Основным аппаратным средствам защиты информации относятся. Программно-аппаратные средства защиты информации. Направления реализации программной защиты информации

Аппаратные (технические) средства - это различные по типу устройства (механические, электромеханические, электронные и др.), которые аппаратными средствами решают задачи защиты информации. Они либо препятствуют физическому проникновению, либо, если проникновение все же состоялось, доступу к информации, в том числе с помощью ее маскировки. Преимущества технических средств связаны с их надежностью, независимостью от субъективных факторов, высокой устойчивостью к модификации. Слабые стороны -- недостаточная гибкость, относительно большие объем и масса, высокая стоимость.

Аппаратные средства, имеющиеся на предприятии:

  • 1) устройства для ввода идентифицирующей информации: кодовый замок BOLID на входной двери в комплекте с идентифицирующими пластиковыми картами;
  • 2) устройства для шифрования информации: шифрование по ГОСТ;
  • 3) устройства для воспрепятствования несанкционированного включения рабочих станций и серверов: достоверная загрузка системы при помощи ПАК «Соболь».

Электронный замок «Соболь» - это аппаратно-программное средство защиты компьютера от несанкционированного доступа . Электронный замок «Соболь» может применяться как устройство, обеспечивающее защиту автономного компьютера, а также рабочей станции или сервера, входящих в состав локальной вычислительной сети.

Возможности электронного замка «Соболь»:

  • – блокировка загрузки ОС со съемных носителей;
  • – контроль целостности программной среды;
  • – контроль целостности системного реестра Windows;
  • – контроль конфигурации компьютера;
  • – сторожевой таймер;
  • – регистрация попыток доступа к ПЭВМ.

Достоинства электронного замка «Соболь»:

  • – наличие сертификатов ФСБ и ФСТЭК России;
  • – защита информации, составляющей государственную тайну;
  • – помощь в построении прикладных криптографических приложений;
  • – простота в установке, настройке и эксплуатации;
  • – поддержка 64-битных операционных систем Windows;
  • – поддержка идентификаторов iButton, iKey 2032, eToken PRO, eToken PRO (Java) иRutoken S/ RF S;
  • – гибкий выбор вариантов комплектации.
  • 4) устройства уничтожения информации на магнитных носителях: тройная перезапись информации при помощи SecretNet.

SecretNet является сертифицированным средством защиты информации от несанкционированного доступа и позволяет привести автоматизированные системы в соответствие с требованиями регулирующих документов:

  • – №98-ФЗ ("О коммерческой тайне");
  • – №152-ФЗ ("О персональных данных");
  • – №5485-1-ФЗ ("О государственной тайне");
  • – СТО БР (Стандарт Банка России).

Ключевые возможности СЗИ от НСД SecretNet:

  • – аутентификация пользователей;
  • – разграничение доступа пользователей к информации и ресурсам автоматизированной системы;
  • – доверенная информационная среда;
  • – контроль утечек и каналов распространения конфиденциальной информации;
  • – контроль устройств компьютера и отчуждаемых носителей информации на основе централизованных политик, исключающих утечки конфиденциальной информации;
  • – централизованное управление системой защиты, оперативный мониторинг, аудит безопасности;
  • – масштабируемая система защиты, возможность применения SecretNet (сетевой вариант) в организации с большим количеством филиалов.
  • 5) устройства сигнализации о попытках несанкционированных действий пользователей:
    • – блокировка системы;
    • – программно-аппаратный комплекс ALTELL NEO 200

ALTELL NEO -- первые российские межсетевые экраны нового поколения. Главная особенность этих устройств -- сочетание возможностей межсетевого экранирования с функциями построения защищенных каналов связи, обнаружения и предотвращения вторжений, контент-фильтрации (веб- и спам-фильтры, контроль приложений) и защиты от вредоносных программ, что обеспечивает полное соответствие современной концепции унифицированной защиты от угроз (UnifiedThreatManagement, UTM).

– программно-аппаратный комплекс ViPNetCoordinator HW1000

ViPNetCoordinator HW 100 - это компактный криптошлюз и межсетевой экран, позволяющий безопасно включить любое сетевое оборудование в виртуальную частную сеть, построенную с использованием продуктов ViPNet, и надежно защитить передаваемую информацию от несанкционированного доступа и подмены.

ViPNetCoordinator HW 100 обеспечивает эффективную реализацию множества сценариев защиты информации:

  • – межсетевые взаимодействия;
  • – защищенный доступ удаленных и мобильных пользователей;
  • – защита беспроводных сетей;
  • – защита мультисервисных сетей (включая IP телефонию и видеоконференцсвязь);
  • – защита платежных систем и систем управления технологическими процессами в производстве и на транспорте;
  • – разграничение доступа к информации в локальных сетях.
  • – программно-аппаратный комплекс "Удостоверяющий Центр "КриптоПроУЦ" версии 1.5R2.

Аппаратные средства защиты информационных систем - средства защиты информации и информационных систем, реализованных на аппаратном уровне. Данные средства являются необходимой частью безопасности информационной системы , хотя разработчики аппаратуры обычно оставляют решение проблемы информационной безопасности программистам.

Эта проблема привлекла внимание многих фирм, в том числе и такой как Intel . В 80-х годах была разработана система 432. Но проект постигла неудача. Возможно, именно после неудачи "гранда" другие фирмы отказались от этой идеи.

Задача аппаратной защиты вычислений была решена советскими разработчиками созданием вычислительного комплекса Эльбрус 1 . В основе лежит идея контроля типов на всех уровнях системы, в том числе и на аппаратном. И основная заслуга разработчиков в планомерной ее реализации.

Общая модель защищенной системы ==кк Разработчиками Эльбруса была предложена следующая модель защищённой информационной системы .

Информационную систему в общем случае можно представить, как информационное пространство и обслуживающее его обрабатывающее устройство. Вычисления разбиваются на отдельные вычислительные модули, расположенные в информационном пространстве. Схему реализации вычислений можно представить следующим образом: обрабатывающее устройство под руководством программы может обращаться к этому пространству, читая и редактируя его.

Для описания системы введем понятия

  • ссылка
  • контекст программы

Узел - ячейка данных произвольного объема вместе со cсылкой на нее из обрабатывающего устройства.

Cсылка не только описывает данные, но и содержит все права доступа к ним. Система должна обеспечивать контроль над тем, чтобы в операциях, использующих ссылки, не были использованы данные других типов а в операциях с аргументами других типов ссылка не могла быть модифицирована.

Контекст программы - множество всех данных доступных для вычислений в конкретном модуле.

Базовая функциональность модели защищенной информационной системы

Создание узла произвольного объема для хранения данных

После появления новый узел должен быть

  • доступен только данному обрабатывающему устройству и только через данную ссылку

Удаление узла .

  • попытка использования ссылок на удаленные узлы должна приводить к системным прерываниям

Cмена контекста или смена процедуры исполняемой обрабатывающим устройством.

Новый контекст состоит из трех частей:

  • глобальные переменные, переданные по ссылке из старого контекста
  • часть, переданная копированием значения (параметры)
  • локальные данные, созданные в новом модуле

Общие методы и требования к переключению контекста:

  • Идентификация нового контекста (например, особая ссылка на него, позволяющая лишь переключаться между контекстами)
  • Непосредственно переключение контекста(исполнение старого кода после переключения контекста запрещено, исходя из принципов защищенности)
  • Операции формирования ссылки или другой структуры для идентификации и переключения контекста

Реализации могут быть разными(в том числе и без особых ссылок), но должны быть выдержаны основные принципы:

  • точки входа в контекст формируются внутри самого этого контекст
  • эта информация делается доступной другим контекстам
  • код и контекст переключаются одновременно

Анализ модели

  1. Защищенность системы базируется на следующих принципах:
    • доступ к узлу имеет только модуль, создавший его, если только он добровольно не передаст ссылку кому-либо еще
    • множество данных, доступных модулю, в любой момент времени строго контролируется контекстом
  2. Результирующая защита предельно строгая, но она не ограничивает возможности программиста. Различные не пересекающиеся модули могут работать в одной программе, вызывая друг друга и обмениваясь данными. Для этого достаточно, чтобы каждый из них содержал особую ссылку для переключения контекста на другой.
  3. Построенная система значительно упрощает поиск и иcправление ошибок благодаря строгому контролю типов. Например, попытка изменить ссылку сразу приведет к аппаратному прерыванию в месте ошибки. После чего ее легко можно отследить и исправить.
  4. Обеспечивается модульность программирования. Неправильная работа программы никак не повлияет на другие. «Испорченный» модуль может лишь выдать неверные результаты.
  5. Для использования системы от программиста не требуется дополнительных усилий. Кроме того, при написании программы под такую модель уже нет необходимости дополнительно оговаривать права доступа, способы их передачи и т. д.

Архитектура Эльбрус

В архитектуре Эльбрус для разграничения типов данных вместе с каждым словом в памяти хранится его тег . По тегу можно определить является ли данное слово ссылкой или принадлежит к какому-либо специальному типу данных.

Ссылки и работа с ними

Возможны следующие форматы дескриптора:

  • дескриптор объекта
  • дескриптор массива

Дескриптор объекта служит для поддержания объектно-ориентированного программирования и содержит дополнительно описание приватной и публичной областей. Обращение в публичную область стандартно(сложение базового адреса и индекса вместе с последующим контролем размера. Если в командах обращения в память стоит признак приватных данных, то для разрешения обращения проверяется специальный регистр в процессоре, который хранит тип объекта, когда работают программы обработки данного типа. Таким образом, внутри программы становятся доступными приватные данные объектов этого типа.

При доступе к ячейке памяти проверяется корректность ссылки.

  • индексация(выработка ссылки на элемент массива)
  • операция CAST для дескрипторов объекта(преобразование к базовому классу)
  • компактировка(уничтожает ссылки на удаленную память и плотно компактирует занятую память)

Контексты и и методы работы с ними

Контекст модуля состоит из данных хранящихся в оперативной памяти и в файлах, и подается в виде ссылки на регистры процессора.

Переключение контекста - это, по сути, вызов процедуры или возврат из нее. При запуске процедуры полный контекст исходного модуля сохраняется, а нового - создается. При выходе из процедуры ее контекст уничтожается.

Реализация защищенного стека

При реализации процедурного механизма в Эльбрусе, для повышения эффективности выделения памяти для локальных данных используется механизм стека .

Стековские данные подразделяются на три группы по своим функциональным характеристикам и уровню доступности для пользователя:

  • параметры, локальные данные и промежуточные значения процедуры, размещенные в оперативных регистрах(стек процедур);
  • параметры и локальные процедуры, размещенные в памяти(стек пользователя);
  • «связующая информация», описывающая предыдущую (запустившую) процедуру в стеке процедур(стек связующей информации);

Стек процедур предназначен для данных, вынесенных на оперативные регистры. Каждая процедура работает только в своем окне, которое может пересекаться с предыдущим окном областью параметров (она же является областью возвращаемых значений). Обращение за данными (для пользователя) возможно только в текущее окно, всегда расположенное на оперативных регистрах.

Стек пользователя предназначен для данных, которые пользователь считает нужным разместить в памяти.

Стек связующей информации предназначен для размещения информации о предыдущей (вызвавшей) процедуре и используемой при возврате. При защищенном программировании пользователь не должен иметь возможность изменять эту информацию, поэтому для нее выделен специальный стек, доступный только операционной системе и аппаратуре. Стек связующей информации устроен так же, как стек процедур.

Поскольку в стеке виртуальная память переиспользуется, встает проблема защиты данных. Она имеет два аспекта:

  • переиспользование памяти (выделение ранееосвобожденного пространства). В этой памяти могут, к примеру, оказаться ссылки, недоступные модулю при правильной работе
  • «зависшие» указатели(ссылки старого владельца на переиспользуемую память)

Первая проблема решается автоматической чисткой переиспользуемой памяти. Принцип решения второй проблемы следующий. Указатели на текущий фрейм процедуры можно сохранять только в текущем фрейме, либо передавать в качестве параметра в вызываемую процедуру (передавать вверх по стеку). Соответственно, указатель не может быть ни записан в глобальные данные, ни передан в качестве возвращаемого значения, ни записан в глубину стека.

Примечания

Ссылки

  • Микропроцессор «Эльбрус» на сайте МЦСТ
  • Основные принципы архитектуры (2001) на сайте МЦСТ

Wikimedia Foundation . 2010 .

Смотреть что такое "Аппаратные средства защиты информационных систем" в других словарях:

    В информационных сетях Одним из направлений защиты информации в информационных системах является техническая защита информации (ТЗИ). В свою очередь, вопросы ТЗИ разбиваются на два больших класса задач: защита информации от несанкционированного… … Википедия

    средства - 3.17 средства [индивидуальной, коллективной] защиты работников: Технические средства, используемые для предотвращения или уменьшения воздействия на работников вредных или опасных производственных факторов, а также для защиты от загрязнения .… …

    Средства имитозащиты - б) средства имитозащиты аппаратные, программные и программно аппаратные шифровальные (криптографические) средства (за исключением средств шифрования), реализующие алгоритмы криптографического преобразования информации для ее защиты от навязывания … Официальная терминология

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Критерии определения безопасности компьютерных систем (англ. Trusted Computer System Evaluation Criteria … Википедия

    Технические средства - 3.2 Технические средства систем автоматизации, комплекс технических средств (КТС) совокупность устройств (изделий), обеспечивающих получение, ввод, подготовку, преобразование, обработку, хранение, регистрацию, вывод, отображение, использование и… … Словарь-справочник терминов нормативно-технической документации

    Стандарт Министерства обороны США (англ. Department of Defense Trusted Computer System Evaliation Criteria, TCSEC, DoD 5200.28 STD, December 26, 1985), более известный под именем Оранжевая книга (англ. Orange Book) из за цвета обложки. Данный… … Википедия

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Defense Advanced Research Projects Agency … Википедия

    IBM System z9 модель 2004 Мейнфрейм (также мэйнфрейм, от англ. mainframe) данный термин имеет три основных значения. Большая универсальная ЭВМ вы … Википедия

Средства защиты информации - это совокупность инженерно-технических, электрических, электронных, оптических и других устройств и приспособлений, приборов и технических систем, а также иных вещных элементов, используемых для решения различных задач по защите информации, в том числе предупреждения утечки и обеспечения безопасности защищаемой информации.

В целом средства обеспечения защиты информации в части предотвращения преднамеренных действий в зависимости от способа реализации можно разделить на группы:

Технические (аппаратные) средства. Это различные по типу устройства (механические, электромеханические, электронные и др.), которые аппаратными средствами решают задачи защиты информации. Они препятствуют доступу к информации, в том числе с помощью её маскировки. К аппаратным средствам относятся: генераторы шума, сетевые фильтры, сканирующие радиоприемники и множество других устройств, «перекрывающих» потенциальные каналы утечки информации или позволяющих их обнаружить. Преимущества технических средств связаны с их надежностью, независимостью от субъективных факторов, высокой устойчивостью к модификации. Слабые стороны - недостаточная гибкость, относительно большие объём и масса, высокая стоимость;

Программные средства включают программы для идентификации пользователей, контроля доступа, шифрования информации, удаления остаточной (рабочей) информации типа временных файлов, тестового контроля системы защиты и др. Преимущества программных средств - универсальность, гибкость, надежность, простота установки, способность к модификации и развитию. Недостатки - ограниченная функциональность сети, использование части ресурсов файл-сервера и рабочих станций, высокая чувствительность к случайным или преднамеренным изменениям, возможная зависимость от типов компьютеров (их аппаратных средств);

Смешанные аппаратно-программные средства реализуют те же функции, что аппаратные и программные средства в отдельности, и имеют промежуточные свойства;

Организационные средства складываются из организационно-технических (подготовка помещений с компьютерами, прокладка кабельной системы с учетом требований ограничения доступа к ней и др.) и организационно-правовых (национальные законодательства и правила работы, устанавливаемые руководством конкретного предприятия). Преимущества организационных средств состоят в том, что они позволяют решать множество разнородных проблем, просты в реализации, быстро реагируют на нежелательные действия в сети, имеют неограниченные возможности модификации и развития. Недостатки - высокая зависимость от субъективных факторов, в том числе от общей организации работы в конкретном подразделении.

По степени распространения и доступности выделяются программные средства, другие средства применяются в тех случаях, когда требуется обеспечить дополнительный уровень защиты информации.

Классификация средств защиты информации.

1. Средства защиты от несанкционированного доступа (НСД):

1.2. Мандатное управление доступом;

1.3. Избирательное управление доступом;

1.4. Управление доступом на основе паролей;

1.5. Журналирование.

2. Системы анализа и моделирования информационных потоков (CASE-системы).

3. Системы мониторинга сетей:

3.1.Системы обнаружения и предотвращения вторжений (IDS/IPS);

3.2. Системы предотвращения утечек конфиденциальной информации (DLP-системы).

4. Анализаторы протоколов.

5. Антивирусные средства.

6. Межсетевые экраны.

7. Криптографические средства:

7.1. Шифрование;

7.2. Цифровая подпись.

8. Системы резервного копирования.

9. Системы бесперебойного питания:

10.Системы аутентификации:

10.1. Пароль;

10.2. Ключ доступа;

10.3. Сертификат.

10.4. Биометрия.

11. Средства предотвращения взлома корпусов и краж оборудования.

12. Средства контроля доступа в помещения.

13. Инструментальные средства анализа систем защиты: Мониторинговый программный продукт.

16) Типовая корпоративная сеть с точки зрения безопасности .

В настоящее время корпоративные компьютерные сети играют важную роль в деятельности многих организаций. Электронная коммерция из абстрактного понятия все более превращается в реальность. Большинство корпоративных сетей подключены к глобальной сети Internet . Если раньше Internet объединяла небольшое число людей, доверявших друг другу, то сейчас количество её пользователей неуклонно растет и уже составляет сотни миллионов. В связи с этим всё серьёзнее становится угроза внешнего вмешательства в процессы нормального функционирования корпоративных сетей и несанкционированного доступа с их ресурсам со стороны злоумышленников - так называемых "хакеров".

В основе функционирования всемирной сети Internet лежат стандарты IP -сетей. Каждое устройство в такой сети, однозначно идентифицируется своим уникальным IP -адресом. Однако при взаимодействии в IP -сети нельзя быть абсолютно уверенным в подлинности узла (абонента с которым осуществляется обмен информацией), имеющего определённый IP -адрес, т.к. средства программирования позволяют манипулировать адресами отправителя и получателя сетевых пакетов, и уже этот факт является частью проблемы обеспечения безопасности современных сетевых информационных технологий.

Вопросы обеспечения безопасности корпоративных сетей удобно рассматривать, выделив несколько уровней информационной инфраструктуры, а именно:

Уровень персонала

Уровень приложений

Уровень СУБД

Уровень ОС

Уровень сети

К уровню сети относятся используемые сетевые протоколы (ТСР/ I Р, NetBEUI , IPX / SPX), каждый из которых имеет свои особенности, уязвимости и связанные с ними возможные атаки.

К уровню операционных систем (ОС) относятся установленные на узлах корпоративной сети операционные системы (Windows , UNIX и т. д.).

Следует также выделить уровень систем управления базами данных (СУБД), т.к. это, как правило, неотъемлемая часть любой корпоративной сети.

На четвертом уровне находятся всевозможные приложения, используемые в корпоративной сети. Это может быть программное обеспечение Web -серверов, различные офисные приложения, броузеры и т.п.

И, наконец, на верхнем уровне информационной инфраструктуры находятся пользователи и обслуживающий персонал автоматизированной системы, которому присущи свои уязвимости с точки зрения безопасности.

Примерный сценарий действий нарушителя

Можно с уверенностью сказать, что нет какой-либо отлаженной технологии проникновения во внутреннюю корпоративную сеть. Многое определяется конкретным стечением обстоятельств, интуицией атакующего и другими факторами. Однако можно выделить несколько общих этапов проведения атаки на корпоративную сеть:

Сбор сведений

Попытка получения доступа к наименее защищённому узлу (возможно, с минимальными привилегиями)

Попытка повышения уровня привилегий или (и) использование узла в качестве платформы для исследования других узлов сети

Аппаратные средства защиты информации – это набор средств для защиты безопасности информации и информационных систем, которые реализованы на аппаратном уровне. Эти компоненты являются незаменимыми в понятии безопасности информационных систем, но разработчики аппаратного обеспечения предпочитают оставлять вопрос безопасности программистам.

Средства защиты информации: история создания модели

Проблема защиты стала объектом рассмотрения большого количества мировых фирм. Вопрос не оставил без интереса и фирму Intel, которая разработала систему 432. Но возникшие обстоятельства привели этот проект к неудаче, поэтому система 432 не обрела популярности. Существует мнение, что эта причина стала основой того, что остальные фирмы не стали пытаться реализовывать этот проект.

Именно создание вычислительной базы «Эльбрус-1» разрешило вопрос аппаратной . Вычислительный проект «Эльбрус-1» был создан группой советских разработчиков. Они внесли в разработку основополагающую идею контроля над типами, которая используется на всех уровнях информационных систем. Разработка стала популярно использоваться и на аппаратном уровне. Вычислительная база «Эльбрус-1» была реализована планомерно. Многие считают, что именно такой подход обеспечил успех советских разработчиков.

На видео – интересные материалы о системах защиты информации:

Обобщенная модель системы защиты информации

Создатели «Эльбрус-1» внесли в разработку свою модель защиты информационной системы. Она выглядела следующим образом.

Сама информационная система может быть представлена как некое информационное пространство, которое способно обслуживать и обрабатывать устройство.

Система вычислений имеет модульный тип, то есть процесс разбит на несколько блоков (модулей), которые располагаются во всем пространстве информационной системы. Схема метода разработки очень сложна, но ее можно представить обобщенно: устройство, которое находится под обработкой программы, способно делать запросы к информационному пространству, проводя его чтение и редактирование.

Для того чтобы иметь четкое представление того, о чем идет речь, необходимо внести следующие определения:

  • Узел – это отдельная локация информации произвольного объема с приложенной к ней ссылкой, которая указывается из обрабатывающего устройства;
  • Адрес – путь, хранящий информацию и имеющий к ней доступ для редактирования. Задача системы заключается в том, чтобы обеспечивался контроль над используемыми ссылками, которые находятся под управлением операций. Должен осуществляться запрет на использование данных другого типа. Цель системы еще предусматривает такое условие, чтобы адрес поддерживал ограничение модификаций в операциях с аргументами иного типа;
  • Программный контекст – совокупность данных, которые доступны для вычислений в блочном режиме (модульный режим);
  • Базовые понятия и средства функциональности в моделях аппаратной защиты информации.

Сначала следует создать узел произвольного объема, который будет хранить данные. После появления узла произвольного объема новый узел должен быть подобен следующему описанию:

  • Узел должен быть пуст;
  • Узел должен предусматривать доступ только для одного обрабатывающего устройства через указанную ссылку.

Удаление узла:

  • При попытке получить доступ к удаленному узлу должно происходить прерывание.
  • Замена контекста или редактирование процедуры выполняемой обрабатывающим устройством.

Появившийся контекст имеет следующий состав:

  • В контексте содержатся глобальные переменные, которые были переданы с помощью ссылки из прошлого контекста;
  • Часть параметров, которые были переданы копированием;
  • Данные из локальной сети, появившиеся в созданном модуле.

Основные правила, согласно которым должны реализовываться методы переключения контекста:

  • Аутентификация добавленного контекста (к примеру, уникальный адрес, который позволяет перескакивать между контекстами);
  • Сам переход контекста (выполнение уже имеющегося кода после перехода контекста невозможно, соответственно, с правами защищенности);
  • Процессы формирования ссылки или иной схемы для аутентификации и перехода контекста.

Осуществить эти операции можно несколькими способами (даже без уникальных ссылок), однако принципы выполнения должны быть в обязательном виде:

  • Входная точка в контекст определяется непосредственно внутри данного контекста;
  • Подобная информация открыта для видимости другим контекстам;
  • Исходный код и сам контекст переключаются синхронно;
  • Средства защиты информации: изучение модели.

База характеризуется следующими особенностями:

  • Защита аппаратных средств основывается на принципиальных понятиях:
    • Модуль – это единственный компонент модели защиты информации, который имеет доступ к узлу, если его создателем он сам и есть (узел может быть доступен другим компонентам модели, если модуль подразумевает добровольную передачу информации);
    • Совокупность данных из информации, которые открыты для модуля, всегда находится под контролем контекста;
  • Действующая защита построена по довольно строгим принципам, однако она не мешает работе и возможностям программиста. Некоторые модули могут работать одновременно, если они не пересекаются между собой и не мешают друг другу. Такие модули способны передавать информацию между собой. Чтобы осуществить передачу данных, нужно, чтобы каждый модуль содержал в себе адрес переключения на другой контекст.
  • Разработанная концепция является универсальной, так как она облегчает работу в системе. Строгий контроль над типами способствует качественному исправлению ошибок. К примеру, любое старание изменить адрес подразумевает мгновенное аппаратное прерывание на месте допущения ошибки. Следовательно, ошибка легко находится и доступна к быстрому исправлению.
  • Гарантируется модульность в программировании. Неверно построенная программа не мешает работе другим. Негодный модуль способен выдать только найденные ошибки в результатах.
  • Для работы в системе программисту не требуется прилагать дополнительных стараний. Помимо этого, при составлении программы, которая основывается на подобной модели, уже не стоит предусматривать права доступа и методы их передачи.

Аппаратные средства защиты: изучение архитектуры «Эльбрус»

В концепции модели «Эльбрус» существенна реализация, при которой для каждого слова в памяти имеется соответствующий тег, что служит для качественного разграничения типов.

Работа с адресом происходит следующим образом. Адрес содержит подробное описание некоторой области, по которой он ссылается, а также имеет определенный набор прав для доступа. Иными словами, это дескриптор. Он хранит всю информацию об адресе и объеме данных.

Дескриптор имеет следующие форматы:

  • Дескриптор объекта;
  • Дескриптор массива.

Дескриптор объекта незаменим в работе ООП (объектно-ориентированное программирование). В дескрипторе имеются модификаторы доступа, которые бывают приватными, публичными и защищенными. По стандарту всегда будет стоять публичная область, она доступна для видимости и использования всех компонентов исходного кода. Приватная область данных доступна для видимости в том случае, если проверяемый реестр дал на это разрешение.

При получении доступа к определенной ячейке памяти проходит проверка на определение корректности адреса.

Основные операции при работе с адресом:

  • Индексация (определение адреса на компонент массива);
  • Процесс операции CAST для дескрипторов объекта (модуляция к основному классу);
  • Компактировка (процесс ликвидации адреса, который содержал путь на удаленную память).

Средства защиты информации: методы работы с контекстами

Модульный контекст структурирован из данных, хранение которых осуществляется в памяти ОЗУ (оперативная память, или оперативное запоминающее устройство), и выдается в виде адреса на регистр определенного процесса.

Переход между контекстами – это процесс вызова или возврата процедуры. При старте процесса исходного контекстного модуля происходит его сохранение, а при запуске нового – его создание. На выходе из процедуры контекст удаляется.

Что представляет собой процесс работы защищенного стека?

В модели «Эльбрус» применим особый механизм стека, который служит для повышения производительности при распределении памяти для локальных данных. Такая реализация разделяет три основные категории стековых данных, которые классифицируют по функционалу и модификации доступа, по отношению к пользователю.

  • Форматы, данные из локального представления, а также посредствующие значения процесса, которые размещаются в процедуре стека;
  • Форматы и локальные процессы, хранящиеся в стеке, который служит памятью пользователя;
  • Соединяющая информация, которая имеет описание к прошлому (запустившемуся) процессу в стеке процедур.

Стек процедур имеет предназначение для работы с данными, которые вынесены на оперативные регистры. Для каждой процедуры характерно работать в собственном окне. Такие окна могут пересекаться с ранее установленными параметрами. Пользователь способен запросить данные только в используемом окне, которые находятся в оперативном реестре.

Стек пользователя служит для работы с данными, которые по нужде пользователя можно переместить в память.

Стек, соединяющий информацию, рассчитан на размещение информации о прошлой процедуре (вызванной ранее) и применимой при возврате. При выполнении условия безопасного программирования пользователь ограничен в доступе по отношению к изменению информации. Поэтому существует особый стек, которым могут манипулировать аппаратные средства и сама операционная система. Стек соединяющей информации построен по такому же принципу, как и стек процедур.

В стеке существует виртуальная память, и ей свойственно менять предназначение, именно поэтому возникает проблема безопасности данных. Этот вопрос имеет 2 аспекта:

  • Перепредназначение памяти (выделение памяти под освобожденное пространство): здесь чаще всего оказываются адреса, которые уже недоступны для модуля;
  • Зависшие указатели (адреса старого пользователя).

Первый аспект проблемы исправляется с помощью автоматической очистки перепредназначенной памяти. Концепция нахождения правильного пути во втором случае такова: указатели текущего фрейма можно сохранить только в используемом фрейме либо отправлять в виде параметра в вызываемый процесс (то есть происходит передача в верхний стек). Следовательно, указатели нельзя записать в глобальную область данных, передать как возвращаемое значение, а также нельзя записать в саму глубину стека.

На видео описаны современные средства защиты информации:

Государственное образовательное учреждение высшего профессионального образования

« Академия Экономической Безопасности МВД России»

Кафедра математики и информационных технологий

Контрольная работа по дисциплине: «Безопасность информационных систем и сетей»

«Аппаратные средства защиты информации».

Выполнил: студент группы ЭВ-551

Кочетков Виталий Сергеевич

Проверил: доцент кафедры

математики и информационных технологий

Горбенко Андрей Олегович, к.т.н.

Москва 2010

Введение

Под аппаратным обеспечением средств защиты операционной системы традиционно понимается совокупность средств и методов, используемых для решения следующих задач:

Управление оперативной и виртуальной памятью компьютера;

Распределение процессорного времени между задачами в многозадачной операционной системе;

Синхронизация выполнения параллельных задач в многозадачной

операционной системе;

Обеспечение совместного доступа задач к ресурсам операционной

Перечисленные задачи в значительной степени решаются с помощью

аппаратно реализованных функций процессоров и других узлов компьютера.

Резкое увеличение объемов информации, накапливаемой, хранимой и обрабатываемой с помощью ЭВМ и других средств автоматизации;

Сосредоточение в единых базах данных информации различного назначения и различных принадлежностей;

Резкое расширение круга пользователей, имеющих непосредственный доступ к ресурсам вычислительной системы и находящимся в ней данных;

Усложнение режимов функционирования технических средств вычислительных систем: широкое внедрение многопрограммного режима, а также режимов разделения времени и реального времени;

Автоматизация межмашинного обмена информацией, в том числе и на больших расстояниях.

В этих условиях возникает уязвимость двух видов: с одной стороны, возможность уничтожения или искажения информации (т.е. нарушение ее физической целостности), а с другой - возможность несанкционированного использования информации (т.е. опасность утечки информации ограниченного пользования). Второй вид уязвимости вызывает особую озабоченность пользователей ЭВМ.

1.Информационная безопасность.

Быстро развивающиеся компьютерные информационные технологии вносят заметные изменения в нашу жизнь. Информация стала товаром, который можно приобрести, продать, обменять. При этом стоимость информации часто в сотни раз превосходит стоимость компьютерной системы, в которой она хранится.

От степени безопасности информационных технологий в настоящее время зависит благополучие, а порой и жизнь многих людей. Такова плата за усложнение и повсеместное распространение автоматизированных систем обработки информации.

Под информационной безопасностью понимается защищенность информационной системы от случайного или преднамеренного вмешательства, наносящего ущерб владельцам или пользователям информации.

На практике важнейшими являются три аспекта информационной безопасности:

  • доступность (возможность за разумное время получить требуемую информационную услугу);
  • целостность (актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения);
  • конфиденциальность (защита от несанкционированного прочтения).

Нарушения доступности, целостности и конфиденциальности информации могут быть вызваны различными опасными воздействиями на информационные компьютерные системы.

Современная информационная система представляет собой сложную систему, состоящую из большого числа компонентов различной степени автономности, которые связаны между собой и обмениваются данными. Практически каждый компонент может подвергнуться внешнему воздействию или выйти из строя. Компоненты автоматизированной информационной системы можно разбить на следующие группы:

  • аппаратные средства - компьютеры и их составные части (процессоры, мониторы, терминалы, периферийные устройства - дисководы, принтеры, контроллеры, кабели, линии связи и т.д.);
  • программное обеспечение - приобретенные программы, исходные, объектные, загрузочные модули; операционные системы и системные программы (компиляторы, компоновщики и др.), утилиты, диагностические программы и т.д.;
  • данные - хранимые временно и постоянно, на магнитных носителях, печатные, архивы, системные журналы и т.д.;
  • персонал - обслуживающий персонал и пользователи.

Опасные воздействия на компьютерную информационную систему можно подразделить на случайные и преднамеренные. Анализ опыта проектирования, изготовления и эксплуатации информационных систем показывает, что информация подвергается различным случайным воздействиям на всех этапах цикла жизни системы. Причинами случайных воздействий при эксплуатации могут быть:

  • аварийные ситуации из-за стихийных бедствий и отключений электропитания;
  • отказы и сбои аппаратуры;
  • ошибки в программном обеспечении;
  • ошибки в работе персонала;
  • помехи в линиях связи из-за воздействий внешней среды.

Преднамеренные воздействия - это целенаправленные действия нарушителя. В качестве нарушителя могут выступать служащий, посетитель, конкурент, наемник. Действия нарушителя могут быть обусловлены разными мотивами:

  • недовольством служащего своей карьерой;
  • взяткой;
  • любопытством;
  • конкурентной борьбой;
  • стремлением самоутвердиться любой ценой.

Можно составить гипотетическую модель потенциального нарушителя:

  • квалификация нарушителя на уровне разработчика данной системы;
  • нарушителем может быть как постороннее лицо, так и законный пользователь системы;
  • нарушителю известна информация о принципах работы системы;
  • нарушитель выбирает наиболее слабое звено в защите.

Наиболее распространенным и многообразным видом компьютерных нарушений является несанкционированный доступ (НСД). НСД использует любую ошибку в системе защиты и возможен при нерациональном выборе средств защиты, их некорректной установке и настройке.

Проведем классификацию каналов НСД, по которым можно осуществить хищение, изменение или уничтожение информации:

  • Через человека:
    • хищение носителей информации;
    • чтение информации с экрана или клавиатуры;
    • чтение информации из распечатки.
  • Через программу:
    • перехват паролей;
    • дешифровка зашифрованной информации;
    • копирование информации с носителя.
  • Через аппаратуру:
    • подключение специально разработанных аппаратных средств, обеспечивающих доступ к информации;
    • перехват побочных электромагнитных излучений от аппаратуры, линий связи, сетей электропитания и т.д.

· Особо следует остановиться на угрозах, которым могут подвергаться компьютерные сети. Основная особенность любой компьютерной сети состоит в том, что ее компоненты распределены в пространстве. Связь между узлами сети осуществляется физически с помощью сетевых линий и программно с помощью механизма сообщений. При этом управляющие сообщения и данные, пересылаемые между узлами сети, передаются в виде пакетов обмена. Компьютерные сети характерны тем, что против них предпринимают так называемые удаленные атаки. Нарушитель может находиться за тысячи километров от атакуемого объекта, при этом нападению может подвергаться не только конкретный компьютер, но и информация, передающаяся по сетевым каналам связи.

· Обеспечение информационной безопасности

Формирование режима информационной безопасности - проблема комплексная. Меры по ее решению можно подразделить на пять уровней:

  1. законодательный (законы, нормативные акты, стандарты и т.п.);
  2. морально-этический (всевозможные нормы поведения, несоблюдение которых ведет к падению престижа конкретного человека или целой организации);
  3. административный (действия общего характера, предпринимаемые руководством организации);
  4. физический (механические, электро- и электронно-механические препятствия на возможных путях проникновения потенциальных нарушителей);
  5. аппаратно-программный (электронные устройства и специальные программы защиты информации).

Единая совокупность всех этих мер, направленных на противодействие угрозам безопасности с целью сведения к минимуму возможности ущерба, образуют систему защиты.

Надежная система защиты должна соответствовать следующим принципам:

  • Стоимость средств защиты должна быть меньше, чем размеры возможного ущерба.
  • Каждый пользователь должен иметь минимальный набор привилегий, необходимый для работы.
  • Защита тем более эффективна, чем проще пользователю с ней работать.
  • Возможность отключения в экстренных случаях.
  • Специалисты, имеющие отношение к системе защиты должны полностью представлять себе принципы ее функционирования и в случае возникновения затруднительных ситуаций адекватно на них реагировать.
  • Под защитой должна находиться вся система обработки информации.
  • Разработчики системы защиты, не должны быть в числе тех, кого эта система будет контролировать.
  • Система защиты должна предоставлять доказательства корректности своей работы.
  • Лица, занимающиеся обеспечением информационной безопасности, должны нести личную ответственность.
  • Объекты защиты целесообразно разделять на группы так, чтобы нарушение защиты в одной из групп не влияло на безопасность других.
  • Надежная система защиты должна быть полностью протестирована и согласована.
  • Защита становится более эффективной и гибкой, если она допускает изменение своих параметров со стороны администратора.
  • Система защиты должна разрабатываться, исходя из предположения, что пользователи будут совершать серьезные ошибки и, вообще, имеют наихудшие намерения.
  • Наиболее важные и критические решения должны приниматься человеком.
  • Существование механизмов защиты должно быть по возможности скрыто от пользователей, работа которых находится под контролем.

2. Аппаратные средства защиты информации

К аппаратным средствам защиты относятся различные электронные, электронно-механические, электронно-оптические устройства. К настоящему времени разработано значительное число аппаратных средств различного назначения, однако наибольшее распространение получают следующие:

  • специальные регистры для хранения реквизитов защиты: паролей, идентифицирующих кодов, грифов или уровней секретности;
  • устройства измерения индивидуальных характеристик человека (голоса, отпечатков) с целью его идентификации;
  • устройства для шифрования информации (криптографические методы).

2.1. Аппаратные ключи защиты

Уже много лет на рынке средств защиты программ от несанкционированного тиражирования присутствуют так называемые аппаратные ключи защиты (Dongles). Разумеется, компании, продающие такие устройства, представляют их если не как панацею, то уж как надежное средство противодействия компьютерному пиратству. Но насколько серьезным препятствием могут служить аппаратные ключи? Аппаратные ключи защиты можно пытаться классифицировать по нескольким признакам.
Если рассматривать возможные типы подключения, то бывают, например, ключи на порт принтера (LPT), последовательный порт (СОМ), USB-порт и ключи, подключаемые к специальной плате, вставляемой внутрь компьютера.
Можно при сравнении ключей анализировать удобство и функциональность сопутствующего программного обеспечения. Например, для некоторых семейств аппаратных ключей разработаны автоматические протекторы, позволяющие защитить программу «за один клик», а для некоторых такие протекторы отсутствуют. Определенный интерес представляет список языков программирования, для которых разработчик ключей предоставил библиотеки и примеры. Поддержка языков (доступ к API ключа из определенной среды) нужна для того, чтобы программист смог более эффективно использовать ключ для защиты разрабатываемой программы. Важен также список аппаратных платформ и операционных систем, для которых поддерживается интерфейс с ключом. Некоторых может заинтересовать применимость ключа для сетевого лицензирования программного обеспечения.
Однако все сказанное о ключах относится скорее к маркетингу, чем к защите информации. Для защиты не важно, какого цвета корпус у ключа и на каком языке можно читать документацию. А по-настоящему важно только то, что в ключе является секретным и неповторимым и способно ли это «нечто» обеспечить необходимым уровень защиты.
Поэтому в дальнейшем ключи рассматриваются исключительно как аппаратные устройства, работающие в определенных условиях и имеющие некоторую функциональность. Полезными признаются только те функции, которые невозможно реализовать чисто программными средствами и для которых не существует эффективной атаки.
Будем исходить из предположения, что у противника есть физический доступ к ключу, а основная задача заключается в том, чтобы за разумное время получить копию программы, функционирующую в отсутствие ключа точно так же, как при его наличии.
Рассматривать атаки на систему, в которой не хватает некоторых узлов необходимых для работы, особого смысла нет - если зашифровать программу и не сообщить противнику ключ шифрования, легко получить высокую стойкость и без применения аппаратных ключей. Только это уже нельзя называть защитой от копирования.

Модификация кода и эмуляция

Для того чтобы заставить программу работать так, как она работала бы с ключом, можно или внести исправления в программу, или эмулировать наличие ключа. Модификация программы, как правило, возможна лишь в тех случаях, когда ответы, полученные от ключа, просто проверяются, но не являются математически необходимыми для обеспечения работоспособности программы. Но это значит, что ключ, по большому счету, не требуется для достижения полной функциональности. Такое случается, когда программа не использует всех возможностей ключа или когда возможности ключа очень ограничены.
При эмуляции никакого воздействия на программу не происходит, т.е., например, не нарушается контрольная сумма исполняемых модулей. И полный эмулятор, если его удается построить, просто повторяет все поведение реального ключа.
Не вдаваясь очень глубоко в технические подробности, будем исходить из предположения, что у противника есть следующие возможности:

Перехватывать все обращения к ключу;
Протоколировать и анализировать эти обращения;
Посылать запросы к ключу;
Получать ответы от ключа;
Протоколировать и анализировать эти ответы;
Посылать ответы от имени ключа.

Такие широкие возможности противника можно объяснить тем, что в его распоряжении есть вся та информация, какая есть и у программиста, защищающего программу с помощью аппаратного ключа. То есть противник имеет доступ ко всем открытым интерфейсам, документации, драйверам и может их анализировать на практике с привлечением любых средств. Следовательно, можно предположить, что противник со временем научится полностью контролировать протокол, по которому происходит обмен информацией между прикладной программой и ключом. Контроль может осуществляться на любом уровне, но чаще всего запросы перехватываются при передаче данных между программой и драйвером ключа.
Однако стоит учитывать, что возможность эмуляции еще не означает, что противник способен вычислять правильные ответы на любые запросы, которые посылает ключу программа.

Ключи с памятью.Это, наверное, самый простой тип ключей. Ключи с памятью имеют определенное число ячеек, из которых разрешено считывание. В некоторые из этих ячеек также может производиться запись. Обычно в ячейках, недоступных для записи, хранится уникальный идентификатор ключа.
Когда-то давно существовали ключи, в которых перезаписываемой памяти не было вообще, а программисту для считывания был доступен только идентификатор ключа. Но очевидно, что на ключах с такой функциональностью построить серьезную защиту просто невозможно.
Правда, и ключи с памятью не способны противостоять эмуляции. Достаточно один раз прочитать всю память и сохранить ее в эмуляторе. После этого правильно эмулировать ответы на все запросы к ключу не составит большого труда.
Таким образом, аппаратные ключи с памятью в заданных условиях не способны дать никаких преимуществ по сравнению с чисто программными системами.

Ключи с неизвестным алгоритмом.Многие современные аппаратные ключи содержат секретную функцию преобразования данных, на которой и основывается секретность ключа. Иногда программисту предоставляется возможность выбрать константы, являющиеся параметрами преобразования, но сам алгоритм остается неизвестным.
Проверка наличия ключа должна выполняться следующим образом. При разработке защиты программист делает несколько запросов к алгоритму и запоминает полученные ответы. Эти ответы в какой-то форме кодируются в программе. Во время выполнения программа повторяет те же запросы и сравнивает полученные ответы с сохраненными значениями. Если обнаруживается несовпадение, значит, программа получает ответ не от оригинального ключа.
Эта схема имеет один существенный недостаток. Так как защищенная программа имеет конечный размер, то количество правильных ответов, которые она может хранить, также является конечным. А это значит, что существует возможность построения табличного эмулятора, который будет знать правильные ответы на все запросы, результат которых может проверить программа.
В рекомендациях по защите программ с помощью аппаратных ключей даются советы, как сделать фиктивные запросы со случайными данными так, чтобы затруднить построение эмулятора. Однако если программа при запуске делает 100 запросов, результат которых может быть проверен, и 100 случайных запросов, результат которых не проверяется, то, запустив программу 10 раз, очень легко выделить действительные запросы, повторившиеся 10 раз, и отсечь все фиктивные, встретившиеся по 1-2 раза.
Конечно, не стоит всегда проверять наличие ключа выполнением одной и той же серии запросов с проверкой. Лучше выполнять проверки в разных частях программы и в разное время. Это может значительно усложнить сбор статистики для отсечения фиктивных запросов.
Но не стоит забывать, что противник может проанализировать программу и попытаться в дизассемблере найти все обращения к ключу. Это поможет ему выяснить, ответы на какие из запросов проверяются, и построить компактную таблицу для эмуляции. Так что ключи с неизвестным алгоритмом могут затруднить, но не могут предотвратить построение эмулятора для конкретной версии конкретной программы. Зато при переходе к новой версии, если перечень проверки программой ответов на запросы будет изменен, противнику придется заново выполнять сбор статистики или анализ программы.

Атрибуты алгоритмов.В некоторых ключах алгоритму могут сопутствовать дополнительные атрибуты. Так, например, в ключах Sentinel SuperPro алгоритм может быть защищен паролем и начинает работать только после того, как будет выполнена активация, в ходе которой правильный пароль должен быть передан ключу.
Активация позволяет разработчику предусмотреть возможность изменения функциональности ключа на стороне пользователя. То есть программа может иметь несколько версий (например базовую, расширенную и профессиональную), и в ключе изначально активированы только те алгоритмы, которые необходимы для функционирования базовой версии. Если пользователь решит перейти к более полной версии, разработчик пришлет ему инструкции по активации алгоритмов, соответствующих расширенной или профессиональной версии.
Однако все достоинства алгоритмов, активируемых по паролю, опираются на секретность пароля, а не на свойствах аппаратного ключа. Следовательно, аналогичная защита может быть реализована чисто программными средствами. Другой тип атрибутов алгоритмов, поддерживаемых ключами Sentinel SuperPro, - это счетчики. С активным алгоритмом может быть связан счетчик, изначально имеющий ненулевое значение. Программа при каждом запуске (или выполнении определенной операции, например при экспорте данных) вызывает специальную функцию API-ключа, уменьшающую значение счетчика на единицу. Как только счетчик принимает нулевое значение, алгоритм деактивируется и перестает работать.
Однако данная схема не способна помешать применению эмулятора. Противник может перехватывать и предотвращать все попытки уменьшения значения счетчика. Следовательно, алгоритм никогда не будет деактивирован, и в распоряжении противника будет неограниченное время для сбора данных, необходимых для табличной эмуляции.
Противостоять эмуляции может счетчик, значения которого уменьшается при каждом обращении к алгоритму. Но в этом случае возникает опасность, что из-за сбоев в работе программы или операционной системы иногда значение счетчика будет уменьшаться без совершения программой полезных действий. Причина проблемы в том, что обращение к алгоритму должно производиться до того, как программа совершит полезную работу, а счетчик должен уменьшаться только в том случае, если работа выполнена успешно. Но автоматическое уменьшение счетчика при обращении к алгоритму такую функциональность не обеспечивает - количество оставшихся попыток уменьшается независимо от успеха выполнения операции.

Ключи с таймером.Некоторые производители аппаратных ключей предлагают модели, имеющие встроенный таймер. Но для того, чтобы таймер мог работать в то время, когда ключ не подключен к компьютеру, необходим встроенный источник питания. Среднее время жизни батареи, питающей таймер, составляет 4 года, и после ее разрядки ключ перестанет правильно функционировать. Возможно, именно из-за сравнительно короткого времени жизни ключи с таймером применяются довольно редко. Но как таймер может помочь усилить защищенность?
Ключи HASP Time предоставляют возможность узнавать текущее время, установленное на встроенных в ключ часах. И защищенная программа может использовать ключ для того, чтобы отследить окончание тестового периода. Но очевидно, что эмулятор позволяет возвращать любые показания таймера, т. е. аппаратная часть никак не повышает стойкость защиты. Хорошей комбинацией является алгоритм, связанный с таймером. Если алгоритм может быть деактивирован в определенный день и час, очень легко будет реализовывать демонстрационные версии программ, ограниченные по времени.
Но, к сожалению, ни один из двух самых популярных в России разработчиков аппаратных ключей не предоставляет такой возможности. Ключи HASP, производимые компанией Aladdin, не поддерживают активацию и деактивацию алгоритмов. А ключи Sentinel SuperPro, разработанные в Rainbow Technologies, не содержат таймера.

Ключи с известным алгоритмом.В некоторых ключах программисту, реализующему защиту, предоставляется возможность выбрать из множества возможных преобразований данных, реализуемых ключом, одно конкретное преобразование. Причем подразумевается, что программист знает все детали выбранного преобразования и может повторить обратное преобразование в чисто программной системе. Например, аппаратный ключ реализует симметричный алгоритм шифрования, а программист имеет возможность выбирать используемый ключ шифрования. Разумеется, ни у кого не должно быть возможности прочитать значение ключа шифрования из аппаратного ключа.
В такой схеме программа может передавать данные на вход аппаратного ключа и получать в ответ результат шифрования на выбранном ключе Но тут возникает дилемма. Если в программе отсутствует ключ шифрования, то возвращаемые данные можно проверять только табличным способом, а значит, в ограниченном объеме. Фактически имеем аппаратный ключ с неизвестным программе алгоритмом. Если же ключ шифрования известен программе, то можно проверить правильность обработки любого объема данных, но при этом существует возможность извлечения ключа шифрования и построения эмулятора. А если такая возможность существует, противник обязательно попытается ею воспользоваться.
Так что аппаратное выполнение симметричного алгоритма шифрования с известным ключом не дает ничего нового с точки зрения защиты. Но есть еще и асимметричные алгоритмы.
Когда ключ реализует асимметричный алгоритм шифрования, программисту не обязательно знать используемый секретный ключ. Даже можно сказать, что отсутствие возможности создать программную копию аппаратного асимметричного шифрующего устройства не сужает, а расширяет область возможных применений, т.к. сокращается перечень возможных способов компрометации секретного ключа. В любом случае, для проверки того, что аппаратный ключ присутствует и правильно выполняет вычисления, достаточно знать открытый ключ.
Эта схема не может быть обойдена только эмуляцией, т. к. для построения полного эмулятора требуется по открытому ключу шифрования вычислить секретный ключ. А это математически сложная задача, не имеющая эффективного решения.
Но у противника остается возможность подмены открытого ключа в программе, и если такая подмена пройдет незамеченной, построить программный эмулятор не составит труда. Так что асимметричные алгоритмы, реализованные на аппаратном уровне, способны обеспечить некопируемость защищенной программы, но только в том случае, если удастся предотвратить подмену открытого ключа шифрования.

Ключи с программируемым алгоритмом.Очень интересным решением с точки зрения стойкости защиты являются аппаратные ключи, в которых может быть реализован произвольный алгоритм. Сложность алгоритма ограничивается только объемом памяти и системой команд ключа.
В этом случае для защиты программы важная часть вычислений переносится в ключ, и у противника не будет возможности запротоколировать правильные ответы на все запросы или восстановить алгоритм по функции проверки. Ведь проверка, как таковая, может вообще не выполняться - результаты, возвращаемые ключом, являются промежуточными величинами в вычислении какой-то сложной функции, а подаваемые на вход значения зависят не от программы, а от обрабатываемых данных.
Главное - это реализовать в ключе такую функцию, чтобы противник не смог по контексту догадаться, какие именно операции производятся в ключе.

2.2. Биометрические средства защиты.

Биометрика – это научная дисциплина, изучающая способы измерения различных параметров человека с целью установления сходства или различий между людьми и выделения одного конкретного человека из множества других людей, или, другими словами, – наука, изучающая методики распознавания конкретного человека по его индивидуальным параметрам.

Современные биометрические технологии могут применяться и применяются не только в серьезных режимных учреждениях, но и в повседневной жизни. Зачем нужны смарт-карты, ключи, пароли и другие подобные вещи, если они могут быть украдены, потеряны, забыты? Новое информационное общество требует от нас запоминания множества пин-кодов, паролей, номеров для электронной почты, доступа в Интернет, к сайту, к телефону… Список можно продолжать практически бесконечно. На помощь, пожалуй, сможет прийти только ваш уникальный личный биометрический пропуск – палец, рука или глаз. А во многих странах – и идентификатор личности, т. е. чип с вашими индивидуальными биометрическими параметрами, уже зашитый в документах, удостоверяющих личность.

Биометрическая система, независимо от того, на какой из технологий она построена, работает по следующему принципу: сначала записывается образец биометрической характеристики человека, для большей точности часто делается несколько образцов. Собранные данные обрабатываются, переводятся в цифровой код.

При идентификации и верификации в систему вводятся характеристики проверяемого человека. Далее они оцифровываются, а затем сравниваются с сохраненными образцами. По некоторому алгоритму система выявляет, совпадают они или нет, и выносит решение о том, удалось ли идентифицировать человека по предъявленным данным или нет.

Биометрические технологии

В биометрических системах могут быть использованы физиологические или поведенческие характеристики. К физиологическим относятся отпечатки пальцев, форма кисти руки, характеристики лица, рисунок радужной оболочки глаза. К поведенческим характеристикам можно отнести особенности или характерные черты поведения человека, приобретенные или появившиеся со временем, это могут быть динамика подписи, тембр голоса, динамика нажатия на клавиши и даже походка человека. Биометрические системы оценивают по двум основным параметрам: ошибкам первого рода - вероятность допуска «чужого» и второго рода – вероятность в отказе «своему». Современные системы могут обеспечивать вероятность ошибки первого рода в районе 0,001%, второго – около 1-5%.

Одним из важнейших критериев наряду с точностью идентификации и верификации при разработке систем является «дружелюбность» каждой из технологий. Процесс должен быть быстрым и простым: например, встать перед видеокамерой, сказать несколько слов в микрофон или дотронуться до сканера отпечатков пальцев. Основным преимуществом биометрических технологий является быстрая и простая идентификация без причинения особых неудобств человеку.

Идентификация по отпечаткам пальцев – наиболее распространенная и развитая биометрическая технология. До 60% биометрических приборов используют именно ее. Плюсы здесь очевидны: отпечатки пальцев каждого человека уникальны по своему рисунку, даже у близнецов они не совпадают. Сканеры последних поколений стали надежны, компактны и весьма доступны по цене. Для снятия отпечатка и дальнейшего распознавания образца используются три основные технологии: оптическая, полупроводниковая и ультразвуковая.

Оптические сканеры

В основе их работы лежат оптические методы получения изображения.

  • FTIR-сканеры (Frustrated Total Internal Reflection) используют эффект нарушенного полного внутреннего отражения. При этом палец просвечивается, а для приема световой картинки используется специальная камера.
  • Оптоволоконные сканеры (Fiber Optic Scanners) представляют оптоволоконную матрицу, каждое волокно которой снабжено фотоэлементом. Принцип получения рисунка - фиксация остаточного света, проходящего через палец к поверхности сканера.
  • Электрооптические сканеры (Electro-Optical Scanners). Специальный электрооптический полимер с помощью светоизлучающего слоя высвечивает отпечаток пальца, который фиксируется с помощью специальной камеры.
  • Бесконтактные сканеры (Touchless Scanners). Палец прикладывается к специальному отверстию в сканере, несколько источников света его подсвечивают снизу. Отраженный свет через собирательную линзу проецируется на камеру. Контакта с поверхностью считывающего устройства не происходит.
  • Роликовые сканеры (Roller-Style Scanners). При сканировании пользователь пальцем прокатывает небольшой прозрачный цилиндр. Внутри него размещены статический источник света, линза и камера. Во время движения пальца производится серия снимков папиллярного узора, соприкасающегося с поверхностью.

Полупроводниковые сканеры

В основе их действия лежит использование свойств полупроводников, изменяющихся в местах контакта с гребнями папиллярного узора. Во всех полупроводниковых сканерах применяется матрица чувствительных микроэлементов.

2.3. Аппаратные средства криптографической защиты информации.

В последнее время возрос интерес к современным аппаратным средствам

криптографической защиты информации (АСКЗИ). Это обусловлено, прежде всего,

простотой оперативностью их внедрения. Для этого достаточно у абонентов на

передающей и приемной сторонах иметь аппаратуру АСКЗИ и комплект ключевых

документов, чтобы гарантировать конфиденциальность циркулирующей в

автоматизированных системах управления (АСУ) информации.

Современные АСКЗИ строятся на модульном принципе, что дает возможность

комплектовать структуру АСКЗИ по выбору заказчика.

При разработке современных АСКЗИ приходится учитывать большое

количества факторов, влияющих на эффективность их развития, что усложняет

нахождение аналитических оценок по выбору обобщенного критерия

оптимальности их структуры.

К современным АСКЗИ как элементу АСУ предъявляют повышенные требования

по безопасности, надежности и быстродействию обработки циркулирующей в

Безопасность обеспечивается гарантированной стойкостью шифрования и

выполнением специальных требований, выбор которых обусловлен

криптографическими стандартами.

Надежность и быстродействие обработки информации зависят от состава

выбранной структуры АСКЗИ включает в себя ряд функционально завешенных

узлов и блоков, обеспечивающих заданную надежность и быстродействие. К ним

относятся:

Входные устройства, предназначенные для ввода информации;

Устройства преобразования информации, предназначенные для передачи

информации от входных устройств на устройства вывода в зашифрованном,

расшифрованном или открытом виде;

Устройства вывода, предназначенные для вывода информации на

соответствующие носители.

Для нахождения обобщенного критерия оценки оптимальности структуры

современной АСКЗИ достаточно рассмотреть основную цепь прохождения

информации: адаптеры ввода, входные устройства, состоящие из клавиатуры,

трансмиттера или фотосчитывателя, шифратора, устройства преобразования и

устройство вывода. Остальные узлы и блоки не оказывают существенного

влияния на прохождение информации.

Из методологии системного подхода известно, что математическое

описание сложной системы, к которой относится АСКЗИ, осуществляется путем

иерархического разбиения её на элементарные составляющие. При это в

математические модели вышестоящих уровней в качестве частных уровней в

качестве частных критериев всегда должны включатся обобщенные критерии

нижестоящих уровней. Следовательно, одно и то же понятие по отношению к

низшему уровню может выступать в качестве обобщенно критерия, а по

отношению к высшему- в качестве частного критерия.

Подсистема вывода является оконечным устройством АСКЗИ, то есть

находится на высшей ступени иерархии и включает в себя устройства

отображения, печати и перфорации. Следовательно, на этом уровне в качестве

целевой установки будет выступать быстрота обработки входящих криптограмм.

Тогда в качестве обобщенного критерия целесообразно выбрать время обработки

потока криптограмм за один цикл функционирования современных АСКЗИ, не

превышающего заданного интервала времени и обусловленного необходимостью

принятия управленческих решений.

Подсистема обработки информации находится на втором уровне иерархии и

включает в себя тракты печати и перфорации шифратор и систему управления и

распределения потоком информации.

Основные направления работ по рассматриваемому аспекту защиты можно

сформулировать таким образом:

Выбор рациональных систем шифрования для надежного закрытия

информации;

Обоснование путей реализации систем шифрования в автоматизированных

системах;

Разработка правил использования криптографических методов защиты в

процессе функционирования автоматизированных систем;

Оценка эффективности криптографической защиты.

К шифрам, предназначенным для закрытия информации в ЭВМ и

автоматизированных системах, предъявляется ряд требований, в том числе:

достаточная стойкость (надежность закрытия), простота шифрования и

расшифрования от способа внутримашинного представления информации,

нечувствительность к небольшим ошибкам шифрования, возможность

внутримашинной обработки зашифрованной информации, незначительная

избыточность информации за счет шифрования и ряд других. В той или иной

степени этим требованиям отвечают некоторые виды шифров замены,

перестановки, гаммирования, а также шифры, основанные на аналитических

преобразованиях шифруемых данных.

Шифрование заменой (иногда употребляется термин «подстановка»)

заключается в том, что символы шифруемого текста заменяются символами

другого или того же алфавита в соответствии с заранее обусловленной схемой

Шифрование перестановкой заключается в том, что символы шифруемого

текста переставляются по какому-то правилу в пределах какого-то блока этого

текста. При достаточной длине блока, в пределах которого осуществляется

перестановка, и сложном и неповторяющемся порядке перестановке можно

достигнуть достаточной для практических приложений в автоматизированных

системах стойкости шифрования.

Шифрование гаммированием заключается в том, что символы шифруемого

текста складываются с символами некоторой случайной последовательности,

именуемой гаммой. Стойкость шифрования определяется главным образом

размером (длиной) неповторяющейся части гаммы. Поскольку с помощью ЭВМ

можно генерировать практически бесконечную гамму, то данный способ

считается одним из основных для шифрования информации в автоматизированных

системах. Правда, при этом возникает ряд организационно-технических

трудностей, которые, однако, не являются не преодолимыми.

Шифрование аналитическим преобразованием заключается в том, что

шифруемый текст преобразуется по некоторому аналитическому правилу

(формуле). Можно, например, использовать правило умножения матрицы на

вектор, причем умножаемая матрица является ключом шифрования (поэтому ее

вектора последовательно служат символы шифруемого текста.

Особенно эффективными являются комбинированные шифры, когда текст

последовательно шифруется двумя или большим числом систем шифрования

(например, замена и гаммирование, перестановка и гаммирование). Считается,

что при этом стойкость шифрования превышает суммарную стойкость в составных

Каждую из рассмотренных систем шифрования можно реализовать в

автоматизированной системе либо программным путем, либо с помощью

специальной аппаратуры. Программная реализация по сравнению с аппаратной

является более гибкой и обходится дешевле. Однако аппаратное шифрование в

общем случае в несколько раз производительнее. Это обстоятельство при

больших объемах закрываемой информации имеет решающее значение.

Заключение

Нужно четко представлять себе, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в любой организации. В то же время можно существенно уменьшить риск потерь при комплексном подходе к вопросам безопасности. Средства защиты информации нельзя проектировать, покупать или устанавливать до тех пор, пока специалистами не произведен соответствующий анализ. Анализ должен дать объективную оценку многих факторов (подверженность появлению нарушения работы, вероятность появления нарушения работы, ущерб от коммерческих потерь и др.) и предоставить информацию для определения подходящих средств защиты - административных, аппаратных, программных и прочих.

Однако обеспечение безопасности информации - дорогое дело. Большая концентрация защитных средств в информационной системе может привести не только к тому, что система окажется очень дорогостоящей и потому нерентабельной и неконкурентоспособной, но и к тому, что у нее произойдет существенное снижение коэффициента готовности. Например, если такие ресурсы системы, как время центрального процессора будут постоянно тратиться на работу антивирусных программ, шифрование, резервное архивирование, протоколирование и тому подобное, скорость работы пользователей в такой системе может упасть до нуля.

Так же стоит большое внимание уделять и внутренним угрозам. Даже самый честный и преданный сотрудник может оказаться средством утечки информации.

Главное при определении мер и принципов защиты информации это квалифицированно определить границы разумной безопасности и затрат на средства защиты с одной стороны и поддержания системы в работоспособном состоянии и приемлемого риска с другой.

Список литературы

1. Галатенко В.А. «Стандарты информационной безопасности. 2-е изд. Курс лекций. Учебное пособие», издательство: ИНТУИТ.РУ, 2009г.

2. Цирлов Валентин «Основы информационной безопасности», издательство: Феникс, 2008г.

3. Анин Б. Защита компьютерной информации. Серия «Мастер». - СПб.: БХВ-Петербург, 2009г.

4. Скляров Д.В. Аппаратные ключи защиты // Искусство защиты и взлома информации. - СПб.: БХВ-Петербург, 2009г.

5. Хорев П. Б. «Программно-аппаратная защита информации. Учебное пособие», издательство: ФОРУМ, 2009г.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: