
Поясним последовательность действий при решения задачи ЛП табличным симплекс-методом на примере.

Задача . Решить задачу табличным симплекс-методом .

при ограничениях

Порядок выполнения работы :

I. Проверка выполнения условий, необходимых для решения задачи табличным симплекс-методом в чистом виде.


II. Оформление исходных данных.


  1. Откройте табличный процессор Excel и введите заголовок Табличный способ решения задач линейного программирования .

  2. Заполните начальную симплекс-таблицу.
Шапка таблицы: столбец базисных переменных (B ), столбец свободных членов, имеющиеся переменные.

Следующая строка таблицы соответствует первому ограничению. Базисная переменная , найденная в первом ограничении, свободный член, коэффициенты при переменных соответствующего ограничения. Аналогичным образом заполняются 2 и 3 строки.

Последняя строка – это строка целевой функции, которая заполняется следующим образом, свободный член без изменения знака, а коэффициенты при переменных с противоположным (рис. 26).

Рис. 26 . Исходная симплекс таблица.


  1. Запишите значение целевой функции , начальный опорный план, опираясь на столбец свободных членов (рис. 27).

Рис. 27 . Значение целевой функции и начальный опорный план.

III. Нахождение оптимального плана и оптимального значения целевой функции.


  1. Так в индексной строке есть отрицательные коэффициенты при переменных, то опорный план не является оптимальным. Организуйте процесс улучшения плана, выполнив предложенные шаги.

  2. Среди отрицательных элементов индексной строки выберите наибольший по модулю элемент. Соответствующий столбец назовите ведущим. Данный столбец показывает , какую переменную необходимо включить в базис (рис. 28).

Рис. 28 . Выбор ведущего столбца.



Рис. 29 . Составление отношений.


  1. Определите результат отношений (таблица 5), учитывая, что в результате может получиться число, отличное от нуля, 0 или бесконечность (рис. 30).

Рис. 30 . Результат отношений.


  1. Выберите наименьшее из отношений. Строку, в которой получился наименьший результат, назовите ведущей (рис. 31). Данная строка показывает, какую переменную необходимо исключить из базиса.

Рис. 31 . Выбор ведущей строки.


  1. На пересечении ведущей строки и ведущего столбца получается ведущий элемент (рис. 32).

Рис. 32 . Ведущий элемент.



Рис. 33 . Новый базис.


Для получения 1 в ячейке С13 необходимо каждый элемент ведущей строки поделить на ведущий элемент.

В ячейку С13 запишите формулу = С5/2 (рис 34), нажмите Enter.

Рис. 34 . Получение 1 в ячейке С13.
Растяните формулу (рис. 35).

Рис. 35 . Первая строка второй симплексной таблицы.
Затем получите нуль в ячейке С14.

Для этого во второй симплексной таблице 1 (ячейка С13) умножьте на элемент предыдущей таблицы, соответствующий элементу ячейки С14, взятый с противоположным знаком и сложите с этим же элементом.

Так как элемент, соответствующий элементу ячейки С14 равен 1 (ячейка С6), то это означает, что все элементы первой строки второй симплексной таблицы умножаются на (-1) и складывается с соответствующими элементами первой симплексной ьаблицы. Запишите в ячейку С14 формулу =C13*(-1)+C6 (рис. 36).

Рис. 36 . Элемент С14 второй симплексной таблицы.
Аналогичным образом получите остальные элементы базисного столбца (рис. 37 и рис. 38).


Рис. 37 . Элемент С15 второй симплексной таблицы.

Рис. 38 . Элемент С16 второй симплексной таблицы.


  1. Растяните формулы базисного столбца по строкам, получите вторую симплексную таблицу (рис. 39).

Рис. 39 . Первая и вторая симплексные таблицы.


  1. Так в индексной строке есть отрицательные коэффициенты при переменных, то опорный план не является оптимальным.

  2. Запишите значение целевой функции, найденный новый опорный план, опираясь на столбец свободных членов (рис. 40). Проконтролируйте, что значение целевой функции максимизируется.

Рис. 40 . Значение целевой функции и опорного плана второй симплексной таблицы.


  1. Организуйте процесс улучшения плана, выполнив предложенные шаги, начиная с пункта 5, до тех пор пока не будет выполняться какой-нибудь из критериев остановки. Получите третью симплексную таблицу (рис. 41).

Рис. 41 . Первая, вторая и третья симплексные таблицы.

Задание. Воспользуйтесь материалами лабораторной работы №3. Выполните проверку, используя программу MathCad.

Урок 1. Решение задачи линейного программирования в Excel с помощью надстройки "Поиск решения"

Экономико-математические методы и модели. Задача распределения ресурсов. Классический пример и решения задачи линейного программирование. Описание как пользоваться надстройкой Поиск решения в Excel. Условие задачи здесь - , еще примеры решения задач по ЭМММ -

#ЭМММ #Excel #Матпрограммирование #ПоискРешения #Easyhelp

Решение задачи линейного программирования при помощи надстройки Поиск решения

Использование надстройки Поиск решения для решения задач линейного программирования. Поставьте класс, если видео оказалось Вам полезно.

Простая задача линейного программирования №2. Симплекс-метод для поиска максимума.

Решение простой задачи линейного программирования симплекс-методом для поиска максимума. Для более детального пояснения доступны субтитры.




.

Простая задача линейного программирования №1. Симплекс-метод для поиска минимума.

Решение простой задачи линейного программирования симплекс-методом для поиска минимума. Для дополнительного пояснения доступны субтитры.


- Простая задача линейного программирования №3. Симплекс-метод для поиска минимума.
- Решение задачи линейного программирования алгоритмом двойственного симплекс-метода
- Решения прямой, двойственной задач ЛП, построение двойственной задачи ЛП.
- Решение задачи линейного программирования с неоднотипными неравенствами симплекс-методом
- Задача линейного программирования с системой уравнений

Лекция 2: Задача линейного программирования. Задача о ресурсах

Рассматривается решение задачи линейного программирования симплекс-методом.
Лекция и тесты в НОУ ИНТУИТ

Линейное программирование

Решение задачи линейного программирования с помощью Поиск решения MS Excel
Текстовый материал на сайте находится по адресу:

Урок 2. Решение двойственной задачи линейного программирования в Excel

Анализ устойчивости для прямой и двойственной задач линейного программирования в Excel. Условие задачи смотрите здесь - , еще примеры решений задач здесь -

#Excel #матпрограммирование #easyhelp

Симплекс-метод Excel VBA (Решение задачи линейного программирования с помощью макросов)

Демонстрация работы макроса в Excel. Решение задачи линейного программирования Симплекс-методом.
Заказать макрос - [email protected]

Решение лабораторных работ в Excel на заказ

Симплексный метод решения задач линейного програмирования

линейное программирование. Симплексная таблица. Разрешающий элемент. Разрешающая строка. Разрешающий столбец. Симплексное отношение
Графический метод решения задач оптимизации.

Решение задачи о раскрое материалов Поиском решений Excel, часть 2

В данном видеоуроке мы рассмотрим пример решения задачи о раскрое рулонов ткани на куски заданной длины, при котором количество раскроенных рулонов будут минимальным.
Задача будет решаться с помощью Поиска решений Excel.
В заключении будет приведена экономико-математическая постановка данной задачи линейного программирования.

Как и обещал в ходе изложения материала, ссылка на первый видеоурок из серии задач о раскрое материалов:

В нашей подборке вы также можете найти больше видеоуроков по решению прикладных задач в Excel
Больше других обучающих видеоуроков вы сможете найти на нашем сайте

Решение транспортной задачи в Excel с помощью надстройки "Поиск решения"

Задача линейного программирования. Транспортная задача. Решение в Excel, анализ устойчивости. Условие задачи здесь - , еще примеры решения задач по мат.программированию здесь -

#excel #матпрограммирование #ТранспортнаяЗадача #ЛинейноеПрограммирование #ПоискРешения #easyhelp #АнализУстойчивости

Двойственный метод

Вирішуємо симплекс-метод вручну

Вирішуємо симплекс-метод вручну

Методы оптимизации 12. Линейное программирование, симплекс-метод

Простая задача линейного программирования №3. Симплекс-метод для поиска минимума.

Очень подробное решение простой задачи линейного программирования симплекс-методом для поиска минимума.

Простая задача линейного программирования №1. Симплекс-метод для поиска минимума.
- Простая задача линейного программирования №2. Симплекс-метод для поиска максимума.
- Решение задачи линейного программирования алгоритмом двойственного симплекс-метода
- Решения прямой, двойственной задач ЛП, построение двойственной задачи ЛП.
- Решение задачи линейного программирования с неоднотипными неравенствами симплекс-методом
- Задача линейного программирования с системой уравнений

Поиск решения в Excel

Быстрая пояснялка по надстройке Поиск решения в Excel. Статья по адресу

Решение задачи линейного программирования графическим методом

Построив в предыдущем видеоуроке модель задачи линейного программирования, необходимо найти ее решение. Одним из самых распространенных методов оптимизации является графический метод. Он может использоваться, если число неизвестных переменных Х не превышает двух. К достоинствам метода относится его простота, к недостаткам - точность полученного решения зависит от того, насколько правильно мы соблюдали масштаб при построении. Наш видеоурок научит вас этому.

Если данное видео принесло вам реальную пользу и вы хотите отблагодарить автора:
WMR: R370550256930
WMZ: Z939960413056

В нашей подборке вы можете найти больше видеоуроков по работе с электронными таблицами Microsoft Excel:

Еще больше других обучающих видеоуроков вы сможете найти на нашем сайте.

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: