Принцип действия дпт. Регулирование частоты вращения двигателей постоянного тока. Для гашения искры применяются варисторы

Электрическая машина постоянного тока состоит из статора, якоря, коллектора, щеткодержателя и подшипниковых щитов (рисунок 1). Статор состоит из станины (корпуса), главных и добавочных полюсов, которые имеют обмотки возбуждения. Эту неподвижную часть машины иногда называют индуктором. Главное его назначение - создание магнитного потока. Станина изготавливается из стали, к ней болтами крепятся главные и добавочные полюса, а также подшипниковые щиты. Сверху на станине имеются кольца для транспортирования, снизу - лапы для крепления машины к фундаменту. Главные полюса машины набираются из листов электротехнической стали толщиной 0,5 -1 мм с целью уменьшения потерь, которые возникают из-за пульсаций магнитного поля полюсов в воздушном зазоре под полюсами. Стальные листы сердечника полюса спрессованы и скреплены заклепками.

Рисунок 1 – Машина постоянного тока:
I - вал; 2 - передний подшипниковый щит; 3 - коллектор; 4 - щеткодержатель; 5 - сердечник якоря с обмоткой; б - сердечник главного полюса; 7 - полюсная катушка; 8 - станина; 9 - задний подшипниковый щит; 10 - вентилятор; 11 - лапы; 12 - подшипник

Рисунок 2 – Полюса машины постоянного тока:
а - главный полюс; б - дополнительный полюс; в - обмотка главного полюса; г - обмотка дополнительного полюса; 1 - полюсный наконечник; 2 - сердечник
В полюсах различают сердечник и наконечник (рисунок 2). На сердечник надевают обмотку возбуждения, по которой проходит ток, создавая магнитный поток. Обмотка возбуждения наматывается на металлический каркас, оклеенный электрокартоном (в больших машинах), или размещается на изолированном электрокартоном сердечнике (малые машины). Для лучшего охлаждения катушку делят на несколько частей, между которыми оставляют вентиляционные каналы. Добавочные полюса устанавливаются между главными. Они служат для улучшения коммутации. Их обмотки включаются последовательно в цепь якоря, поэтому проводники обмотки имеют большое сечение.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собирается из штампованных листов электротехнической стали толщиной 0,5 мм и спрессовывается с обеих сторон с помощью нажимных шайб. В машинах с радиальной системой вентиляции листы сердечника собираются в отдельные пакеты толщиной 6-8 см, между которыми делают вентиляционные каналы шириной 1 см. При осевой вентиляции в сердечнике выполняют отверстие для прохождения воздуха вдоль вала. На внешней поверхности якоря имеются пазы для обмотки.

Рисунок 3 – Расположение секции обмотки якоря в пазах сердечника
Обмотка якоря изготавливается из медных проводов круглого или прямоугольного сечения в виде заранее выполненных секций (рисунок 3). Они укладываются в пазы, где тщательно изолируются. Обмотку делают двухслойной: размещают в каждом пазу две стороны разных якорных катушек - одну над другой. Обмотку закрепляют в пазах клиньями (деревянными, гетинаксовыми или текстолитовыми), а лобовые части крепят специальным проволочным бандажом. В некоторых конструкциях клинья не применяют, а обмотку крепят бандажом. Бандаж изготовляют из немагнитной стальной проволоки, которая наматывается с предварительным натяжением. В современных машинах для бандажировки якорей используют стеклянную ленту.
Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 - 1 мм. Нижние (узкие) края пластин имеют вырезы в виде "ласточкина хвоста", которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность "ласточкина хвоста", при втором - на "ласточкин хвост" и конец пластины.
Коллекторы с первым способом крепления называют арочными, со вторым - клиновыми. Наиболее распространены арочные коллекторы.
В коллекторных пластинах со стороны якоря при небольшой разнице в диаметрах коллектора и якоря делают выступы, в которых фрезеруют прорези (шлицы). В них укладывают концы обмотки якоря и припаивают оловянистым припоем. При большой разнице в диаметрах припайка к коллектору делается с помощью медных полосок, которые называются "петушками".
В быстроходных машинах большой мощности для предотвращения выпучивания пластин под действием центробежных сил применяют внешние изолированные бандажные кольца.
Щеточный аппарат состоит из траверсы, щеточных пальцев (болтов), щеткодержателей и щеток. Траверса предназначена для крепления на ней щеточных пальцев щеткодержателей, образующих электрическую цепь.
Щеткодержатель состоит из обоймы, в которую помещается щетка, рычага для прижима щетки к коллектору и пружины. Давление на щетку составляет 0,02 - 0,04 МПа.
Для соединения щетки с электрической цепью имеется гибкий медный тросик.
В машинах малой мощности применяют трубчатые щеткодержатели, которые крепят в подшипниковом щите. Все щеткодержатели одной полярности соединяются между собой сборными шинами, которые подключаются к выводам машины.
Щетки (рисунок 4) в зависимости от состава порошка, способа изготовления и физических свойств разделяют на шесть основных групп: угольно-графитовые, графитовые, электрографитовые, медно-графитовые, бронзографитовые и серебряно-графитовые.
Подшипниковые щиты электрической машины служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.

Рисунок 4 – Щетки:
а - для машин малой и средней мощности; б - для машин большой мощности; 1 - щеточный канатик; 2 - наконечник
Различают обычные и фланцевые подшипниковые щиты.
Подшипниковые щиты изготовляют из стали (реже из чугуна или алюминиевых сплавов) методом литья, а также сварки или штамповки. В центре щита делается расточка под подшипник качения: шариковый или роликовый. В машинах большой мощности в ряде случаев используют подшипники скольжения.
В последние годы статор двигателей постоянного тока собирают из отдельных листов электротехнической стали. В листе одновременно штампуются ярмо, пазы, главные и добавочные полюса.

Если Вас интересуют подробности, то принцип действия двигателя постоянного тока подробно описан на множестве сайтов и даже с формулами. Мы решили поговорить не только об этом, но и о некоторых особенностях, которые не так широко известны.

Несколько слов о машинах постоянного тока

Был получен раньше переменного, и с момента появления начались эксперименты для чего этого зверя можно использовать. Довольно быстро была установлена связь между током, магнитным полем и вращением. Началось с того, что Фарадей ставил магнит в обмотку с проводами и обнаружил появление тока. После чего он обнаружил, что если сначала сунуть магнит внутрь катушки, а потом подать ток, то магнит выпихнет наружу. Или напротив втянет внутрь. Это и есть принцип работы машины постоянного тока – использование взаимодействия магнитного поля и электричества . А теперь обратим внимание на то, что если мы будет «совать» магнит, то получим электричество, а если подадим электричество – «выпихнем» магнит. То есть машины постоянного тока, устройство и принцип действия которых мы рассматриваем, являются именно машинами. То есть двигатель одновременно является и генератором, проще говоря, это машины обратимого преобразования механической энергии в электрическую энергию (ток). Магнит имеет два полюса, электричество плюс и минус. Взаимодействие магнита и тока в этом случае подчиняется сложным законам, но если нас интересует вращение, (а поступательно возвратные движения в технике нужны редко), то мы можем получить только одно направление – по часовой стрелке относительно полярности магнитов и направления тока. То самое всем знакомое «правило буравчика», или «правило левой руки». Мы запросто можем изменить полярность тока обмотки, поменяв два провода местами, но мы не сможем изменить полюса у магнита и просто сожжем двигатель. Для справки, можно посмотреть и на правило «правой руки». Есть и такое в электротехнике, оно тоже относится к машинам постоянного тока, но в части генерации энергии.

Само вращение вала происходит следующим образом. Внутри магнитного поля расположен ротор с валом, на котором катушка. Она при подаче тока индуцирует магнитное поле. Магниты разными полюсами притягиваются, а одинаковыми отталкиваются. Внешние магниты «отталкивают» заработавшие электромагниты ротора, заставляя их всё время «отталкиваться» пока есть ток, что и приводит к вращению вала.

Это – принцип действия двигателя постоянного тока, всё остальное детали и технические подробности.

Особенности устройства двигателя постоянного тока

Конечно, в теории принцип работы машины постоянного тока ясен, но пытливый читатель немедленно спросит – а как начнёт вращаться ротор, если он внутри двухполюсного магнита? Такой вопрос неизбежен и для ответа не него придётся внимательнее рассмотреть устройство двигателя постоянного тока. Кстати некоторые знания будут полезны и для понимания работы двигателей переменного тока.

Начнём с перечня трудностей, с которыми столкнулись первые создатели ДПТ.

  1. Наличие двух мёртвых точек , из которых самостоятельный пуск невозможен. (Те самые два полюса магнитов).
  2. Слишком слабое магнитное отталкивание при слабом токе. Или сильное сопротивление вращения, не позволяющее пуск.
  3. Остановка ротора после одного оборота. Не вращение, а качания туда-сюда, ведь пройдя половину окружности «магнит» ротора не отталкивался, а притягивался, то есть не разгонял вращение, а тормозил его.

Оставались материалы и немного мелочей, вроде реализации принципа обратимой электрической машины.

Первыми победили «мёртвые точки», применив не два, а три и больше магнитов. Три зубца на роторе исключают мёртвые точки, один всегда в магнитном поле и пуск двигателя стал возможен из любого положения ротора.

Преодолеть проблему разгона-торможения смогли, применив принцип работы машины постоянного тока – простоту переключения между плюсом и минусом при сохранении тока . Иначе говоря, первую половину оборота после пуска ротор начинает с полярностью тока: на верхней точке плюс, на нижней минус. Как только верхняя точка занимает нижнее положение, полярность точек меняется на минус – плюс, и «отталкивание - разгон» продолжается до окончания оборота, после чего цикл повторяется, а торможение исключено. Такой механизм назвали коллектор . Те самые щётки электродвигателя, которые обеспечивают передачу тока с неподвижного контакта на вращающийся вал. Да ещё и какую передачу! Со сменой знака на роторе 2 раза за один оборот. Посчитайте, сколько приходится трудиться коллектору, если у двигателя 2000 оборотов в минуту.

Коллектор - самая сложная деталь, если рассматривать устройство двигателя постоянного тока, поскольку позволяет обратное преобразование вращения в ток. Основной расходный элемент – щетки. Купив новый прибор с электродвигателем, убедитесь, что есть запасные. Не поленитесь, пока прибор новый, купите ещё пару комплектов.

Сложность коллектора позволяет визуально определить его состояние и правильность работы по искрению. Совсем плохо, когда искры (а коллектор не что иное, как контактный переключатель) образуют кольцо – «круговой огонь». Это значит, что двигатель долго не протянет. Пока борьба с искрением идёт с переменным успехом, совсем победить его не получается, но продлить сроки службы ДПТ удалось.

Если Вам показалось, что мы забыли про слабые токи при пуске, рассмотрев сразу третью проблему, то Вы ошибаетесь. Проблема пуска оказалась настолько сложной, что её мы рассмотрим отдельно.

Пусковые токи двигателей постоянного тока

Итак, принцип действия двигателя постоянного тока понятен, самозапуск мы обеспечили, ликвидировали секторальное торможение на обратных магнитных полюсах, осталось его включить. Но вот беда. Ротор всё равно не вращается, хотя всё исправно. Дело в том, что пока мы наш двигатель дорабатывали, ротор стал тяжелее, на нём маховики и всё такое, и тока просто недостаточно, чтобы магниты смогли «провернуть» ротор. «Какого чёрта каналья!» (с) воскликнет пытливый экспериментатор и просто увеличит ток. И знаете, двигатель и правда закрутится. При нескольких если :

  • Если не сгорят обмотки (провода в катушке);
  • Если бросок тока выдержит ;
  • Если на коллекторе при таком пуске не произойдёт приваривания секторов переключения и т.д.

Поэтому простое повышение пускового тока быстро было признано неправильным решением. Кстати, мы пока не упомянули главное преимущество ДПТ перед двигателями переменного тока - это прямая передача момента вращения, с момента пуска . Проще говоря, с момента начала вращения вал ДПТ может «проворачивать» что угодно, преодолевая значительное сопротивление, что не под силу движкам переменных токов.

Это преимущество и стало ахиллесовой пятой ДПТ. Сам принцип работы машины постоянного тока вроде не позволял произвольно менять пусковой ток с одной стороны. С другой стороны, попытки дать большой ток для старта и снизить его после пуска, потребовали автоматики. Первоначально использовали пускачи и стартёры, особенно для ДПТ большой мощности, но это была тупиковая ветка развития. Отказ от плавной регулировки пускового тока позволил и тут найти разумный компромисс. Фактически сейчас это выглядит как пуск двигателя вроде разгона автомобиля. Мы начинаем движение на 1-й передаче, потом включаем 2-ю, 3.-ю и вот уже мчимся по шоссе на 4-й скорости. Только в данном случае «передачи», то есть токи, переключает автомат стартёр . Вся эта электротехника решает одновременно две задачи – плавный пуск ДПТ без перегрузок и сохранение в целости и сохранности энергосети (источника питания двигателя). Как и принцип действия двигателя постоянного тока, эта автоматика построена на основе прямого преобразования. Плавно ток поднимается до пускового значения, как баланс входного тока и токов на обмотках до начала вращения. После начала вращения сила тока резко снижается и снова нарастает «подгоняя вращение вала», и так ещё 2-3 раза.

Таким образом, пуск перестал быть «плавным», но стал безопасным для всех. Самое главное, что удалось сохранить при такой схеме, а сегодня она наиболее распространена, главное преимущество – крутящий момент . При этом устройство надёжного двигателя постоянного тока стало проще, мощности возросли, а пусковые токи, хотя и остаются головной болью этого класса двигателей, перестали быть критичными для механизмов.

Сферы применения двигателей постоянного тока

ДПТ, как и машины постоянного тока, устройство и принцип действия которых мы рассматривали, применяются там, где нецелесообразно использовать постоянное подключение к сетям (хороший пример – стартёр автомобиля, который и есть ДПТ), где такое подключение невозможно (например, игрушки с моторчиками для детей), или где даже такого подключения недостаточно. Например, ЖД транспорт, который вроде и подключен к сетям переменного тока, но необходимые крутящие моменты таковы, что использовать можно только двигатели постоянного тока, принципы, действия которых не изменились. И на самом деле в последнее время сфера применения не сокращается, а только увеличивается. Чем больше ёмкость аккумулятора, тем дольше будет работать такой двигатель автономно. Чем меньше габариты, тем больше будет выигрыш по мощности.

Экономичность – это дело будущего, пока особенно экономить нечего и вопрос не ставился, переменные движки будут попроще. Но вытеснить ДПТ не смогут. Такие вот они – ДПТ, или машины постоянного тока, устройство и принцип действия которых мы изучали в 6-8 классе, но давно про это забыли.

В тех приводах, где необходим широкий диапазон регулировки скоростей используется электрический двигатель постоянного тока. Он позволяет с высокой точностью поддерживать скорость вращения и осуществлять необходимые регулировки.

Устройство электродвигателей постоянного тока

В основе работы данного вида двигателей лежит . Если проводник, по которому протекает электрический ток, поместить в магнитное поле, то, согласно , на него будет воздействовать определенная сила.

Когда проводник пересекает магнитные силовые линии, в нем производится наведение электродвижущей силы, направленной в сторону, противоположную движению тока. В результате, получается обратное противодействие. Происходит преобразование электрической мощности в механическую с одновременным нагреванием проводника.

Вся конструкция устройства состоит из якоря и индуктора, между которыми находится воздушный зазор. Индуктор создает неподвижное магнитное поле и включает в себя полюса главные и добавочные, закрепляемые на станине. Обмотки возбуждения располагаются на главных полюсах и создают магнитное поле. Добавочные полюса содержат специальную обмотку, улучшающую условия коммутации.

В состав якоря входит магнитная система. Ее основными элементами являются рабочая обмотка, укладываемая в пазы, отдельные металлические листы и коллектор, с помощью которого к рабочей обмотке подводится постоянный ток.

Коллектор изготавливается в виде цилиндра и насаживается на вал электродвигателя. К его выступам припаиваются концы якорной обмотки. Электрический ток снимается с коллектора при помощи щеток, закрепленных в специальных держателях и зафиксированных в определенном положении.

Основные процессы: пуск и торможение

Каждый двигатель постоянного тока осуществляет два основных процесса пуск и торможение. В самом начале пуска якорь находится в неподвижном состоянии, напряжение и сила, противоположная ЭДС, равны нулю. При незначительном сопротивлении якоря, значение пускового тока превышает номинальное, примерно в 10 раз. Во избежание перегрева обмотки якоря при пуске, применяются специальные пусковые реостаты. При мощности двигателей до 1-го киловатта, осуществляется прямой запуск.

В электродвигателях постоянного тока применяется несколько способов торможения. При динамическом торможении обмотка якоря замыкается коротко, либо с помощью резисторов. Этот способ обеспечивает наиболее точную остановку. Рекуперактивное торможение является наиболее экономичным. Здесь происходит изменение направления ЭДС на противоположное.

Торможение противовключением производится изменением полярности тока и напряжения в якорной обмотке, что позволяет создать эффективный тормозящий момент.

Как работает двигатель постоянного тока

Тема нашей сегодняшней статьи — принцип действия электродвигателя постоянного тока. Если вы бываете на нашем сайте, то наверняка уже знаете, что эту тему мы решили раскрыть более полно и понемногу разбираем все разновидности электромотором и электрогенераторов.

Постоянный ток известен человечеству вот уже где-то 200 лет, эффективно применять его научились немного позже, а вот сегодня трудно себе представить деятельность человека, где бы энергия не применялась. Приблизительно таким же образом происходила и эволюция электрических двигателей.

Бурное развитие электротехники не прекращается с момента зарождения этого направления в физике. Первыми разработками, связанными с электрическими моторами, были работы многих ученых в 20-х годах 19-го столетия. Изобретали всяких мастей пытались соорудить механические машины, способные превращать электрическую энергию в кинетическую.

  • Особую значимость имеют исследования М. Фарадея, который в 1821 году, проводя эксперименты по взаимодействию тока и разных проводников, выяснил, что проводник может вращаться внутри магнитного поля, ровно как вокруг проводника может вращаться и магнит.
  • Второй этап развития занял более значительный отрезок времени от 1830-х до 1860-х годов. Теперь, кода основные принципы преобразования энергии человеку были известны, он пытался создать наиболее эффективную конструкцию двигателя с вращающимся якорем.
  • В 1833 году американский изобретатель и по совместительству кузнец Томас Девенпорт смог построить первый роторный двигатель, работающий на постоянном токе, и сконструировать модель поезда, приводимую им в движение. На свою электрическую машину он получил патент спустя 4 года.

  • В 1834 году Борис Семенович Якоби, русско-немецкий физик и изобретатель, создает первый в мире электродвигатель постоянного тока, в котором смог таки реализовать основной принцип работы таких машин, применяемый и сегодня – с постоянно вращающейся частью.
  • В 1838 году, 13 сентября был произведен пуск настоящей лодки по Неве с 12-ю пассажирами на борту – так происходили полевые испытания двигателя Якоби. Лодка двигалась со скоростью 3 км\ч против течения. Привод двигателя был соединен с лопастными колесами по бокам, как на пароходах того времени. Электрический ток подавался к агрегату от батареи содержащей 320 гальванических элементов.

Результатом проведенных испытаний стала возможность формирования основных принципов дальнейшего развития электромоторов:

  • Во-первых , стало ясно, что расширение сферы их применения напрямую зависит от удешевления способов получения электрической энергии – требовался надежный и недорогой генератор, а не дорогостоящие на тот момент гальванические батареи.
  • Во-вторых , требовалось создать достаточно компактные двигатели, которые бы, однако, обладали большим коэффициентом полезного действия.
  • И в третьих – были очевидны преимущества двигателей с вращающимися неоднополюсными якорями, с постоянным вращающимся моментом.

Затем наступает третий этап развития электромоторов, который ознаменован открытием явления самовозбуждения двигателя электрического тока, после чего был сформирован принцип обратимости таких машин, то есть двигатель может быть генератором, и наоборот. Теперь для того чтобы запитать двигатель начали применять недорогие генераторы тока, что в принципе делается и сегодня.

Интересно знать! Любая электрическая сеть подключена к электростанции, вырабатывающей ток. Сама станция, по сути, и есть набор мощнейших генераторов, приводимых в движение разными способами: течение реки, энергия ветра, ядерные реакции и прочее. Исключение составляют, разве что, фотоэлементы в солнечных батареях, но это уже другая, дорогая, пока не нашедшая достаточного распространения история.

Вид современной конструкции электродвигатель приобрел в далеком 1886 году, после чего в него вносились только доработки и усовершенствования.

Основные принципы функционирования

В основу любого электрического двигателя положен принцип магнитного притягивания и отталкивания. В качестве эксперимента можете провести такой простейший опыт.

  • Внутрь магнитного поля нужно поместить проводник, по которому нужно пропустить электрический ток.
  • Для этого удобнее всего пользоваться магнитом в форме подковы, а в качестве проводника подойдет медная проволока подключенная концами к батарейке.
  • В результате опыта вы увидите, что проволоку вытолкнет из области действия постоянного магнита. Почему это происходит?
  • Дело в том, что при прохождении тока через проводник, вокруг последнего создается электромагнитное поле, которое вступает во взаимодействие с уже имеющимся, от постоянного магнита. Как результат этого взаимодействия, мы видим механическое движение проводника.
  • Если говорить более подробно, то выглядит это так. Когда круговое поле проводника вступает во взаимодействие с постоянным от магнита, то сила магнитного поля с одной стороны возрастает, а с другой уменьшается, из-за чего провод выталкивает из области действия магнита под углом 90 градусов.

  • Направление, в котором вытолкнет проводник можно установить по правилу левой руки, которое применимо только к электродвигателям. Правило гласит следующее – левую руку нужно поместить в магнитное поле так, чтобы его силовые линии входили в нее с ладони, а 4 пальца были направлены по ходу движения положительных зарядов, тогда отведенный в сторону большой палец покажет направление воздействующей на проводник движущей силы.

Эти простые принципы двигателя постоянного тока применяется и поныне. Однако в современных агрегатах вместо постоянных магнитов применяют электрические, а рамки заменяют сложные системы обмоток.

Строение двигателя

Давайте теперь более подробно разберем, как устроен двигатель постоянного тока, какие в нем имеются детали и как они взаимодействуют друг с другом.

Продолжение теории

Сконструировать простейший двигатель постоянного тока вы легко сможете своими руками. Инструкция такова, что достаточно соорудить прямоугольную рамку из проводника, способную вращаться вокруг центральной оси.

  • Рамка помещается в магнитное поле, после чего на ее концы подается постоянное напряжение, от той же батарейки.
  • Так только по рамке начинает течь ток, она приходит в движение, пока не займет горизонтальное положение, называемое нейтральным или «мертвым», когда воздействие поля на проводник равно нулю.
  • По идее, рамка должна остановиться, но этого не произойдет, так как она пройдет «мертвую» точку по инерции, а значит, электродвижущие силы снова начнут возрастать. Но из-за того, что ток теперь течет в обратном направлении относительно магнитного поля, будет наблюдать сильный эффект торможения, что несопоставимо с нормальной работой двигателя.
  • Чтобы процесс протекал нормально нужно предусмотреть такую конструкцию подключения рамки к питанию, при которой в момент прохождения тока через нулевую точку будет происходить переключение полюсов, а значит, относительно магнитного поля ток потечет в прежнем направлении.

В качестве такого устройства применяется коллектор, состоящий их изолированных пластин, но давайте поговорим о нем чуть позже.

В виде альтернативы можно изготовить такую рамку, что показана на фото выше. Ее отличие в том, что по двум контурам рамки ток протекает в одном направлении, что позволяет избавиться от коллектора, однако такой электромотор крайне неэффективен, из-за постоянно воздействующих тормозящих сил.

Получив вращение ротора, к нему можно приладить привод и дать сопоставимую мощности двигателя нагрузку, получая тем самым работающую модель.

Строение электромотора постоянного тока

Итак, переходим к строению двигателей:

  • Статор или индуктор – неподвижная часть двигателя, представляющая собой деталь, создающую постоянное электромагнитное поле. Состоит статор из сердечника, выполненного из тонколистовой стали (из пластин определенного профиля набирается деталь нужного размера) и обмотки.

  • Обмотка укладывается в пазы сердечника определенным образом, формируя основные и добавочные магнитные полюса, естественно, при включении в сеть.
  • Обмотка возбуждения находится на главных полюсах , тогда как на добавочных она служит для улучшения коммутации – увеличивает эффективность мотора, его КПД.

  • Ротор двигателя , являющийся тут якорем, тоже имеет похожее строение, но отличает его, прежде всего то, то данный узел двигателя является подвижным. Именно он заменяет вращающуюся рамку из примеров, рассмотренных выше.
  • Витки обмотки якоря изолированы друг от друга и соединяются с контактными пластинами коллектора, через которые и подается питание.
  • Все части ротора закреплены на металлическом валу , который является центральной осью вращения двигателя. К нему же и подключается привод, передающий крутящий момент на внешние механизмы.

  • Коллектор (полосатый цилиндр, насаженный на вал) соединен с питающей сетью через щетки, которые выполняются чаще всего из графита. Вообще строение коллектора таково, что контактные пластины также изолированы, что позволяет эффективно менять направление тока в цепи, чтобы избегать торможения двигателя.
  • Сами щетки имеют скользящий контакт с пластинами коллектора, и удерживаются в одном положении при помощи щеткодержателей. Поддерживать постоянное напряжение контакта (а ведь мы знаем, что щетки истираются и истончаются) помогают пружины.

  • Щетки соединены медными проводами с питающей сетью . Дальше начинается внешняя схема электропитания и управления, о которой мы поговорим немного позже.

  • Следом за коллектором на валу располагается подшипник качения , обеспечивающий плавное вращение. Сверху он защищен специальным полимерным кольцом, защищающим его от пыли.

Совет! Одной из частых поломок электрических двигателей, является выход из строя подшипника. Если вовремя не заменить этот небольшой элемент конструкции, то запросто можно спалить весь двигатель.

  • С обратной стороны обмотки, на том же валу, располагается крыльчатка , поток воздуха от которой эффективно охлаждает двигатель.
  • Следом за крыльчаткой обычно крепится привод , отличающийся параметрами, в зависимости от назначения агрегата, в котором двигатель постоянного тока установлен.

В принципе, на этом все. Как видите, конструкция достаточно проста, и что немаловажно, очень эффективна.

Особенности коллекторных двигателей

Вообще коллекторный двигатель – это действительно хорошее устройство. Такие агрегаты легчайшим образом поддаются регулировке. Повысить, опустить обороты – не проблема. Дать четкий крутящий момент или жесткую механическую характеристику – запросто.

Однако, несмотря на ряд неоспоримых преимуществ, двигатель имеет повышенную сложность сборки, относительно двигателей переменного тока с самовозбуждающимся ротором или других бесколлекторных агрегатов, а также меньшую надежность. И вся загвоздка состоит в этом самом коллекторе.

  • Этот узел достаточно дорог, а цена его ремонта иной раз сопоставима с новой деталью, если вообще возможность восстановления имеется.
  • Он забивается при работе токопроводящей пылью, что со временем может стать причиной выхода из строя всего двигателя.
  • Коллектор искрит, создавая при этом помехи, а при высокой нагрузке так и вовсе может полыхнуть, создавая круговой огонь. В таком случае его закоротит дугой, что несовместимо с жизнью двигателя.

Выше мы уже сказали, что его задача менять направление тока в витках обмотки, а теперь хотим разобрать вопрос подробнее.

  • Итак, по сути, данная часть ротора служит выпрямителем тока, то есть переменный ток становится, проходя через него, постоянным, что справедливо для генераторов, или меняет направление тока, если речь идет о двигателях.
  • В случае рассмотренного выше примера с вращающейся в магнитном поле рамкой, требовался коллектор, состоящий из двух изолированных полуколец.
  • Концы рамки подключаются к разным полукольцам, что не позволяет цепи накоротко замкнуться.
  • Как мы помним, коллектор контактирует с щетками, которые установлены таким образом, чтобы они одновременно не контактировали друг с другом и меняли полукольца при прохождении рамкой нулевой точки.

Все предельно просто, однако такие двигатели и генераторы не могут быть нормальной мощности в силу конструктива. В результате якорь стали делать с множеством витков, чтобы активные проводники всегда находились максимально близко к полюсам магнита, ведь, вспоминая закон электромагнитной индукции, становится ясно, что именно это положение самое эффективное.

Раз увеличивается количество витков, значит, требуется разбить коллектор на большее число частей, что собственно и является причиной сложности изготовления и дороговизны этого элемента.

Альтернатива коллекторному двигателю

В электронике уже давно царит век полупроводников, что позволяет изготавливать надежные и компактные микросхемы. Так зачем же мы до сих пор пользуемся коллекторными двигателями? А действительно?

  • Инженеры тоже не оставили вопрос незамеченным. В результате коллектор сменили силовые ключи, дополнительно в конструкции появились датчики, регистрирующие текущее положение ротора, чтобы система автоматически определяла момент переключения обмотки.
  • Как мы помним, нет никакой разницы, двигается ли магнит относительно проводника, либо же это происходит наоборот. Поэтому якорем становится статор, а на роторе располагается постоянный магнит или простейшая обмотка, соединенная с питанием через контактные кольца, который вращать внутри конструкции намного проще.
  • Строение контактных колец чем-то напоминает коллектор, однако они намного надежнее и изготавливать их в условиях производства проще.

В итоге получился новый тип двигателя, а именно бесщеточный двигатель постоянного тока aka BLDC. Устройству доступны те же преимущества, что и коллекторному двигателю, но от надоедливого коллектора мы избавляется.

Однако такие двигатели применяются только в дорогих аппаратах, тогда как простая техника, например соковыжималка или тот же перфоратор будут рентабельнее в производстве, если ставить на них уже классические коллекторные модели двигателей.

Управление двигателем постоянного тока

Итак, как вы уже поняли, основной принцип работы двигателя постоянного тока заключается в инвертировании направления тока в якорной цепи, иначе бы возникало торможение, приводящее к стопорению мотора. Таким образом, реализуется вращение мотора в одну сторону, но такой режим не единственный, и двигатель можно заставить вращаться в обратном направлении.

Для этого достаточно поменять направление тока в возбуждающей обмотке, или сменить местами щетки, через которые подается питание на обмотку ротора.

Совет! Если сделать одновременно обе эти манипуляции, то с двигателем ничего не произойдет, и он продолжит вращаться в том же направлении, что и ранее.

Однако это не все моменты, которые требуется регулировать в таком двигателе. Когда вам требуется четко управлять оборотами такого агрегата, или организовать специальный режим управления оборотами, помимо тумблеров и переключателей в схему управления включаются более сложные элементы.

  • При этом следует учитывать следующие недостатки коллекторных двигателей: низкий момент на малых оборотах вращения двигателя, из-за чего приборам требуется редуктор, что удорожает и усложняет конструкцию; генерация сильных помех; ну и низкая надежность коллектора, про что мы писали выше.
  • Также в расчет берется то, что потребление тока и скорость вращения вала зависят и от механической нагрузки на валу.
  • Итак, основной параметр, определяющий скорость вращения вала – это подаваемое напряжение на обмотку, поэтому, следуя логике, для управления этим параметром применяются устройства, регулирующие выходное напряжение.

  • Такими устройствами являются регулируемые стабилизаторы напряжения. На сегодняшний день целесообразнее использовать дешевые компенсационные интегральные стабилизаторы, типа LM Схема управления с таким устройством показана на схеме выше.

  • Схема довольно примитивная, но, кажется, достаточно простой, а главное эффективной и недорогой. Мы видим, что ограничение выходного напряжения регулируется дополнительным резистором, обозначенным как Rlim, расчет сопротивления которого имеется в спецификации. При этом стоит понимать, что он ухудшает характеристику всей схемы, как стабилизатора.
  • Мы видим, что представлено два варианты схемы, какая из них будет показывать себя лучше? Вариант «а» выдает линейную характеристику удобного регулирования, благодаря чему очень популярен.
  • Вариант «б», наоборот», характеристику имеет нелинейную. Фактическая разница будет заметна при выходе из строя переменного резистора: в первом случае мы получим максимальную скорость вращения, а во втором – наоборот, минимальную.

Не будем больше углубляться в дебри, так как статья у нас по большей части ознакомительная. Мы разобрали принципы действия двигателей постоянного тока, а это уже что-то. Если вопрос вас заинтересовал, то обязательно просмотрите следующее видео. А на этом мы прощаемся с вами! Всего хорошего!

Электродвигатели – это машины, способные превращать электрическую энергию в механическую. В зависимости от типа потребляемого тока они делятся на двигатели переменного и постоянного тока. В данной статье речь пойдет о вторых, которые сокращенно называются ДПТ. Электродвигатели постоянного тока окружают нас каждый день. Ими оснащаются электроинструменты, работающие от батареек или аккумуляторов, электротранспорт, некоторые промышленные станки и многое другое.

Устройство и принцип работы

ДПТ по своему строению напоминает синхронный электродвигатель переменного тока, разница между ними только в типе потребляемого тока. Двигатель состоит из неподвижной части – статора или индуктора, подвижной части – якоря и щеточноколлекторного узла. Индуктор может быть выполненным в виде постоянного магнита, если двигатель маломощный, но чаще он снабжается обмоткой возбуждения, имеющей два или больше полюса. Якорь состоит из набора проводников (обмоток), закрепленных в пазах. В простейшей модели ДПТ использовались только один магнит и рамка, по которой проходил ток. Такую конструкцию можно рассматривать только в качестве упрощенного примера, тогда как современная конструкция – это усовершенствованный вариант, имеющий более сложное устройство и развивающий необходимую мощность.

Принцип работы ДПТ основан на законе Ампера: если в магнитное поле поместить заряженную проволочную рамку, она начнет вращаться. Ток, проходя по ней, образует вокруг себя собственное магнитное поле, которое при контакте с внешним магнитным полем начнет вращать рамку. В случае с одной рамкой вращение будет продолжаться, пока она не займет нейтральное положение параллельно внешнему магнитному полю. Чтобы привести систему в движение, нужно добавить еще одну рамку. В современных ДПТ рамки заменены якорем с набором проводников. На проводники подается ток, заряжая их, в результате чего вокруг якоря возникает магнитное поле, которое начинает взаимодействовать с магнитным полем обмотки возбуждения. В результате этого взаимодействия якорь поворачивается на определенный угол. Далее ток поступает на следующие проводники и т.д.
Для попеременной зарядки проводников якоря используются специальные щетки, выполненные из графита или сплава меди с графитом. Они играют роль контактов, которые замыкают электрическую цепь на выводы пары проводников. Все выводы изолированы между собой и объединены в коллекторный узел – кольцо из нескольких ламелей, находящееся на оси вала якоря. Во время работы двигателя щетки-контакты поочередно замыкают ламели, что дает возможность двигателю вращаться равномерно. Чем больше проводников имеет якорь, тем более равномерно будет работать ДПТ.

Двигатели постоянного тока делятся на:
— электродвигатели с независимым возбуждением;
— электродвигатели с самовозбуждением (параллельные, последовательные или смешанные).
Схема ДПТ с независимым возбуждением предусматривает подключение обмотки возбуждения и якоря к разным источникам питания, так что между собой они не связаны электрически.
Параллельное возбуждение реализовывается путем параллельного подключения обмоток индуктора и якоря к одному источнику питания. Двигатели этих двух типов обладают жесткими рабочими характеристиками. У них частота вращения рабочего вала не зависит от нагрузки, и ее можно регулировать. Такие двигатели нашли применение в станках с переменной нагрузкой, где важно регулировать скорость вращения вала
При последовательном возбуждении якорь и обмотка возбуждения подключены последовательно, поэтому значение электрического тока у них одинаковое. Такие двигатели более «мягкие» в работе, имеют больший диапазон регулирования скоростей, но требуют постоянной нагрузки на вал, иначе скорость вращения может достичь критической отметки. У них высокое значение пускового моменты, что облегчает запуск, но при этом скорость вращения вала зависит от нагрузки. Применяются они на электротранспорте: в кранах, электропоездах и городских трамваях.
Смешанный тип, при котором одна обмотка возбуждения подключается к якорю параллельно, а вторая – последовательно, встречается редко.

Краткая история создания

Первопроходцем в истории создания электрических двигателей стал М.Фарадей. Создать полноценную рабочую модель он не смог, зато именно ему принадлежит открытие, которое сделало это возможным. В 1821 году он провел опыт с использованием заряженной проволоки, помещенной в ртуть в ванную с магнитом. При взаимодействии с магнитным полем металлический проводник начинал вращаться, превращаю энергию электрического тока в механическую работу. Ученые того времени работали над созданием машины, работа которой основывалась бы на этом эффекте. Они хотели получить двигатель, работающий по принципу поршневого, то есть, чтобы рабочий вал двигался возвратно-поступательно.
В 1834 году был создан первый электрический двигатель постоянного тока, который разработал и создал русский ученый Б.С.Якоби. Именно он предложил заменить возвратно-поступательное движение вала его вращением. В его модели два электромагнита взаимодействовали между собой, вращая вал. В 1839 году он же успешно испытал лодку, оснащенную ДПТ. Дальнейшая история этого силового агрегата, по сути – это совершенствование двигателя Якоби.

Особенности ДПТ

Как и другие виды электродвигателей, ДПТ отличается надежностью и экологичностью. В отличие от двигателей переменного тока у него можно регулировать скорость вращения вала в широком диапазоне, частоту, к тому же он отличается легким запуском.
Двигатель постоянного тока можно использовать как собственно двигатель и как генератор. Также у него можно менять направление вращения вала путем изменения направления тока в якоре (для всех типов) или в обмотке возбуждения (для двигателей с последовательным возбуждением).
Регулирование скорости вращение достигается путем подключения в цепь переменного сопротивления. При последовательном возбуждении оно находится в цепи якоря и дает возможность сокращать обороты в соотношениях 2:1 и 3:1. Такой вариант подходит для оборудования, которое имеет длительные периоды простоя, потому что во время работы происходит значительный нагрев реостата. Увеличение оборотов обеспечивается подключением реостата в цепь обмотки возбуждения.
Для двигателей с параллельным возбуждением также используются реостаты в цепи якоря для понижения оборотов в пределах 50% от номинальных значений. Установка сопротивления в цепи обмотки возбуждения позволяет увеличивать обороты до 4 раз.
Использование реостатов всегда связано со значительными потерями тепла, поэтому в современных моделях двигателей они заменены на электронные схемы, позволяющие управлять скоростью без значительных потерь энергии.
КПД двигателя постоянного тока зависит от его мощности. Маломощные модели отличаются низкой эффективностью с КПД порядка 40%, тогда как двигатели с мощностью 1000 кВт могут иметь КПД, достигающий 96%.

Достоинства и недостатки ДПТ

К основным достоинствам двигателей постоянного тока относятся:
— простота конструкции;
— легкость в управлении;
— возможность регулирования частоты вращения вала;
— легкий запуск (особенно у двигателей с последовательным возбуждением);
— возможность использования в качестве генераторов;
— компактные размеры.
Недостатки:
— имеют «слабое звено» — графитовые щетки, которые быстро изнашиваются, что ограничивает срок службы;
— высокая себестоимость;
— при подключении к сети требуют наличия выпрямителей тока.

Сфера применения

Широкое применение двигатели постоянного тока нашли в транспорте. Они устанавливаются в трамваях, электричках, электровозах, паровозах, теплоходах, самосвалах, кранах и т.д. кроме того, их используют в инструментах, компьютерах, игрушках и подвижных механизмах. Часто их можно встретить и на производственных станках, где требуется регулирование частоты вращения рабочего вала в широком диапазоне.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: