Как находится работа электрического тока. Работа и мощность тока: как мы платим за электроэнергию

Работа электрического тока - мера количества энергии.

Работа, совершаемая электрическим током за время t при известном напряжении U И силе тока I равна произведению напряжения на силу тока и время его действия. A=UIt

Работа измеряется в джоулях (1Дж=1В·А·с ).

1 Дж – это работа, совершаемая электрическим током силой 1 А при напряжении U=1 В в течение 1c .

Скорость совершения работы характеризуется мощностью.

Мощностью Р называется отношение работы А к промежутку времени t , за который она совершена. Таким образом, в электрической цепи:

Мощность измеряется в ваттах (1 Вт=1 Дж/с ). 1 Ватт - это мощность, при которой за 1 с совершается работа в 1 Дж .

Тепловое действие тока.

В случае, когда проводник неподвижен и химических превращений в нем не происходит, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается. При этом количество выделившейся теплоты определяется по закону Джоуля – Ленца.

Закон Джоуля-Ленца.

Количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

Q=I 2 Rt , Дж

Т.е. количество выделенного тепла равно количеству электрической энергии, полученной данным проводником при прохождении по нему тока.

Каждый проводник может пропускать, не перегреваясь, ток определенной силы. Для определения токовой нагрузки пользуются понятием плотность тока : это сила тока, приходящаяся на 1 мм 2 площади поперечного сечения проводника. J= .

В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис.1.22). В источниках электрической энергии различные виды энергии преобразуются в электрическую энергию.

Например :

· в электрических генераторах 1 , приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической;

· в термогенераторах 2 – тепловой;

· в аккумуляторах 9 при их разряде и гальванических элементах 10 – химической;

· в фотоэлементах 11 – лучистой.

Приёмники электрической энергии, наоборот, электрическую энергию преобразуют в другие виды энергии.

Например :

· в электродвигателях 3 электрическая энергия превращается в механическую;

· в электронагревательных приборах 5 – в тепловую;

· в электролитических ваннах 8 и аккумуляторах 7 при их заряде – в химическую;

· в электрических лампах 6 – в лучистую и тепловую;

· в антеннах 4 радиопередатчиков – в лучистую.


Рисунок 1.22. Пути превращения энергии из одного вида в другой

Контрольные вопросы

1. Назовите примеры преобразования энергии из одного вида в другой.

2. Дайте определение мощности.

3. Чему равна работа, совершаемая электрическим током за определённое время при известном напряжении и силе тока?

4. Что принято за единицу электрической энергии?

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 - тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 - химической, в фотоэлементах 11 - лучистой.
Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии - тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 - в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде - в химическую, в электрических лампах 6 - в лучистую и тепловую, в антеннах 4 радиопередатчиков - в лучистую.

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), - очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы - ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*10 6 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*10 9 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I 2 R (31)

P = U 2 /R = U 2 G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.
Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

? = P 2 /P 1 = P 2 /(P 2 + ?P) (33)

Р 2 - отдаваемая (полезная) мощность;
Р 1 - получаемая мощность;
?Р - потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86-92 %, мощные трансформаторы - 96-98 %, тяговые подстанции - 94-96 %, контактная сеть электрифицированных железных дорог - около 90 %, генераторы тепловозов - 92-94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Р mx = 28,9 кВт, а отдает электрическую мощность Р эл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д. ? ген = Р эл /Р mx = 26/28,9 = 0,9.

Мощность Р эл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности?P пр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д. ?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.

Рассчитывается мощность прибора? А может быть, последнюю можно измерить? И как применить полученные знания при решении задач?

Такие вопросы возникают у многих восьмиклассников при изучении темы «Электричество». Ответить на них достаточно просто. Да и запоминать формулы долго не придется. Потому что они очень похожи друг на друга или используют уже изученные раньше.

Первая величина: работа тока

Сначала требуется договориться об обозначениях. Потому что в них могут быть различия.

Каждый создает электрическое поле, которое заставляет двигаться свободные электроны. То есть возникает ток. В этот момент говорят, что электрическое поле совершает работу. Именно ее принято называть работой тока.

Электрическое поле, создаваемое источником тока, характеризуется напряжением. Оно влияет на то, какая работа электрического тока совершается при перемещении единичного заряда. Поэтому вводится формула для напряжения:

Из нее легко вывести формулу работы:

Теперь стоит вспомнить равенство, которое вводится для силы тока. Она равна отношению перемещаемого заряда ко времени его движения:

Отсюда q = I * t. Заменив букву q в формуле для работы последним выражением, получаем такую формулу:

Это общий вид равенства, по которому может быть вычислена работа электрического тока. Формула несколько изменится, если применить закон Ома. По нему напряжение равно произведению силы тока на сопротивление. Тогда верным будет такое равенство:

А = I 2 * R * t.

Можно заменить не напряжение, а силу тока. Оно равно частному U и R. Тогда формула работы станет выглядеть так:

А = (U 2 * t)/R.

Вторая величина: мощность тока

Общая формула для нее такая же, как в механике. То есть определяется как работа, совершенная за единицу времени.

Отсюда видно, что работа и мощность электрического тока взаимосвязаны. Чтобы получить более конкретное равенство, потребуется заменить числитель, воспользовавшись общей формулой для работы. Тогда становится понятно, как определить мощность, зная силу тока и напряжение цепи.

К тому же мощность может быть измерена. Для этой цели существует специальный прибор, который называется ваттметром.

Закон Джоуля-Ленца

Явление нагрева проводника было обнаружено французским ученым А. Фуркуа. Произошло это еще в 1880 году. 41 год спустя оно было описано английским физиком Дж. П. Джоулем и через год подтверждено на опыте русским физиком Э.Х. Ленцем. Именно по фамилиям двух последних ученых стали называть обнаруженную закономерность.

В ней связаны две величины: количество теплоты и работа электрического тока. Закон Джоуля-Ленца утверждает, что вся работа в неподвижном проводнике идет на его нагревание. То есть проводник с током выделяет количество теплоты, равное произведению его сопротивления, времени и квадрата силы тока. Формула выглядит так же, как одна из тех, которые приведены для работы:

Q = I 2 * R * t.

Задача на определение работы

Условие . Сопротивление лампочки карманного фонарика равно 14 Ом. Напряжение, которое дает батарейка, составляет 3,5 В. Чему будет равна работа тока, если фонарик работал 2 минуты?

Решение. Поскольку известны напряжение, сопротивление и время, то необходимо воспользоваться такой формулой: А = (U 2 * t)/R. Только сначала потребуется перевести время в единицы СИ, то есть секунды. Таким образом, в формулу нужно подставлять не 2 минуты, а 120 секунд.

Простые расчеты приводят к такому значению работы тока: 105 Дж.

Ответ. Работа равна 105 Дж.

Задача на определение мощности

Условие . Необходимо определить, чему равны работа и мощность электрического тока в обмотке электродвигателя. Известно, что сила тока в нем имеет значение 90 А при напряжении 450 В. Включенным электродвигатель остается на протяжении одного часа.

После подстановки значений и выполнения простых арифметических действий получается такое значение для работы: 145800000 Дж. Записать его в ответе удобнее в более крупных единицах. Например, мегаджоулях. Для этого результат нужно разделить на миллион. Работа оказывается равной 145,8 МДж.

Теперь нужно вычислить мощность электродвигателя. Расчеты будут выполняться по формуле: Р = U * I. После умножения получится число: 40500 Вт. Для того чтобы записать его в киловаттах, потребуется разделить результат на тысячу.

Ответ. А = 145,8 МДж, Р = 40,5 кВт.

Задача на вычисление напряжения

Условие. Электроплитка включена в сеть в течение 20 минут. Каково напряжение в сети, если при силе тока в 4 А работа оказывается равной 480 кДж?

Решение. Поскольку известны работа и сила тока, нужно использовать такую формулу: А = U * I * t. Здесь напряжение — неизвестный множитель. Его необходимо вычислить, как частное произведения и известного множителя, то есть: U = А /(I * t).

До проведения расчетов нужно перевести величины в единицы СИ. А именно, работу в Джоули и время в секунды. Это будут 480000 Дж и 1200 с. Теперь осталось все сосчитать.

Ответ. Напряжение равно 100 В.

При прохождении по цепи электрический ток совершает работу, при этом электрическая энергия источника тока превращается в другие виды энергии (механическую, тепловую, световую и т.д.) Работа электрического тока математически выражается произведением напряжения, силы тока и времени действия.

Работа А электрического тока на участке цепи с электрическим сопротивлением R за время ∆t равна:

А = I–U– t = I2 –R– t

Работа измеряется в ватт – секундах, ватт – часах или в киловатт – часах. За единицу работы принят джоуль, или ватт-секунда, т.е. работа, совершаемая током в 1 ампер при напряжении 1 вольт за 1 секунду.

Мощностью называется работа, совершаемая током в единицу времени.

Мощность электрического тока математически выражается отношением работы тока А ко времени ∆t . за которое эта работа совершена:

где,

Прохождение тока по проводнику всегда сопровождается хотя бы одним из особых явлений – действий тока. Известно три действия тока: химическое, магнитное и тепловое.

Работа и мощность электрического тока

В каждой замкнутой цепи в обязательном порядке имеет место двойное преобразование энергии. В источнике тока совершается видоизменение какой-либо энергии (например, в генераторе - механической) в электрическую, а в цепи тока она опять превращается в равносильное количество энергии иного вида. Мера превращения в цепи тока электроэнергии в какие-либо иные виды энергии - величина работы тока.

Но мы понимаем, что работа и мощность электрического тока является работой электрических сил поля, перемещающих заряды; поэтому ее легко подсчитать.

Работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесенного заряда на величину разности потенциалов между точками в начале и конце переноса, т.е. на величину напряжения:

Очевидно, что это соотношение может быть применимо и для оценки таких понятий, как работа и мощность электрического тока. О величине заряда, протекшего в цепи, мы можем судить по току, текущему в цепи, и времени его протекания, так как q = It.

Используя такое соотношение, мы получаем формулу, выражающую величину работы тока на отдельном участке цепи, имеющем напряжение U:

Работа и мощность электрического тока измеряются следующим образом: если измерять ток в амперах, время работы в секундах, а напряжение в вольтах, то работу - в джоулях (Дж).

Таким образом, 1 джоуль = 1 ампер х 1 вольт х 1 секунду.

Мощность измеряется ваттами (Вт):

1 ватт = 1 джоуль/1 секунда, или 1 ватт = 1 вольт х 1 ампер.

Вопрос о подсчете величины работы тока на этом участке совершенно не связан с вопросом о том, в какой вид энергии превратится на данном участке электрическая энергия. Эта работа является мерой электроэнергии, превращенной в другие виды.

Электрический ток, выполняя работу, может накалять нить электролампы, плавить металлы, вращать якорь электродвигателя, вызывать химические превращения и т.д. Во всех случаях работа и мощность электрического тока определяют уровень преобразования электроэнергии в иные формы – механическую энергию, энергию теплового движения и т.д.

Зная, что мощность P = A/t, можно получить формулу, с помощью которой рассчитывается мощность тока на отдельном участке цепи:

Работа и мощность постоянного тока могут быть вычислены при помощи этих формул, а также при помощи амперметра, вольтметра. На практике работу электрического поля измеряют специальным прибором – счетчиком. Проходя через счетчик, внутри него начинает совершать обороты легкий алюминиевый диск, и его скорость вращения будет прямо пропорциональна силе тока и напряжению. Число оборотов, которое он сделает за определенное время, поможет сделать выводы о совершенной за это время работе. Счетчики электроэнергии можно увидеть в каждой квартире.

Мощность тока измеряют, используя специальный прибор – ваттметр. В устройстве этого прибора совмещаются принципы вольтметра и амперметра.

На многих электрических приборах и технических устройствах указывается их мощность. Например, мощность лампочки накаливания может быть 25 Вт, 75 Вт и др., мощность пылесоса или утюга около 1000 Вт, мощность электродвигателей может достигать очень больших значений – до нескольких тысяч киловатт. При этом имеют в виду мощность тока, который проходит через тот или иной прибор.

Работа и мощность переменного тока рассчитываются иначе. Так, для вычисления работы, совершаемой переменным током за определенный промежуток времени, можно воспользоваться формулой:

P = 1/2I₀U₀ cos φ. Зачастую эту формулу записывают в таком виде: P = IU cos φ, где I и U – значения напряжения и силы тока, которое в 2 раза меньше соответствующих амплитудных значений.

Формула вычисления мощности переменного тока будет такой же, как и для постоянного.

Единицы энергии и работы:

1 ватт-секунда = 1 Дж 1 ватт-час = 3600 Дж;

1 гектоватт-час = 360000 Дж;

1 киловатт-час = 3600000дж.

Единицы мощности:

1 ампер-вольт = 1 Вт;

1 гектоватт = 100 Вт;

/ Электрический ток

Электрический ток

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток - это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон - «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором - «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока - это когда один конец провода соединен с наэлектризованным телом, а другой - с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц - электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение - это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд - в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника - L, площадь поперечного сечения - S. В этом случае можно сопротивление записать в виде формулы:

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал

р, Ом х м2/м

Материал

р, Ом х м2/м

Платино-иридиевый сплав

Металл или сплав

Манганин (сплав)

Алюминий

Константан (сплав)

Вольфрам

Нихром (сплав)

Никелин (сплав)

Фехраль (сплав)

Хромель (сплав)

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое - сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников - не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Яндекс.ДиректВсе объявления Квартиры посуточно Казань! Квартиры от 1000 руб. посуточно. Мини-гостиницы. Отчетные документы16.forguest.ru Квартиры посуточно в Казани Уютные квартиры во всех районах Казани. Быстрая аренда квартир посуточно.fatyr.ru Новый Яндекс.Браузер! Удобные закладки и надежная защита. Браузер для приятных прогулок по сети!browser.yandex.ru 0+

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии - для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

где r - сопротивление проводника. В таком случае:

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них - осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики - закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Что такое "работа электрического тока"? что такое "работа электрического тока"?

Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт) . На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч) .

Ирина парфирьева

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику. Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи. каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока, совершенную за какой-то отрезок времени при включении различных бытовых электроприборов. Эти счетчики показывают работу электрического тока (расход электроэнергии) в "кВт. ч". 1 кВт. ч = ...Вт. с = 3 600 000 Дж



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: