Чему равно оптимальное значение целевой функции. II. Нахождение оптимального плана и оптимального значения целевой функции. Гладкие функции и системы уравнений

Медианой именуется отрезок, проведенный из вершины треугольника на середину противоположной стороны, то есть делит ее точкой пересечения пополам. Точка, в которой медиана пересекает противоположную вершине, из которой она выходит, сторону, именуется основанием. Через одну точку, называемую точкой пересечения, проходит каждая медиана треугольника. Формула длины ее может выражаться несколькими способами.

Формулы для выражения длины медианы

  • Зачастую в задачах по геометрии ученикам приходится иметь дело с таким отрезком, как медиана треугольника. Формула ее длины выражается через стороны:

где a, b и c - стороны. Причем с является стороной, на которую медиана опускается. Таким образом выглядит самая простая формула. Медианы треугольника иногда требуется проводить для вспомогательных расчетов. Есть и другие формулы.

  • Если при расчете известны две стороны треугольника и определенный угол α, находящийся между ними, то длина медианы треугольника, опущенной к третьей стороне, будет выражаться так.

Основные свойства

  • Все медианы имеют одну общую точку пересечения O и ею же делятся в отношении два к одному, если вести отсчет от вершины. Такая точка носит название центра тяжести треугольника.
  • Медиана разделяет треугольник на два других, площади которых равны. Такие треугольники называются равновеликими.
  • Если провести все медианы, то треугольник будет разделен на 6 равновеликих фигур, которые также будут треугольниками.
  • Если в треугольнике все три стороны равны, то в нем каждая из медиан будет также высотой и биссектрисой, то есть перпендикулярна той стороне, к которой она проведена, и делит надвое угол, из которого она выходит.
  • В равнобедренном треугольнике медиана, опущенная из вершины, которая находится напротив стороны, не равной никакой другой, будет также высотой и биссектрисой. Медианы, опущенные из других вершин, равны. Это также является необходимым и достаточным условием равнобедренности.
  • Если треугольник является основанием правильной пирамиды, то высота, опущенная на данное основание, проецируется в точку пересечения всех медиан.

  • В прямоугольном треугольнике медиана, проведенная к наибольшей стороне, равняется половине ее длины.
  • Пусть O - точка пересечения медиан треугольника. Формула, приведенная ниже, будет верная для любой точки M.

  • Еще одним свойством обладает медиана треугольника. Формула квадрата ее длины через квадраты сторон представлена ниже.

Свойства сторон, к которым проведена медиана

  • Если соединить любые две точки пересечения медиан со сторонами, на которые они опущены, то полученный отрезок будет являться средней линией треугольника и составлять одну вторую от стороны треугольника, с которой она не имеет общих точек.
  • Основания высот и медиан в треугольнике, а также середины отрезков, соединяющих вершины треугольника с точкой пересечения высот, лежат на одной окружности.

В заключение логично сказать, что одним из самых важных отрезков является именно медиана треугольника. Формула ее может использоваться при нахождении длин других его сторон.

) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций , линейном программировании , теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи . Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

\left\{ \begin{matrix} F_1(x_1, x_2, \ldots, x_M) = 0 \\ F_2(x_1, x_2, \ldots, x_M) = 0 \\ \ldots \\ F_N(x_1, x_2, \ldots, x_M) = 0 \end{matrix} \right.

может быть сформулирована как задача минимизации целевой функции

S = \sum_{j=1}^N F_j^2(x_1, x_2, \ldots, x_M) \qquad (1)

Если функции гладкие, то задачу минимизации можно решать градиентными методами .

Для всякой гладкой целевой функции можно приравнять к 0 частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра . Эта функция равна длине гамильтонова цикла на графе . Она задана на множестве перестановок n-1 вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Напишите отзыв о статье "Целевая функция"

Примечания

См. также

Литература

  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

Отрывок, характеризующий Целевая функция

Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
– Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
– Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
– Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
– Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
– Ах, очень интересно! – сказала m llе Bourienne.
– Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
M lle Bourienne радостно вскочила.
– Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
– Ничего то не умеют, все перепутают.
Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.

    Для нахождения максимума целевой функции используйте функцию maximize, формат которой следующий maximize(<функция>, <система ограничений>, <опции>);

При этом условие неотрицательности переменных удобно указать опцией NONNEGATIVE.

> optimum:=maximize(f,syst_ogr,NONNEGATIVE);

    Используйте команду subs, которая позволяет подставить значения переменных x 1 и x 2 в функцию f .

> fmax:=subs(x1=83/17,x2=19/17,f);

    Примените функцию evalf для представления ответа в форме действительного числа с 4 значащими цифрами.

> fmax:=evalf(fmax,4);

Ознакомиться с вариантом решения задачи ЛП без пояснений можно в приложении.

Решение оптимизационных задач в специализированном пакете SimplexWin. Http://www.Simplexwin.Narod.Ru/

Данная программа предназначена для решения задач линейного программирования симплекс методом.

Задача . Найти значения переменных x 1 и x 2 , при которых

при ограничениях

Порядок выполнения работы :

    Запустите программу SimplexWin и установите требуемый размер матрицы ограничений, выбрав в меню команду Настройки – Размер матрицы (рис. 13).

Рис. 13 . Определение размера матрицы.

    Введите данные (рис. 14). Если задача вводится не в канонической форме, то дополнительные переменные и искусственные базисы (а также соответствующие им коэффициенты целевой функции) добавляются автоматически.

Рис.14 . Ввод данных.

II. Нахождение оптимального плана и оптимального значения целевой функции.


Рис. 15 . Форма Результаты.

    В форме Результаты нажмите кнопку Результат, которая позволяет произвести решение задачи в автоматическом режиме и отобразить на экране последнюю симплексную таблицу и результат (рис. 16).

Рис. 16 . Решение задачи.

Решение оптимизационных задач в Excel

Рассмотрим пример нахождения для следующей задачи линейного программирования.

Задача . Найти значения переменных x 1 и x 2 , при которых

при ограничениях

Порядок выполнения работы :

I. Оформление исходных данных.

    Создайте экранную форму для ввода условий задачи (переменных, целевой функции, ограничений) и введите в нее исходные данные (коэффициенты целевой функции, коэффициенты при переменных в ограничениях, правые части ограничений) (рис. 17).

Рис. 17 . Экранная форма задачи (курсор в ячейке D6).

Замечание : В экранной форме на рис. 17 каждой переменной и каждому коэффициенту задачи поставлена в соответствие конкретная ячейка в Excel. Так, например, переменным задачи соответствуют ячейки B3 (), C3 (),коэффициентам целевой функции соответствуют ячейки B6 (
), C6 (
), правым частям ограничений соответствуют ячейки F10 (
), F11 (
),F12 (
)и т.д.

    Введите зависимости из математической модели в экранную форму, т.е. введите формулу для расчета целевой функции и формулу для расчета значений левых частей ограничений.

Согласно условию задачи значение целевой функции определяется выражением
. Используя обозначения соответствующих ячеек вExcel, формулу для расчета целевой функции можно записать как сумму произведений каждой из ячеек, отведенных для значений переменных задачи (B3, C3), на соответствующие ячейки, отведенные для коэффициентов целевой функции (B6, C6).

Для того чтобы задать формулу зависимости для целевой функции проделайте следующее :

– поставьте курсор в ячейку D6 ;

– вызовите окно Мастер функций – шаг 1 из 2 , нажав кнопку на стандартной панели инструментов;

– в окне Функция выберите функцию СУММПРОИЗВ ;

– в появившемся окне СУММПРОИЗВ в строку Массив 1 введите выражение B$3:C$3 , а в строку Массив 2 – выражение B6 :С6 ;

– нажмите кнопку OK .

Рис. 18 . Ввод формулы для расчета ЦФ в окне Мастер функций.

После ввода ячеек в строки Массив 1 и Массив 2 в окне СУММПРОИЗВ появятся числовые значения введенных массивов (рис. 18), а в экранной форме появится текущее значение, вычисленное по введенной формуле, то есть 0 (так как в момент ввода формулы значения переменных задачи нулевые) (рис. 19).

Замечание : Символ $ перед номером строки означает, что при копировании этой формулы в другие места листа Excel номер строки 3 не изменится. Символ : означает, что в формуле использованы все ячейки, расположенные между ячейками, указанными слева и справа от двоеточия.

Левые части ограничений задачи представляют собой сумму произведений каждой из ячеек, отведенных для значений переменных задачи (B3, C3), на соответствующую ячейку, отведенную для коэффициентов конкретного ограничения (B10, C10 – 1 ограничение; B11, C11 – 2 ограничение; B12, C12 – 3 ограничение).

Формулы, задающие левые части ограничений задачи, отличаются друг от друга и от формулы в целевой ячейке D6 только номером строки во втором массиве. Этот номер определяется той строкой, в которой ограничение записано в экранной форме. Поэтому для задания зависимостей для левых частей ограничении достаточно скопировать формулу из целевой ячейки в ячейки левых частей ограничений.

Для расчета значений левых частей ограничений выполните следующее:

– поставьте курсор в ячейку D6 и скопируйте в буфер содержимое ячейки (клавишами Ctrl+C);

– поставьте курсор поочередно в поля левой части каждого из ограничений, то есть D 10 ,D 11 , D 12 , и вставляйте в эти поля содержимое буфера (клавишами Ctrl+V) (при этом номер ячеек во втором массиве формулы будет меняться на номер той строки, в которую была произведена вставка из буфера).

После ввода на экране в полях D 10 ,D 11 , D 12 появится 0 (нулевое значение) (рис. 19).

Рис. 19 . Экранная форма задачи после вода

всех необходимых формул.

    Проверьте правильность введения формул.

Для этого:

– произведите поочередно двойное нажатие левой клавиши мыши на ячейки с формулами, при этом на экране рамкой будут выделяться ячейки, используемые в формуле (рис. 20 и рис. 21).

Рис. 20

формулы в целевую ячейку D6.

Рис. 20 . Проверка правильности введения

формулы в ячейку D10 для левой части ограничений.

    Задайте целевую функцию и введите ограничения в окне Поиск решения (рис. 21).

Для этого:

– поставьте курсор в ячейку D6 ;

– вызовите окно Поиск решения , выбрав на панели инструментов Данные – Поиск решения ;

– поставьте курсор в поле Установить целевую ячейку ;

– введите адрес целевой ячейки $D$6 или сделайте одно нажатие левой клавишей мыши на целевую ячейку в экранной форме, что будет равносильно вводу адреса с клавиатуры;

– укажите направление оптимизации целевой функции, щелкнув один раз левой клавишей мыши по селекторной кнопке максимальному значению ;

– в окне Поиск решений в поле Изменяя ячейки введите ячейки со значениями переменных $B$3:$C$3 , выделив их в экранной форме, удерживая левую кнопку мыши;

Рис. 21 . Окно Поиск решения.

– нажмите кнопку Добавить ;

– в соответствии с условием задачи выберите в поле знака необходимый знак, например, для 1 ограничения это знак ;

– в поле Ограничение введите адрес ячейки правой части, рассматриваемого ограничения, например $F$10 ;

– аналогичным образом установите соотношения между правыми и левыми частями других ограничений ($D$ 11$F$1 1 , $D$ 12$F$1 2) ;

– подтвердите ввод всех перечисленных условий нажатием кнопки OK (рис. 22 и рис. 23).

Рис. 22 . Добавления условия.

Замечание : Если при вводе условия задачи возникает необходимость в изменении или удалении внесенных ограничений, то это можно сделать на жав на кнопки Изменить или Удалить .

Целевая функция – это математическое представление зависимости критерия оптимальности от искомых переменных.

2. Градиент функции.

Вектор, компонентами которого служат значения частных производных, то есть вектор

называется градиентом функции , вычисленным в точке.

3. Общая задача линейного программирования.

Стандартная математическая формулировка общей задачи линейного программирования выглядит так: требуется найти экстремальное значение показателя эффективности (целевой функции)

(линейной функции элементов решения ) при линейных ограничительных условиях, накладываемых на элементы решения:

где - заданные числа.

4. Стандартная задача лп.

В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа « <= » или « >= ». Все переменные задачи неотрицательны.

Всякую задачу линейного программирования можно сформулировать в стандартной форме . Преобразование задачи на минимум в задачу на максимум, а также обеспечение не отрицательности переменных производится так же, как и раньше. Всякое равенство в системе ограничений равносильно системе взаимопротивоположных неравенств:

Существует и другие способы преобразования системы равенств в систему неравенств, т.е. всякую задачу линейного программирования можно сформулировать в стандартной форме.

2 вариант ответа:

Стандартная задача ЛП. или, в матричной записи,где- матрица коэффициентов. Векторназывается вектором коэффициентов линейной формы,- вектором ограничений.

5. Каноническая задача лп.

В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F , ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х 1 , х 2 , ..., х n являются неотрицательными:

К канонической форме можно преобразовать любую задачу линейного программирования.

Короткая запись канонической задачи ЛП:

Х=(х1, х2, …, хn), С=(с1, с2, …, сn).

2 вариант ответа:

Каноническая задача ЛП. или, в матричной записи,

6. Симметричные и несимметричные двойственные задачи.

Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи,(2) Задачей, двойственной к (1) (двойственной задачей), называется задача ЛП отпеременныхвида(3) или, в матричной записи,(4) где. Правила построения задачи (3) по форме записи задачи (1) таковы: в задаче (3)

переменных столько же, сколько строк в матрицезадачи (1). Матрица ограничений в (3) - транспортированная матрица. Вектор правой части ограничений в (3) служит вектором коэффициентов максимизируемой линейной форме в (1), при этом знаки неравенств меняются на равенство. Наоборот, в качестве целевой функции в (3) выступает линейная форма, коэффициентами которой задаются вектором правой части ограничений задачи (1), при этом максимизация меняется на минимизацию. На двойственные переменныенакладывается условие неотрицательности. Задача (1), в отличии от двойственной задачи (3) называется прямой.Теорема двойственности . Если взаимодвойственные задачи (2), (4) допустимы, то они обе имеют решение и одинаковое значение .

Симметричные двойственные задачи

Разновидностью двойственных задач линейного, программирования являются двойственные симметричные задачи, в которых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойственные переменные налагается условие неотрицательности.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: