Как работает облако майл. Как пользоваться облаком mail ru, хранение файлов на нем. На что следует обратить внимание перед началом работы

К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы и реле. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие порядка 10-20 тысяч операций в секунду.

Но это только техническая сторона. Очень важна и другая -- способы использования компьютеров, стиль программирования, особенности математического обеспечения.

Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле (см. Рис. 4 приложение 2); оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7 см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

ЭВМ первого поколения отличались невысокой надежностью, требовали системы охлаждения и имели значительные габариты. Процесс программирования требовал значительного искусства, хорошего знания архитектуры ЭВМ и ее программных возможностей. Сначала использовалось программирование в кодах ЭВМ (машинный код), затем появились автокоды и ассемблеры, в определенной мере автоматизирующие процесс программирования задач. ЭВМ первого поколения использовались для научно-технических расчетов.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Разработка первой серии электронной машины UNIAC (Universal Automatic Computer) начата примерно в 1947 году. Д.П. Эккертом и Д. Мочли, основавшими фирму Eckert-Mauchly. Первый образец UNIAC-1 был построен для Бюро переписи США в 1951 г. UNIAC был создан на базе ЭВМ ENIAC (см. Рис. 5 приложение 3) и EDVIAC. Работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Емкость памяти -- 1000 12-разрядных десятичных чисел.

Следующим шагом было увеличение быстродействие памяти, для чего учёные стали исследовать свойства ферритовых колец. Впервые память на магнитных сердечниках была применена в машине «Whirlwind-1». Она представляла собой два куба с 32Ч32Ч17 сердечниками, обеспечивающих хранение 2048 слов для 16-разрядных двоичных чисел.

В разработку электронных компьютеров включилась и фирма IBM, которая в 1952 году выпустила первый промышленный компьютер IBM-701. Машина содержала 4000 электронных ламп и 12 000 германиевых диодов. В 1956 году IBM выпустила новый серийный компьютер -- IBM-704, отличавшийся высокой скоростью работы.

После ЭВМ IBM-704 была выпущена машина IBM-709, в архитектурном плане приблизившаяся к машинам второго и третьего поколения.

В 1956 году IBM разработала плавающие магнитные головки на воздушной подушке, изобретение которых позволило создать новый тип памяти -- дисковые запоминающие устройства (ЗУ). Впервые ЗУ на дисках появились в машине IBM-305 и RAMAC-650, которая имела пакет из 50 металлических дисков с магнитным покрытием, вращающиеся со скоростью 1 200 об/мин. На поверхности диска размещалось 100 дорожек для записи данных 10 000 знаков каждая.

Вслед за первым серийным компьютером UNIAC-1 фирма REMINGTON-RAND в 1952 году выпустила ЭВМ UNIAC-1103, которая работала в 50 раз быстрее.

В октябре 1952 году группа сотрудников фирмы REMINGTON-RAND предложила алгебраическую форму записи алгоритмов; на основе этого офицер военно-морских сил США и руководитель группы программистов, капитан Грейс Хопперт разработала первую программу-компилятор A-0.

Фирма IBM также сделала первые шаги в области автоматизации программирования, создав в 1953 году для машины IBM-701 «Систему быстрого кодирования». В 1957 году группа Д. Бэкуса завершила работу над ставшим впоследствии популярным языком программирования высокого уровня ФОРТРАНОМ. Он способствовал расширению сферы деятельности компьютеров.

В 1951 году фирма Ferranti стала выпускать машину «Марк-1». А через 5 лет выпустила ЭВМ «Pegasus», использующую концепцию регистров общего назначения.

В СССР в 1948 году проблемы развития вычислительной техники становятся общегосударственной задачей.

В 1950 году в Институте точной механики и вычислительной техники (ИТМ и ВТ АН СССР) организован отдел цифровой ЭВМ для разработки и создания большой ЭВМ. Эту работу возглавил С.А. Лебедев (1902--1974). В 1951 году здесь была спроектирована машина БЭСМ, а в 1952 году началась её эксплуатация.

В проекте вначале предлагалось использовать трубки Вильямса, но до 1955 г. в качестве элемента памяти использовали ртутные линии. БЭСМ могла совершать 8 000 оп/с. Серийно она стала выпускаться с 1956 года под названием БЭСМ-2 (см. рис. 6 приложение 3).

Cлайд 1

Ламповые Компьютеры Ламповые компьютеры это программируемые цифровые компьютеры, в которых логические цепи построены на основе электронных ламп. Они являлись компьютерами первого поколения, следовали за компьютерами, построенными на основе электромеханических реле, и предшествовали компьютерам второго поколения, построенным на основе дискретных транзисторов. В основном предназначались для больших вычислений.

Cлайд 2

Первый ламповый компьютер Компьютер Атанасова - Берри - первое цифровое вычислительное устройство, а также первая вычислительная машина без движущихся частей. Задуманная в 1937 году, машина не была программируемой, и разрабатывалась только в целях решения систем линейных уравнений. В 1942 году она была успешно протестирована. Устройство для хранения промежуточных результатов на основе бумажных карт было довольно ненадёжным. В ABC впервые появились некоторые элементы близкие современным компьютерам, такие как двоичная арифметика и триггеры.

Cлайд 3

Эниак ЭНИАК (ENIAC, сокр. от Electronic Numerical Integrator and Computer - Электронный числовой интегратор и вычислитель) - первый электронный цифровой компьютер общего назначения, который можно было перепрограммировать для решения широкого спектра задач. Разработан в 1946 году, вес - 27 тонн. Потребляемая мощность - 174 кВт. На создание ушло 486 804,22 доллара. В качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера. Производительность ЭНИАКа была слишком мала для полноценного моделирования, уравнение упростили, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу смеси в одномерном пространстве. Результаты, хоть и очень приблизительные, доказали возможность создания водородной бомбы. Британский физик Дуглас Хартри в апреле и июле 1946 года решал на ЭНИАКе проблему обтекания воздухом крыла самолета, движущегося быстрее скорости звука. ЭНИАК выдал ему результаты расчётов с точностью до седьмого знака. В 1949 году ЭНИАК использовали для расчёта числа π и e с точностью до 2000 знаков после запятой. А весной 1950 года был произведён первый успешный численный прогноз погоды.

Cлайд 4

Cлайд 5

МЭСМ МЭСМ (Малая электронная счётная машина) - первая в СССР и континентальной Европе электронно-вычислительная машина. Разрабатывалась лабораторией С. А. Лебедева (на базе киевского Института электротехники) с конца 1948 года. Первоначально МЭСМ задумывалась как макет или модель Большой электронной счётной машины (БЭСМ), первое время буква «М» в названии означала «модель». Работа над машиной носила исследовательский характер, в целях экспериментальной проверки принципов построения универсальных цифровых ЭВМ. После первых успехов и с целью удовлетворения обширных потребностей в вычислительной технике, было принято решение доделать макет до полноценной машины, способной решать реальные задачи. Тактовая частота: 5 кГц; занимаемая площадь: 60 м²

Cлайд 6

БЭСМ БЭСМ (сокращение от Большая (или Быстродействующая) электронно-счётная машина) - серия советских электронных вычислительных машин общего назначения, предназначенных для решения широкого круга задач. БЭСМ-2 - Усовершенствованный вариант БЭСМ-1, подготовленный для производства. Одна из первых серийно выпускавшихся ЭВМ (в 1953-56 годы серией было выпущено 7 экземпляров ЭВМ «Стрела», с 1957 года начался серийный выпуск машины «Урал-1», которых до 1961 года выпустили 183 экземпляра). Основные технические характеристики аналогичны характеристикам БЭСМ-1. 20 тысяч операций в секунду, ОЗУ на 2048 39-разрядных слов на ферритных сердечниках (200 000 ферритных сердечников). В машине содержалось 4 тыс. электронных ламп и 5 тыс. полупроводниковых диодов. Выпускалась с 1958 года по 1962 год. Было изготовлено 67 машин. На одной из БЭСМ-2, в частности, был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

Cлайд 7

Чарльз Бэббидж Ча рльз Бэ ббидж (1791, Лондон, Англия - 1871) - английский математик, изобретатель первой аналитической вычислительной машины. Сконструировал и построил (1820-22) машину для табулирования (вычисление значений функции при изменении аргумента). В 1833 разработал проект универсальной цифровой вычислительной машины - прообраза современной ЭВМ.

Цифровой дифференциальный анализатор с магнитным барабаном MADDIDA (англ. Magnetic Drum Digital Differential Analyzer) был первым компьютером, который представлял биты с помощью уровней напряжения. Этот цифровой компьютер специального назначения использовался для решения систем обыкновенных дифференциальных уравнений. Логика машины базировалась на основах булевой алгебры.

MADDIDA был изобретен американским физиком-инженером Флойдом Стилом (Floyd Steele), а построен компанией Northrop Aircraft Corporation между 1946 и 1949 годами. Компьютер был создан для системы наведения стратегических межконтинентальных крылатых ракет SM-62 «Снарк» (англ. SM-62 Snark, с 1947 по 1951 годы обозначалась SSM-A-3, с 1951 по 1955 - B-62). Но так или иначе, компьютер не участвовал в применении ни одной системы наведения, а использовался скорее в аэронавигационных исследованиях. В 1952 году MADDIDA пользовался исключительной популярностью на мировом рынке коммерческих цифровых компьютеров (не смотря на то, что это машина специального назначения).


MADDIDA в деталях

История создания

Разработка проекта началась в марте 1946 года в Northrop Aircraft Corporation с целью обеспечения работы дозвуковой крылатой ракеты «MX-775», которая приобрела название SM-62 «Снарк» (названная в честь персонажа Льюиса Кэррола). Northrop Corporation заложила такие параметры проекта, при которых новая система наведения должна была бы позволять ракетам поражать цели на дистанции до 5000 миль (более 8000 км) с опережением точности в 200 ярдов (около 183 метров) по сравнению с немецким «оружием возмездия» 1 и 2 (нем. Vergeltungswaffe; V-Waffen). Однако, в конечном счете MADDIDA никогда не применялся в вооружении, а Northrop Corporation использовала другой аналоговый компьютер для системы наведения ракет «Снарк».

Запуск «Снарк» с подвижной платформы, 1960 год

В проект также входила разработка первого цифрового анализатора данных DIDA (DIgital Data Analyzer).

Запуск немецкой Vergeltungswaffe 2 со стационарной позиции, лето 1943 года

В 1946 году в своем доме в Ла-Холья Стил продемонстрировал перед прессой рабочий DIDA. Он был нанят и введен в группу разработчиков в качестве концептуального лидера. Ученый разрабатывал концепцию DIDA, которая бы повлекла за собой создание аналогового компьютера с использованием только цифровых элементов. Когда было принято решение использовать запоминающее устройство на магнитном барабане, т.е. MAD (MAgnetic Drum memory), для DIDA название удлинили до MADDIDA. Оно стало произносится как “Mad Ida”, что может быть переведено на русский как “Сумасшедшая Ида”.

В разработке MADDIDA, Стил был вдохновлен изобретением Ваннивара Буша (Vannevar Bush) - аналоговым компьютером в 1927 году, который включал цифровые компоненты. Также существенное влияние на ученого оказала машина для предсказания приливов и отливов – механический аналоговый компьютер Томсона. Его создал ирландец Уильям Томсон, он же лорд Кельвин (William Thomson/Lord Kelvin) в 1873 году. Устройство позволяло предсказывать уровень воды в Темзе, учитывая положение Луны и Солнца, суточное вращение Земли и еще ряд других параметров. В основе механической машины был Фурье-анализ.

Формула для рассчетов

Машина для предсказания приливов и отливов Уильяма Томсона, 1873 год

Стил нанял Дональда Экдала (Donald Eckdahl), Гарольда Саркайсиена (Harold Sarkinssian) и Ричарда Спрега (Richard Sprague) работать над германиевыми диодными логическими схемами для MADDIDA, а также для создания магнитной записи. Объединившись, группа разработала прототип MADIDDA в период между 1946 и 1949 годами.

MADIDDA включала 44 блока интегрирования использующие магнитные барабаны с шестью дорожками для хранения данных. Взаимосвязи блоков интегрирования были определены написанием соответствующей комбинации битов на одной из дорожек.

В противовес предыдущему электронному цифровому интегратору и вычислителю общего назначения ENIAC (Electronic Numerical Integrator and Computer) или первому в США универсальному коммерческому компьютеру UNIVAC I (UNIVersal Automatic Computer I), которые использовали электровакуумные лампы и электрические импульсы для представления битов, MADDIDA был первым компьютером, представляющим биты с помощью уровней напряжения.

В настоящее время оригинальный прототип MADDIDA находится в коллекции Музея компьютерной истории (The Computer History Museum), расположенного в городе Маунтин-Вью, штат Калифорния, США.

Часть прототипа MADDIDA на экспозиции в Музее компьютерной истории

Распространение

После разработки MADIDDA в 1950 году команда Стила ушла из компании Northrop Corporation. Для создания дубликатов компьютера с целью его коммерческого распространения была нанята другая команда, которая включала арт-коллекционера и любителя-разработчика компьютерной техники Макса Палевски (Max Palevsky). Он участвовал в создании копий MADIDDA. Стоимость моделей составляла от 25,000$ до 30,000$.

Демонстрация машины

К концу 1952 года шесть MADIDDA были доставлены и установлены заказчикам. Одна модель досталась Лаборатории электроники военно-морского флота США (The U.S. Navy Electronics Laboratory). На то время MADIDDA был наиболее продаваемый коммерческий компьютер в мире.

Лаборатория электроники военно-морского флота США, 1962 год

Влияние и итоги

Во время создания MADIDDA команда разработчиков пришла к выводу, что цифровой дифференциальный анализатор может быть запущен на цифровом компьютере общего назначения с помощью соответствующего проблемно-ориентированного языка. Таким стал язык моделирования Dynamo (DYNAmic MOdels). После разработки первого MADIDDA и ухода из компании, команда разработчиков включая Стила и инженера-математика Ирвинга Рида (Irving S. Reed) занялась созданием компьютеров общего назначения. Они сформировали компьютерную исследовательскую корпорацию CRC (Computer Research Corporation) 16 июля 1950 года. В 1953 году она была продана NCR Corporation.

MADDIDA в Лаборатории электроники военно-морского флота

После работы с командой в Northrop Corporation, Макс Палевски использовал приобретенный опыт в создании Bendix G-15 - одного из ранних персональных компьютеров Bendix Corporation. В марте 1957 года Палевски работал в новом филиале компании Packard Bell, который он начал называть Packard Bell Computer Corporation. Там он добился немалых успехов. В мае 1972 года Палевски ушел в отставку как директор и председатель правления Xerox. И хотя в дальнейшем разработка персональных компьютеров компании завершилась провалом, прототипы устройств оказали влияние на Стива Джобса и Стива Возняка во время их тура по объектам Xerox в 1979 году.

Как уже было сказано, MADIDDA никогда не применялась в вооружении. Northrop Corporation использовала совершенно другую аналоговую вычислительную систему для наведения ракет SM-62 «Снарк». Эта система оказалась достаточно сомнительной из-за чего были «утеряны» некоторые ракеты. Как вот в 1956 году одна из SM-62 «Снарк» отклонилась от курса настолько далеко, что приземлилась на северо-востоке Бразилии и не была найдена вплоть до 1983 года. По-этому поводу даже ходила шутка, что: «Воды карибского бассейна кишат Снарками».



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: