Перевести 11 из десятичной в двоичную. Перевод чисел из одной системы счисления в другую онлайн. Правила перевода чисел из двоичной системы счисления в другую

9. Непрерывная случайная величина, её числовые характеристики

Непрерывную случайную величину можно задать с помощью двух функций. Интегральной функцией распределения вероятностей случайной величины Х называется функция , определённая равенством
.

Интегральная функция даёт общий способ задания как дискретных, так и непрерывных случайных величин. В случае непрерывной случайной величины . Все события: имеют одну и ту же вероятность, равную приращению интегральной функции на этом промежутке, т.е.. Например, для дискретной случайной величины, заданной в примере 26, имеем:


Таким образом, график интегральной функции рассматриваемой функции представляет собой объединение двух лучей и трёх отрезков, параллельных оси Ох.

Пример 27 . Непрерывная случайная величина Х задана интегральной функцией распределения вероятностей

.

Построить график интегральной функции и найти вероятность того, что в результате испытания случайная величина Х примет значение в интервале (0,5;1,5).

Решение. На интервале
графиком является прямая у = 0. На промежутке от 0 до 2 – парабола, заданная уравнением
. На интервале
графиком является прямая у = 1.

Вероятность того, что случайная величина Х в результате испытания примет значение в интервале (0,5;1,5) находим по формуле .

Таким образом, .

Свойства интегральной функции распределения вероятностей:

Закон распределения непрерывной случайной величины удобно задавать с помощью другой функции, а именно, функции плотности вероятности
.

Вероятность того, что значение, принятое случайной величиной Х, попадает в интервал
, определяется равенством
.

График функции называется кривой распределения . Геометрически вероятность попадания случайной величины Х в промежуток равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми
.

Свойства функции плотности вероятности :


9.1. Числовые характеристики непрерывных случайных величин

Математическое ожидание (средним значением) непрерывной случайной величины Х определяется равенством
.

М(Х) обозначают через а . Математическое ожидание непрерывной случайной величины обладает аналогичными, как и дискретная величина, свойствами:

Дисперсией дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания, т.е. . Для непрерывной случайной величины дисперсия определяется формулой
.

Дисперсия обладает свойствами:


Последнее свойство очень удобно применять для нахождения дисперсии непрерывной случайной величины.

Аналогично вводится и понятие среднего квадратического отклонения. Средним квадратическим отклонением непрерывной случайной величины Х называется корень квадратный из дисперсии, т.е.
.

Пример 28 . Непрерывнаяслучайная величина Х задана функцией плотности вероятностей
в интервале (10;12), вне этого промежутка значение функции равно 0. Найти 1) значение параметра а, 2) математическое ожидание М(Х), дисперсию
, среднее квадратическое отклонение, 3) интегральную функцию
и построить графики интегральной и дифференциальной функций.

1). Для нахождения параметра а используем формулу
. Получим . Таким образом,
.

2). Для нахождения математического ожидания используем формулу: , откуда следует, что
.

Дисперсию будем находить по формуле:
, т.е. .

Найдём среднее квадратическое отклонение по формуле: , откуда получим, что
.

3). Интегральная функция выражается через функцию плотностей вероятностей следующим образом:
. Следовательно,
при
, = 0 при
и = 1 при
.

Графики этих функций представлены на рис. 4. и рис. 5.

Рис.4 Рис.5.

9.2. Равномерное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины Х равномерно на интервале , если её плотность вероятности постоянна на этом интервале и равна нулю вне этого интервала, т.е. . Легко показать, что в этом случае
.

Если интервал
содержится в интервале , то
.

Пример 29. Событие, состоящее из мгновенного сигнала, должно произойти между часом дня и пятью часами. Время ожидания сигнала есть случайная величина Х. Найти вероятность того, что сигнал будет зафиксирован между двумя и тремя часами дня.

Решение. Случайная величина Х имеет равномерное распределение, и по формуле найдём, что вероятность того, что сигнал будет между 2 и 3 часами дня, равна
.

В учебной и другой литературе часто обозначают в литературе через
.

9.3. Нормальное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины называется нормальным, если её закон распределения вероятностей определяется плотностью вероятности
. Для таких величин а – математическое ожидание,
- среднее квадратическое отклонение.

Теорема. Вероятность попадания нормально распределённой непрерывной случайной величины в заданный интервал
определяется по формуле
, где
- функция Лапласа.

Следствием этой теоремы является правило трёх сигм , т.е. практически достоверно, что нормальна распределённая, непрерывная случайная величина Х принимает свои значения в интервале
. Это правило выводимо из формулы
, являющейся частным случаем сформулированной теоремы.

Пример 30. Срок работы телевизора представляет собой случайную величину Х, подчинённую нормальному закону распределения, с гарантийным сроком 15 лет и средним квадратическим отклонением, равным 3 годам. Найти вероятность того, что телевизор проработает от 10 до 20 лет.

Решение. По условию задачи математическое ожидание а = 15, среднее квадратическое отклонение .

Найдём . Таким образом, вероятность работы телевизора от 10 до 20 лет более 0,9.

9.4.Неравенство Чебышева

Имеет место лемма Чебышева . Если случайная величина Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного в
.

Учитывая, что , как сумма вероятностей противоположных событий, получим, что
.

Теорема Чебышева. Если случайная величина Х имеет конечную дисперсию
и математическое ожидание М(Х), то для любого положительного справедливо неравенство

.

Откуда следует, что
.

Пример 31. Изготовлена партия деталей. Среднее значение длины деталей равна100 см., а среднее квадратическое отклонение равно 0,4см. Оценить снизу вероятность того, что длина наудачу взятой детали окажется не менее 99см. и не более 101см.

Решение. Дисперсия . Математическое ожидание равно 100. Следовательно, для оценки снизу вероятности рассматриваемого события
применим неравенство Чебышева , в котором
, тогда
.

10. Элементы математической статистики

Статистической совокупностью называют множество однородных предметов или явлений. Число п элементов этого множества называется объёмом совокупности. Наблюдаемые значения признака Х называют вариантами . Если варианты расположены в возрастающей последовательности, то получен дискретный вариационный ряд . В случае группировки вариант по интервалам получается интервальный вариационный ряд . Под частотой т значения признака понимают число членов совокупности с данной вариантой.

Отношение частоты к объёму статистической совокупности называют относительной частотой признака:
.

Соотношение между вариантами вариационного ряда и их частотами называют статистическим распределением выборки . Графическим представлением статистического распределения может служить полигон частот.

Пример 32. Путём опроса 25 студентов первого курса получены следующие данные об их возрасте:
. Составить статистическое распределение студентов по возрасту, найти размах варьирования, построить полигон частот и составить ряд распределения относительных частот.

Решение. Используя данные, полученные при опросе, составим статистическое распределение выборки

Размах выборки варьирования равен 23 – 17 = 6. Для построения полигона частот, строят точки с координатами
и последовательно их соединяют.

Ряд распределения относительных частот имеет вид:

10.1.Числовые характеристики вариационного ряда

Пусть выборка задана рядом распределения частот признака Х:

Сумма всех частот равна п.

Средним арифметическим выборки называют величину
.

Дисперсией или мерой рассеяния значений признака Х по отношению к его среднему арифметическому называют величину
. Средним квадратическим отклонением называют корень квадратный из дисперсии, т.е. .

Отношение среднего квадратического отклонения к среднему арифметическому выборки, выраженное в процентах, называют коэффициентом вариации :
.

Эмпирической функцией распределения относительных частот называют функцию, определяющую для каждого значения относительную частоту события
, т.е.
, где - число вариант, меньших х , а п – объём выборки.

Пример 33. В условиях примера 32 найти числовые характеристики
.

Решение. Найдём среднее арифметическое выборки по формуле , тогда .

Дисперсия признака Х находится по формуле: , т. е. . Среднее квадратическое отклонение выборки равно
. Коэффициент вариации равен
.

10.2. Оценка вероятности по относительной частоте. Доверительный интервал

Пусть проводится п независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р . В этом случае вероятность того, что относительная частота будет отличаться от вероятности появления события А в каждом испытании по абсолютной величине не больше, чем на , приближённо равна удвоенному значению интегральной функции Лапласа:
.

Интервальной оценкой называют такую оценку, которая определяется двумя числами, являющимися концами интервала, покрывающего оцениваемый параметр статистической совокупности.

Доверительным интервалом называют интервал, который с заданной доверительной вероятностью покрывает оцениваемый параметр статистической совокупности. Рассматривая формулу , в которой заменим неизвестную величину р на её приближённое значение , полученное по данным выборки, получим:
. Эта формула служит для оценки вероятности по относительной частоте. Числа
и
называют нижней и соответственно верхней доверительными границами , - предельной погрешностью для данной доверительной вероятности
.

Пример 34 . Заводской цех выпускает электрические лампочки. При проверке 625 ламп оказалось 40 бракованных. Найти с доверительной вероятностью 0,95 границы, в которых заключён процент брака лампочек, выпускаемых заводским цехом.

Решение. По условию задачи . Используем формулу
. По таблице 2 приложения находим значение аргумента, пи котором значение интегральной функции Лапласа равно 0,475. Получим, что
. Таким образом, . Следовательно, можно сказать с вероятностью 0,95, что доля выпускаемого брака цехом высока, а именно, изменяется в пределах от 6,2% до 6,6%.

10.3. Оценка параметров в статистике

Пусть количественный признак Х всей исследуемой совокупности (генеральной совокупности) имеет нормальное распределение.

Если среднее квадратическое отклонение известно, то доверительный интервал, покрывающий математическое ожидание а

, где п – объём выборки, - выборочная средняя арифметическая, t – аргумент интегральной функции Лапласа, при котором
. При этом число
называют точностью оценки.

Если среднее квадратическое отклонение неизвестно, то по данным выборки можно построить случайную величину, имеющую распределение Стьюдента с п – 1 степенями свободы, которое определяется только одним параметром п и не зависит от неизвестных а и . Распределение Стьюдента даже для малых выборок
даёт вполне удовлетворительные оценки. Тогда доверительный интервал, покрывающий математическое ожидание а этого признака с заданной доверительной вероятностью , находится из условия

, где S – исправленное среднее квадратическое, - коэффициент Стьюдента, находится по данным
из таблицы 3 приложения.

Доверительный интервал, покрывающий среднее квадратическое отклонение этого признака с доверительной вероятностью , находится по формулам: и , где
находится по таблице значений q по данным .

10.4. Статистические методы изучения зависимостей между случайными величинами

Корреляционной зависимостью У от Х называют функциональную зависимость условной средней от х. Уравнение
представляет уравнение регрессии У на Х, а
- уравнение регрессии Х на У.

Корреляционная зависимость может быть линейной и криволинейной. В случае линейной корреляционной зависимости уравнение прямой линии регрессии имеет вид:
, где угловой коэффициент а прямой линии регрессии У на Х называется выборочным коэффициентом регрессии У на Х и обозначается
.

При малых выборках данные не группируются, параметры
находятся по методу наименьших квадратов из системы нормальных уравнений:

, где п – число наблюдений значений пар взаимосвязанных величин.

Выборочный линейный коэффициент корреляции показывает тесноту связи У и Х. Коэффициент корреляции находится по формуле
, причём
, а именно:


Выборочное уравнение прямой линии регрессии У на Х имеет вид:

.

При большом числе наблюдений признаков Х и У составляется корреляционная таблица с двумя входами, при этом одно и то же значение х наблюдается раз, одно и то же значение у наблюдается раз, одна и та же пара
наблюдается раз.

Пример 35. Дана таблица наблюдений признаков Х и У.

Найти выборочное уравнение прямой линии регрессии У на Х.

Решение. Связь между изучаемыми признаками может быть выражена уравнением прямой линии регрессии У на Х: . Для вычисления коэффициентов уравнения составим расчётную таблицу:

№ наблюдения

Чтобы найти функцию распределения дискретной случайной величины , необходимо использовать данный калькулятор . Задание 1 . Плотность распределения непрерывной случайной величины Х имеет вид:
Найти:
а) параметр A ;
б) функцию распределения F(x) ;
в) вероятность попадания случайной величины X в интервал ;
г) математическое ожидание MX и дисперсию DX .
Построить график функций f(x) и F(x) .

Задание 2 . Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3 . Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4 . Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x) .

Задача . Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x).

Найдем функцию плотности распределения, как производную от функции распределения.

Зная, что

найдем параметр a:


или 3a=1, откуда a = 1/3
Параметр b найдем из следующих свойств:
F(4) = a*4 + b = 1
1/3*4 + b = 1 откуда b = -1/3
Следовательно, функция распределения имеет вид: F(x) = (x-1)/3

Математическое ожидание .


Дисперсия .

1 / 9 4 3 - (1 / 9 1 3) - (5 / 2) 2 = 3 / 4
Найдем вероятность того, что случайная величина примет значение в интервале
P(2 < x< 3) = F(3) – F(2) = (1/3*3 - 1/3) - (1/3*2 - 1/3) = 1/3

Пример №1 . Задана плотность распределения вероятностей f(x) непрерывной случайной величины X . Требуется:

  1. Определить коэффициент A .
  2. найти функцию распределения F(x) .
  3. схематично построить графики F(x) и f(x) .
  4. найти математическое ожидание и дисперсию X .
  5. найти вероятность того, что X примет значение из интервала (2;3).
f(x) = A*sqrt(x), 1 ≤ x ≤ 4.
Решение :

Случайная величина Х задана плотностью распределения f(x):


Найдем параметр A из условия:



или
14/3*A-1 = 0
Откуда,
A = 3 / 14


Функцию распределения можно найти по формуле.

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: