Вынесение общего множителя за скобки упражнения. Вынесение общего множителя за скобку

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

\(5x+xy\) можно представить как \(x(5+y)\). Это и в самом деле одинаковые выражения, мы можем в этом убедиться если раскроем скобки: \(x(5+y)=x \cdot 5+x \cdot y=5x+xy\). Как видите, в результате мы получаем исходное выражение. Значит, \(5x+xy\) действительно равно \(x(5+y)\). Кстати, это надежный способ проверки правильности вынесения общих множителей – раскрыть полученную скобку и сравнить результат с исходным выражением.


Главное правило вынесения за скобку:

К примеру, в выражении \(3ab+5bc-abc\) за скобку можно вынести только \(b\), потому что лишь оно есть во всех трех слагаемых. Процесс вынесения общих множителей за скобку представлен на схеме ниже:

Правила вынесения за скобки

    В математике принято выносить сразу все общие множители.

    Пример: \(3xy-3xz=3x(y-z)\)
    Обратите внимание, здесь мы могли бы разложить и вот так: \(3(xy-xz)\) или так: \(x(3y-3z)\). Однако это были бы неполные разложения. Выносить надо и тройку, и икс.

    Иногда общие члены сразу не видны.

    Пример: \(10x-15y=2·5·x-3·5·y=5(2x-3y)\)
    В этом случае общий член (пятерка) была скрыта. Однако разложив \(10\) как \(2\) умножить на \(5\), а \(15\) как \(3\) умножить на \(5\) – мы «вытащили пятерку на свет Божий», после чего легко смогли вынести ее за скобку.

    Если одночлен выносится полностью – от него остается единица.

    Пример : \(5xy+axy-x=x(5y+ay-1)\)
    Мы за скобку выносим \(x\), а третий одночлен и состоит только из икса. Почему же от него остается единица? Потому что если любое выражение умножить на единицу – оно не изменится. То есть этот самый \(x\) можно представить как \(1\cdot x\). Тогда имеем следующую цепочку преобразований:

    \(5xy+axy-\)\(x\) \(=5xy+axy-\)\(1 \cdot x\) \(=\)\(x\) \((5y+ay-\)\(1\) \()\)

    Более того – это единственно правильный способ вынесения, потому что если мы единицу не оставим, то при раскрытии скобок мы не вернемся к исходному выражению. Действительно, если сделать вынесение вот так \(5xy+axy-x=x(5y+ay)\), то при раскрытии мы получим \(x(5y+ay)=5xy+axy\). Третий член – пропал. Значит, такое вынесение некорректно.

    За скобку можно выносить знак «минус», при этом знаки членов с скобке меняются на противоположные.

    Пример: \(x-y=-(-x+y)=-(y-x)\)
    По сути здесь мы выносим за скобку «минус единицу», которая может быть «выделена» перед любым одночленом, даже если минуса перед ним не было. Мы здесь используем тот факт, что единицу можно записать как \((-1) \cdot (-1)\). Вот тот же пример, расписанный подробно:

    \(x-y=\)
    \(=1·x+(-1)·y=\)
    \(=(-1)·(-1)·x+(-1)·y=\)
    \(=(-1)·((-1)·x+y)=\)
    \(=-(-x+y)=\)
    \(-(y-x)\)

    Скобка тоже может быть общим множителем.

    Пример: \(3m(n-5)+2(n-5)=(n-5)(3m+2)\)
    С такой ситуацией (вынесением за скобку скобки) чаще всего мы сталкиваемся при разложении на множители методом группировки или

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Урок алгебры в 7-м классе "Вынесение общего множителя за скобки"

Комарова Галина Александровна

Цель : совершенствование практических умений и навыков учащихся при разложении многочлена множители путем вынесения общего множителя за скобки, применение его при решении уравнений. Провести диагностику усвоения системы знаний и умений и ее применение для выполнения практических заданий стандартного уровня с переходом на более высокий уровень. Развивать умения: применять правила, анализировать, сравнивать, обобщать, выделять главное.

Задачи :

    создать ситуацию успеха на уроке, условия для самостоятельной деятельности учащихся на уроке;

    способствовать пониманию учебного материала урока;

    воспитывать коммуникативность и толерантность в отношениях учащихся между собой.

Тип урока : комбинированный.

Методы: стимулирующие, поисковые, наглядные, практические, словесные, игровые, дифференцированная работа.

Формы проведения: индивидуальные, коллективные, групповые.

Оценка знаний ведется по 5-бальной системе.

Тип урока: обобщение и систематизация знаний с дидактическими играми.

Результаты обучения: Уметь выносить общий множитель за скобки, уметь применять данный способ при разложении на множители, уметь использовать вынесение за скобки общего множителя при решении уравнений.

Ход урока

1. Организационный момент.

Приветствие учащихся.

Когда ученики Пифагора просыпались, они должны были произносить такие стихи:

«Прежде чем встать от сладостных снов, навеваемых ночью,

Думой раскинь, какие дела тебе день приготовил».

2. Разминка - графический тест теоретического материала.

Верно ли утверждение, определение, свойство?

1. Одночленом называют сумму числовых и буквенных множителей. (нет -)

2. Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена. (да Λ)

3. Одинаковые или отличающиеся друг от друга только коэффициентами, называют подобными членами. (да Λ)

4. Алгебраическая сумма нескольких одночленов называется одночленом . (нет -)

5. При умножении любого числа или выражения на ноль получается ноль. (да Λ)

6. В результате умножения одночлена на многочлен получается многочлен. (да Λ)

7. Когда раскрываем скобки, перед которыми стоит знак "-”, скобки опускаем, и знаки членов, которые были заключены в скобки, не меняют на противоположные. (нет-)

8.Общий числовой множитель является наибольшим общим делителем коэффициентов одночленов. (да Λ)

9. Из одинаковых буквенных множителей одночленов выносим за скобку его наименьшую степень . (да Λ)

Проверка: ––ΛΛ- ΛΛ-ΛΛ

Выставите себе оценки:

«5» - ошибок нет «4» - две ошибки «3» - четыре ошибки «2» - больше четырех ошибок

3. Актуализация опорных знаний.

    Индивидуальная работа по карточкам №1, №2, №3 (3 учащихся).

    Фронтальная работа с классом:

Задание 1 . Продолжите фразу:

Одним из способов разложения многочлена на множители является… (вынесение общего множителя за скобки );

При вынесении общего множителя за скобки применяется… (распределительное свойство );

Если все члены многочлена содержат общий множитель, то…(этот множитель можно вынести за скобки )

Задание 2 .

    Какой числовой множитель будет общим в следующих выражениях: 12 y 3 -8 y 2 ; 15х 2 - 75х . (4у 2 ; 15х)

    Какую степень множителей а и х можно вынести за скобки

а 2 х- а 5 х 3 + 3а 3 х 2 (а 2 х )

    Сформулировать алгоритм вынесения общего множителя.

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку:

2) наименьшую степень:

разделить :

4. Изучение нового материала.

Определи общий множитель в данных выражениях и вынеси его за скобку:

2а+6=

3 хy-3y=

18m-9nm=

x 2 -x 3 +x 6 =

3y+3xy=

(Работа в парах, взаимопроверка )

Используя ключ к шифру, расшифруй слово.

А

Л

Г

У

Т

3y (x -1) или

-3у(-х+1)

9m (2-n )

2(а+3)

X 2 (1-x +x 4)

3(7c 2 -5a 3)

Ответ: Галуа.

Эварист Галуа (1811-1832)

Галуа - гордость французской науки. Будучи еще ребёнком, он прочитал геометрию Лежандра, как увлекательную книгу. К 16 годам дарования Галуа проявились настолько, что выдвинули его в ряд величайших математиков того времени. Научные труды Галуа по теории алгебраических уравнений высших степеней положили начало развитию современной алгебры.

Всего 20 лет прожил гениальный математик, гордость мировой науки, из которых пять посвятил математике. В 2011 году исполняется 200 лет со дня его рождения.

Предлагаю вам решить уравнение, в левой части которого многочлен второй степени.
12x 2 +6 x =0. Вынесем за скобки 3х. Получим.

6х(2х+1)=0 Произведение равно нулю, когда хотя бы 6х=0 или 2х+1=0. один из множителей равен нулю.

х=0:6 2х=-1

х=0 х = -1:2

х=-0,5

и находим х=0 или х= -0,5

Ответ: х 1 =0, х 2 = -0,5

5. Физкультминутка.

Учащимся зачитываются высказывания. Если высказывание верно, то учащиеся должны поднять руки вверх, а если неверно, то присесть и хлопнуть.

7 2 =49 (Да).

30 = 3 (Нет).

Наибольшим общим множителем многочлена 5а-15в является 5 (Да).

5 2 =10 (Нет).

На руках 10 пальцев. На 10 руках 100 пальцев (Нет).

5 0 =1 (Да)

0 делится на все числа без остатка (Да).

вопрос на засыпку 5:0=0

6. Домашнее задание.

I ,II группа

Правило в тетради, № 709(д,е), 718(г,)719(г),

III группа:

Правило в тетради, № 710(а,б),715(в,г)

Дополнительное задание (по желанию)

    Известно, что при некоторых значениях а и b значение выражения а - b равно 3. Чему равно при тех же a и b значение выражения

а) 5а-5b ; б) 12b - 12а; в) (а - b ) 2 ; г) (b -а) 2 ;

7. Закрепление.

    ,II группа решают номер 710(а,в)

    III группа решает номер 709(а,в)

    Придумайте сами уравнение второй степени

    Работа учащихся по заданию карточки № 5-6 у доски и в тетрадях. (диф)

    Найди ошибку

5. Самостоятельная работа.

Учащимся предлагается выполнение самостоятельной работы обучающего характера в виде теста, с последующей самопроверкой, правильные ответы можно расположить на оборотной стороне доски.

6. Подведение итогов урока.

Рефлексия: Кто сегодня у нас работал лучше всех на уроке?

Какую оценку мы им поставим?

Я работал хорошо

Понял, как решать уравнения вынесением

Общего множителя за скобки

Доволен уроком

Нуждаюсь в помощи учителя или консультанта

МЫ А как мы вместе сегодня поработали?

Примеры карточек.

Карточка №1.

    2х-2 y

    5ab+10a

    2a 3 -a 5

    a(x-2)+b(x-2)

    -7xy+y

Карточка №2.

Вынесите общий множитель за скобки:

    5ab-10ac

    4xy-16x 2

    a 2 -4a+3a 5

    0,3a 2 b+0,6ab 2

    x 2 (y-6)-x(y-6)

Карточка №3.

Вынесите общий множитель

за скобки:

    -3x 2 y-12y 2

    5a 2 -10a 3 +15a 5

    6c 2 x 3 -4c 3 x 3 +2x 2 c

    7a 2 b 3 -1,4a 3 b 4 +2,1a 2 b 5

    3a(x-5)+7(5-x)

Карточка №5- 1

    Вынесите общий множитель за скобки:

    3x + 3y;

    5a – 15b;

    8x+12y;

    Реши уравнение

1) 2x² + 5x = 0

Карточка №5-2

1) 10 а – 10 в

2) 3 ху – х 2 у 2

3) 5 у 2 + 15 у 3

2.Реши уравнение

2x² - 9x = 0

Карточка №6

1. Вынесите общий множитель за скобки:

1) 8 а + 8 в.

2) 4 х у + х 3 у 3

3) 3 в у – 6 в.

2.Реши уравнение

2x² +7x = 0

Дополнительные задания

1.Найдите ошибку:

3х (х-3)=3х 2 -6х; 2х+3ху=х(2+у);

2.Вставьте пропущенное выражение:

5х(2х 2 -х)=10х 3 -…; -3ау-12у=-3у (а+…);

3.Вынеси общий множитель за скобки:

5a - 5b; 3x + 6 y; 15a – 25b; 2,4x + 7,2y.

7a + 7b; 8x – 32a; 21a + 28b; 1,25x – 1,75a .

8x – 8y; 7a + 14b; 24x – 32a; 0,01a + 0, 03y.

4.Замените «М» одночленом так, чтобы полученное равенство было верным:

а) М × (а – b ) = 4 ac – 4 bc ;

б) М × (3а – 1) = 12а 3 – 4а 2 ;

в) М × (2а – b ) = 10а 2 – 5а b .

VIII. Фронтальная работа (на внимательность, на усвоение новых правил).

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

2 х 3 – 3 х 2 – х = х (2 х 2 – 3 х).

2 х + 6 = 2 (х + 3).

8 х + 12 у = 4 (2 х - 3у).

а 6 – а 2 = а 2 (а 2 – 1).

4 -2а = – 2 (2 – а).

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку

2) Из одинаковых буквенных множителей одночленов вынести за скобку его наименьшую степень

3) Каждый одночлен многочлена разделить на общий множитель и результат деления записать в скобки

Лист контроля знаний ученика 7 А класса _________________________________________

    1. Графический

диктант

2.шифровка

3.Индивид. Работа по карточкам

4.тест

5.Всего баллов

6.Отметка учителя

ответ


Тест

1.Какую степень множителя а можно вынести за скобки у многочлена

a²x - аx³

а) а б) a² в) a ³

2 х³ -8x²

а) 4 б) 8 в) 2

a²+ab – ac +a

а) а(a+b-c+1) б) a (a+b-c)

в) a 2 (a+b-c+1)

7m³ + 49m²

а) 7m ² (m +7m 2) б) 7m ² (m +7)

в) 7m ² (7m +7)

5.Разложите на множители:

x(x – y) + a(x – y)

а) (x-y)(x+a) б) (y-x)(x+a)

в) (x+a)(x+y)

6. Реши уравнение

6y-(y-1)=2(2y-4)

а) -9 б) 8 в) 9

г) другой ответ

7.Вынеси общий множитель

x(x – y) + a(y- х)

а) (x-y)(x- a) б) (y-x)(x+a)

в) (x+a)(x+y)

Ответы

Тест

1.Какую степень множителя b можно вынести за скобки у многочлена

b² - a³b³

а) b б) b ² в) b ³

2.Какой числовой множитель можно вынести за скобки у многочлена

15a³ - 25a

а) 15 б) 5 в) 25

3.Вынесите за скобки общий множитель всех членов многочлена

x ² - xy + xp – x

а) x (x -y +p -1) б) x (x -y +p )

в) x 2 (x-y+p-1 )

4.Представьте в виде произведения многочлен

9b² - 81b

а) 9b(b-81) б) 9b 2 (b-9)

в) 9b(b-9)

5.Разложите на множители:

a(a + 3) – 2(a +3)

а) (a+3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

6 . Реши уравнение

3x-(12x-x)=4(5-x)

а) -4 б) 4 в) 2

г) другой ответ

7.Вынеси общий множитель

a (a - 3) – 2(3-а)

а) (a -3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

Ответы

Вариант I

    Выполнить действие:

(3х+10у) – (6х+3у)

а) 9х+7у; б) 7у-3х; в) 3х-7у; г) 9х-7у

6х 2 -3х

а) 3х(2х-1); б) 3х(2х-х); в) 3х 2 (2-х); г)3х(2х+1)

3. Привести к стандартному виду многочлен :

Х+5х 2 +4х-х 2

а) 6х 2 +3х; б) 2 +3х; в)4х 2 +5х; г) 6х 2 -3х

4. Выполнить действие:

3х 2 (2х-0,5у)

а)6х 2 -1,5х 2 у; б) 6х 2 -1,5ху; в) 3 -1,5х 2 у ; г) 6х 3 -0,5х 2 у;

5. Решить уравнение:

8х+5(2-х)=13

а) х=3; б) х=-7; в)х=-1; г) х=1;

6. Вынести общий множитель за скобки:

х(х-у)-6у(х-у)

а) (х-у)(х-6у ) ; б) (х-у)(х+6у) ;

в) (х+у)(х-6у) ; г) (х-у)(6у-х) ;

7. Решить уравнение:

Х 2 +8х=0

а) 0 и-8 б) 0и8; в) 8 и -8

Вариант II

    Выполнить действие:

(2а-1)+(3+6а)

а) 8а+3; б) 8а+4; в) 8а+2 ; г) 6а+2

    Вынести общий множитель за скобки:

7а-7в

а) 7(а-в); б) 7(а+в); в)7(в- а); г) а(7-в);

    Привести к стандартному виду многочлен:

4х 2 +3х-5х 2

а) 2 +3х ; б) 9х 2 +3х; в) 2х 2 ; г) –х 2 -3х;

    Выполнить умножение:

4а 2 (а-в)

а)4а 3 -в; б) 4а 3 -4ав; в) 3 -4а 2 в ; г) 4а 2 -4а 2 в;

    Разложить на множители:

а(в-1)-3(в-1)

а) (в-1)(а-3) ; б) (в-1)(а+3) ; в) (в+1)(а-3) ; г) (в-3)(а-1) ;

    Решить уравнение:

4(а-5)+а=5

а) а=1; б) а=-5; в) а=3; г) а=5;

7. Решить уравнение:

6х 2 -30х=0

а) 0 и 5 б) 0 и -5 в) 5 и -5

Галуа

Заходил паренек в сюртучке небогатом,

Чтобы в лавке табак и мадеру купить.

Приглашала любезно, как младшего брата,

Разбитная хозяйка и впредь заходить.

Провожала до двери, вздыхая устало,

Вслед ему разводила руками: «Чудак!

На четыре сантима опять обсчитала,

А четыре сантима теперь не пустяк!

Кто-то мне наболтал, будто видный ученый,

Математик какой-то мосье Галуа.

Как же может открыть мировые законы

Эта вот, с позволенья сказать, голова?!»

Но всходил на мансарду, обманутый ею,

Брал заветный набросок в чердачной пыли

И доказывал вновь с беспощадностью всею,

Что хозяева сытых желудков - нули. (А. Марков

Вариант 1

1 . 4-2х

А. 2(2 + х).В. 4(1 - х).

Б. 2(2-х).Г. 4(1 + х).

2. а 3 в 2 – а 4 в

А. а 4 в(в - а).В. а 3 в(в - а).

Б. а 3 в 2 (1 - а).Г. а 3 в(1 - а).

3. 15х y 2 + 5х y - 20х 2 y

А. 5хy (3y + 1 - 4х).В. 5хy (3y - 4х).

Б. 5х(3y 2 + у - 2х).Г. 5х(3у 2 + у - 4х).

4. а( b +3) +( b + 3).

А. (b + 3) (а + 1).В. (b + 3)а.

Б. (3 + b ) (a - 1).Г. (3 + b )(1-а).

5. х(y - z ) - (z - y ).

А. (х - 1) (y - z ).В. (х - 1) (z - у).

В.(х + 1)(у-z ).Т.(х + 1)(z -у).

6. Реши уравнение

3y - 12 y 2 =0

Разложение многочленов на множители

Вариант 2

1. 6а-3.

А. 3(2а-1).В. 6(а-1).

Б. 3(2а+1).Г. 3(а-1).

2. а 2 b 3 a 3 b 4

А. а 2 b 3 (1 - аb ).В. а 3 (b 3 – b 4).

Б. аb 3 (1 - а 2 b ).Г. b 3 (х 2 - х 3).

3. 12х 2 у - 6ху - 24ху 2 .

А. 6ху(2х - 1 - 4у).В. 6ху(2х - 4у).

Б. 6ху(6х - 1 - 4у).Г. 6ху(2х + 4у + 1).

4. х( y + 5) + ( y +5).

А. (х - 1) (у + 5).В. (х + 1) (у + 5).

Б.(у + 5)х.Г. (х - 1) (5 - у).

5. а(с- b )- (b -с) .

А. (а - 1) (b + с).В. (а - 1) (b - с).

Б. (а + 1) (с - b ).Г. (а + 1) (b - с).

6. Реши уравнение



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: