Новые технологии жестких дисков. Жесткие диски – эволюция технологий записи

Страница 2 из 11

ЧАСТЬ I. восстановление файлов с жесткого диска

ГЛАВА 1. КАК РАБОТАЕТ ЖЕСТКИЙ ДИСК И КАК НА НЕМ ХРАНЯТСЯ ДАННЫЕ

Немного об устройстве жесткого диска. Общее устройство HDD

Что же представляет собой жесткий диск (по строгому - накопитель на жестких дисках)? Если у вас не было возможности его лицезреть, то скажем, что снаружи он выглядит как единый металлический блок. Причем очень прочный и полностью герметичный. Дело в том, что технология работы диска настолько тонка, что даже мельчайшая инородная частица, попавшая внутрь, способна полностью нарушить его работу. Дополнительно, для предотвращения кризисной ситуации, в жесткий диск был помещен фильтр очистки. Также корпус винчестера служит в качестве экрана от электропомех. На самом деле жесткий диск состоит из двух основных частей - механики и электроники. Основу механической части составляют пластины (диски), имеющие круглую форму. Вообще-то диск может быть и всего один. Все зависит от емкости винчестера в целом. По одной из версий название «винчестер» жесткий диск получил благодаря фирме, которая в 1973 году выпустила жесткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инжене- у ры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером». В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слов «винт» (наиболее употребимый вариант), «винч» и «веник». Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:
ОКСИДНЫЙ;
тонкопленочный;
двойной антиферромагнитный (AFC)

В настоящее время встречаются экземпляры жестких дисков, состоящие из четырех и более пластин. Состав дисков может быть различен. Их изготавливают из алюминия, стекла или керамики. Последние два состава более практичны, однако очень дороги, и поэтому они используются для создания «элитных» жестких дисков. После изготовления пластины покрывают слоем ферромагнитного материала. Со времен создания первых винчестеров здесь использовалась окись железа. Однако данное вещество имело существенный недостаток. Диски, покрытые данным ферромагнетиком, имели небольшую износостойкость. В связи с этим в настоящее время в качестве покрытия пластин большинство производителей используют кобальт хрома. Износостойкость данного вещества на порядок превышает годами применявшийся ферромагнетик. К тому же данное покрытие намного тоньше, так как наносится методом напыления, что значительно увеличивает плотность записи. Ферромагнетик наносится на обе стороны диска, поэтому данные будут размещаться также с двух сторон. Пластины помещаются на шпиндель на одинаковое друг от друга расстояние, образовывая таким образом их пакет. Под дисками находится двигатель, который их вращает. С обеих сторон пластин размещены головки чтения/записи. Они устроены таким образом, чтоб перемещаться от края диска до его центра. За это «отвечает» специально выделенный для этого двигатель. Электроника представляет собой плату, на которой помещены различные «нужные» для работы винчестера элементы, такие как процессор, управляющая программа, ОЗУ, усилитель записи/чтения и другие. Каждая сторона пластины разбита на дорожки. Они, в свою очередь, на сектора. Все дорожки одного диаметра всех поверхностей образуют цилиндр. Современные винчестеры имеют «инженерный цилиндр». Он содержит служебную информацию (модель диска, серийный номер и т.п.), предназначенную для дальнейшего считывания компьютером..

Раньше для того, чтобы диск был готов к работе, пользователю необходимо было провести так называемое форматирование на низком уровне. В BIOS даже присутствовал соответствующий пункт. Сейчас же данная разметка производится сразу при производстве винчестеров. Дело в том, что при низкоуровневом форматировании происходит запись сервоинформации. Она содержит специальные метки, которые нужны для стабилизации скорости вращения шпинделя, поиска головками необходимых секторов, а также слежения за положением головок на поверхности пластин. Если вы думаете, что «плохие» сектора на винчестере появляются только в процессе эксплуатации, то вы ошибаетесь. Любой вновь созданный жесткий диск уже имеет bad block. Так вот, при низкоуровневом форматировании данные блоки обнаруживаются и записываются в специальную таблицу переназначения. Затем в процессе эксплуатации контроллер жесткого диска заменит неисправные блоки работоспособными, которые специально резервируются для таких целей уже при производстве. В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с концентрических окружностей вращающихся магнитных дисков (дорожек), разбитых на секторы емкостью 512 байт. Дорожка - это «кольцо» данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами .

Принципы работы жесткого диска

В силу своей специфичности, при работе винчестера не происходит прямого контакта магнитных головок с поверхностью пластин. Можно сказать по-другому: соприкосновение «смерти подобно». Конструкция головок создана так, что она позволяет «парить» над поверхностью пластин. Двигатель вращает шпиндель с такой скоростью (до 15000 об/мин), что от крутящихся дисков создается сильный поток воздуха. При этом получается эффект воздушной подушки. Зазор между головками и дисками составляет доли микрона. Однако, как мы упоминали выше, недопустимо соприкосновение головок с поверхностью. Но ведь бывают сбои в электроснабжении, скажете вы. Да, естественно. Вот для этого случая была придумана так называемая "парковочная зона". И когда происходит ситуация, в которой скорость вращения шпинделя опускается ниже границы допустимой нормы (во время обычной работы или в экстренном режиме при отключении питания), которую постоянно отслеживает процессор жесткого диска, головки отводятся в эту самую парковочную зону. Зона находится у самого шпинделя, где не происходит записи информации, поэтому магнитным головкам можно спокойно «лечь» на поверхность диска. Как же выполняется "запуск" винчестера? В двух словах все происходит примерно так. Как только жесткий диск получил питание, его процессор начинает тестировать электронику и при положительном результате запускает двигатель, вращающий пластины. По мере увеличения скорости вращения достигается эффект воздушной подушки, которая подымает магнитные головки с зоны парковки. Когда скорость достигает необходимой величины, головки покидают парковочную зону и с помощью контроллера "ищут" сервометки, чтобы стабилизировать частоту вращения. Затем производится переназначение "плохих" секторов, а также проверка позиционирования головок. В случае положительного результата проделанной работы контроллер винчестера переходит в рабочий режим. Конечно же, механический процесс работы жесткого диска при более детальном рассмотрении более глубокий, но мы не задаемся целью его подробнейшего описания. Главное, чтоб вы поняли основные принципы механизма взаимодействия головок с пластинами. Если кого-то интересует детализация данного процесса, то на эту тему создано огромное количество материалов. А мы перейдем к другой части рабочего процесса винчестера - технологии чтения/записи данных.

Технологии чтения/записи данных на жестком диске

Чтение/запись информации на диск происходит с помощью магнитных головок, принцип движения которых был рассмотрен выше. Если вы еще застали старый добрый магнитофон, то способ записи/чтения звука на/с магнитной ленты идентичен рассматриваемому нами. Данные преобразуются в переменный электрический ток, который поступает на магнитную головку, после чего он преобразуется в магнитное поле, с помощью которого происходит намагничивание нужных участков магнитного диска. Мы уже знаем, что пластины жесткого диска покрыты ферромагнитным слоем. Отдельно выбранная область данного покрытия может быть намагничена одним из двух возможных способов. Намагничивание одним способом будет обозначать ноль, другим способом - единицу. Такой отдельно намагниченный участок называется доменом. Он представляет собой мини-магнитик с определенной ориентацией южного и северного полюсов. Воздействуя на определенный домен внешним магнитным полем (магнитной головкой), он примет данное соответствие. Прекратив воздействие внешнего поля, на поверхности возникают зоны остаточной намагниченности. Они означают сохраненную на диске информацию. Хочется отметить, что именно от размера домена зависит плотность записи данных, то есть собственно емкость диска. С давних пор было известно о двух технологиях записи информации на винчестер: параллельной и перпендикулярной. Хотя второй метод записи более производителен, он немного сложнее в технологическом разрешении. Поэтому производителями использовался и совершенствовался параллельный способ до тех пор, пока ему не пришел физический предел. Если вкратце описать технологию параллельной записи, то она такова. Намагниченность доменов располагается параллельно плоскости диска. Все, наверное, в детстве «баловались» магнитиками и поэтому знают, что они будут притягиваться, когда повернуть их друг к другу разными полюсами (синим и красным). И наоборот, если попробовать прижать их друг к другу сторонами одинакового цвета, то такая попытка никогда не увенчается успехом. Так вот, при использовании данной технологии на границе соседних доменов возникает поле рассеяния, забирающее энергию их магнитных полей. Вследствие этого крайние частицы доменов становятся менее стабильными, к тому же увеличивается влияние термофлуктуации на его магнитный порядок. При использовании технологии перпендикулярной записи намагниченность доменов располагается под углом 90° к плоскости пластины. Благодаря этому пропадает эффект отталкивания однополюсных соседних доменов, ведь в данном расположении намагниченные частицы повернуты друг к другу разными полюсами. Это позволяет уменьшить размер междоменного пространства по сравнению с параллельной технологией записи, что также увеличивает емкость жестких дисков. Однако для данного способа записи требуется использование более сложного состава магнитного слоя. Под тонким защитным слоем расположен записывающий слой, состоящий из окисленного сплава кобальта, платины и хрома. Подложка состоит из двух слоев сложного химического состава, называемых антиферромагнит-носвязанными слоями. Именно они позволяют снять внутренние напряженности магнитного поля. К тому же перпендикулярная запись требует использования других магнитных меток, которые смогут генерировать более сильное магнитное поле.Плотность перпендикулярной записи составляет 500 Гбит/дюйм2. Это позволит выпускать винчестеры емкостью несколько терабайт. Однако наука не стоит на месте, и уже вовсю идет разработка новых технологий. Одна из них называется HAMR (Heat Assistant Magnetic Recording) - Термомагнитная запись. Эта технология является последователем перпендикулярной записи и направлена на её улучшение. Запись в данном случае происходит с предварительным нагревом с помощью лазера. Нагрев происходит в течение пикосекунды, при этом температура достигает 100 °С. Магнитные частицы домена в данном случае получают больше энергии, поэтому при генерации поля большой напряженности не требуется. А высокая энергия обеспечивает повышенную стабильность записанной информации. Опять же применение данной технологии невозможно без использования материалов с высоким уровнем анизотропности. Однако подходящие для этого сплавы слишком дороги. К тому же при термомагнитной записи потребуется две раздельных головки. Еще нужно позаботиться о том, как отводить тепло от дисков. Но все же огромной мотивацией применения термомагнитной записи служит тот факт, что данная технология позволяет добиться плотности записи до 1 Тбит/дюйм2

Как данные хранятся на жестком диске

Наименьшая единица информации, которой оперирует система управления жесткого диска, носит название сектора. В подавляющем числе современных носителей сектор равен 512 байтам. Используемая в настоящий момент система адресации секторов называется LBA (Logical block addressing). В то же время для дисков небольшой ёмкости или с целью обратной совместимости со старым оборудованием может быть использована система адресации CHS. Аббревиатура CHS расшифровывается как Cylinder, Head, Sector - цилиндр, головка, сектор. Из названия понятен смысл этого типа адресации, как привязанной к частям устройства жесткого диска. Преимущество LBA над CHS в том, что вторая имеет ограничение на максимальное число адресуемых секторов, в количественном представлении равное 8,4 гигабайта, LB А данного ограничения лишена. Первый сектор жесткого диска (а точнее, нулевой) носит название MBR (Master Boot Record), или главной загрузочной записи. В начале этого сектора находится код, куда передает управление базовая система ввода-вывода компьютера при его загрузке. В дальнейшем этот код передает управление загрузчику операционной системы. Также в 0 секторе находится таблица разделов жесткого диска. Раздел представляет собой определенный диапазон секторов. В таблицу заносится запись о разделе, с номером его начального сектора и размером. Всего в таблице разделов может находиться четыре таких записи. Раздел, запись о котором находится в таблице разделов нулевого сектора, носит название первичного (primary). Из-за упомянутых ограничений таких разделов на одном диске может быть максимум четыре. Некоторые операционные системы устанавливаются только на первичные тома. При необходимости использования большего числа разделов в таблицу заносится запись о расширенном (extended) разделе. Данный тип раздела представляет собой контейнер, в котором создаются логические (logical) разделы. Логических томов может быть неограниченное количество, однако в ОС семейства Windows число одновременно подключенных томов ограничено количеством букв латинского алфавита. Эти три типа разделов имеют наиболее широкую АР, поддержку среди подавляющего числа операционных систем и наибольшее распространение. Фактически в домашних условиях либо масштабе клиентских машин организаций встречаются именно эти типы разделов. Однако это не значит, что типы разделов ограничиваются этими тремя видами. Существует большое число специализированных разделов, но и они используют первичные тома в качестве контейнеров. Раздел - это всего лишь размеченное пространство на диске; чтобы сохранить в нем какую-либо информацию для организации структуры хранения данных, должна быть создана файловая система. Данный процесс носит название форматирования раздела. Типов файловых систем существует великое множество, в ОС семейства Windows используются FAT/ NTFS, в операционных системах на ядре Линукс применяются Ext2/3FS, ReiserFS, Swap. Существует множество утилит для кроссплатформен-ного доступа к различным файловым системам из не поддерживающих их изначально операционных систем (например, обеспечивающих возможность доступа из Windows к разделам Linux и наоборот). Некоторые файловые системы, например FAT/NTFS, оперируют более крупными структурами данных на жестком диске, носящими название кластеров. Кластер может включать произвольное число секторов. Манипулирование размером кластера приносит дополнительный выигрыш к произво дительности файловой системы или расходованию свободного пространства. Таким образом, получается следующая логическая структура хранения данных: жесткий диск разбивается на разделы (при этом информация об этом разбиении хранится в так называемой главной загрузочной записи) - они носят названия С:, D:, Е: и т.д., на каждый раздел устанавливается файловая система (в результате форматирования раздела). Файловая система содержит информацию о том, как разграничено пространство раздела (логического диска) и где какие файлы на нем находятся. Ну а далее на разделе хранятся файлы, которые разбиваются на определенное количество кластеров, физически занимающих определенное количество секторов, на которые разбиты дорожки жесткого диска. Файловая система присваивает всем секторам свои адреса, а затем по этим адресам хранит свои файлы, записывая в свою таблицу адреса кластеров (диапазонов кластеров), принадлежащих тем или иным файлам.

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Для этого метода (рис. 14.2), если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается «0 », а предыдущий бит был «1 », то синхросигнал также не записывается, как и бит данных. Но если перед «0 » стоит бит «0 », то синхросигнал записывается.

В настоящее время существуют 3 вида записи:

Метод параллельной записи

На данный момент это самая распространённая технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности. На сегодняшний день, домены становятся настолько малы, что остро встаёт вопрос о их стабильности. Дальнейшее развитие этой технологии под вопросом, многие считают этот метод исчерпавшим себя. Плотность записи, при использовании этого метода, на данный момент равна 150 Гбит/дюйм² (23Гбит/см²).

Метод перпендикулярной записи

Для того чтобы решить проблему с дальнейшим увеличением плотности, многие производители рассматривают технологию, при которой биты информации сохранялись бы в вертикальных доменах. Это позволит использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у экспериментального прототипа - 200 Гбит/дюйм² (31 Гбит/см²), в дальнейшем планируется довести плотность до 400-500 Гбит/дюйм² (60-75 Гбит/см²).

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat assisted magnetic recording - HAMR) на данный момент активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». Именно этот метод собираются использовать компании Seagate и IBM для достижения плотности в 4 Тбит на кв. дюйм (620 Гбит на кв. см). Это позволит изготовить 3,5-дюймовый винчестер объемом 25 Тб. В качестве максимальной отметки плотности пока названо значение 100 Тбит на кв. дюйм (около 15 Тб на кв. см), что соответствует 0,65-Пб (петабайт) объема в форм-факторе 3,5 дюйма.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Конкретный формат данных определяется внутренней программной конфигурацией ПЭВМ и техническими характеристиками адаптера накопителя. Структура формата (рис. 14.3) подобна структуре, применяемой в НГМД.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В отличие от НГМД в НЖМД в идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число, с помощью которого осуществляется правильность считывания идентификатора. Байт флага содержит флаг - указатель состояния дорожки (основная или запасная, исправная или дефектная).

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты в НЖМД предназначены не только для определения, но и для коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды; использование конкретных кодов зависит от схемной реализации адаптера.

Перед использованием НЖМД производится его начальное форматирование - процедура, выполняемая под управлением специальной программы, при работе которой на дисковый пакет записывается служебная информация и проверяется пригодность полей данных.

В последнее время компании используют адаптивное форматирование . Его суть заключается в том, что каждый экземпляр накопителя индивидуально настраивается на заводе таким образом, чтобы обеспечить лучшую производительность и надежность. Для этого каждая пара «головка-поверхность пластины» собранного диска тестируется на определение характеристик быстродействия, и затем каждая сторона магнитной пластины индивидуально форматируется (размечается на дорожки и сектора) так, чтобы обеспечить наилучшие характеристики при работе именно с данной головкой. В результате, линейная плотность записи на каждой стороне каждой пластины может не совпадать с соседними

Пять различных интервалов в НЖМД используются для синхронизации электронных процессов чтения-записи и управления работы электромеханических узлов накопителя.

В результате начального форматирования определяется расположение секторов, и устанавливаются их логические номера. Поскольку скорость вращения диска очень большая, для обеспечения минимального числа оборотов диска при обращении к последовательным секторам, секторы с последовательными номерами размещаются через N физических секторов друг от друга (рис. 14.4).

Кратность расположения секторов задается при форматировании диска. Коэффициенты чередования бывают 6:1, 3:1, и 1:1. Новейшие модели НЖМД используют коэффициенты 1:1, а их контроллеры считывают с диска за одно его обращение информацию с целой дорожки и затем хранят ее в буферной памяти. При запросе из буферной памяти передается информация уже из требуемых секторов.

Каждая дорожка диска разделяется на одинаковое число секторов, поэтому сектора на дорожках, которые находятся ближе к нулевой дорожке, имеют меньший размер. Для записи таких секторов

используются магнитные поля большей интенсивности (компенсация записи ). Число поверхностей диска (головок), число цилиндров (дорожек) и точка, с которой начинается компенсация записи, являются параметрами для настройки контроллера НЖМД.

Среднее время доступа к информации на НЖМД составляет

t ср =t n +0,5/F+t обм, (14.1)

где t n - среднее время позиционирования; F - скорость вращения диска; t обм - время обмена. Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Коммуникация, связь, радиоэлектроника и цифровые приборы

Домены магнитных материалов используемых в продольной записи располагаются параллельно поверхности носителя. Этот эффект и используется при записи цифровых данных магнитным полем головки изменяющимся в соответствии с сигналом информации. Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и в конце концов неизбежно приведут к так называемому суперпарамагнитному эффекту когда частицы перейдут в однодоменное...

Технологии записи на магнитные диски

Продольная запись

Первые образцы жестких дисков, появившиеся в 70-х годах ХХ века, использовали технологию продольной записи информации. Для этого поверхность диска, так же, как и поверхность магнитной ленты, покрывалась слоем двуокиси хрома CrO 2 или оксидом железа, обеспечивающим продольную намагниченность регистрирующего слоя. Коэрцитивная сила такого носителя H c = 28 кА/м.

Технология нанесения оксидного слоя довольно сложная. Сначала на поверхность быстро вращающегося алюминиевого диска методом напыления наносится суспензия из смеси порошка оксида железа и расплавленного полимера. За счет действия центробежных сил она равномерно распределяется по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется, и на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения. Затем диск окончательно полируется. Диски накопителей такого типа имеют коричневый или желтый цвет.

Как известно, магнитные материалы имеют доменную структуру, т.е. состоят их отдельных микроскопических областей - доменов , внутри которых магнитные моменты всех атомов направлены в одну сторону. В результате каждый такой домен имеет достаточно большой суммарный магнитный момент. Домены магнитных материалов, используемых в продольной записи, располагаются параллельно поверхности носителя. Если на магнитный материал не воздействует внешнее магнитное поле, ориентация магнитных моментов отдельных доменов имеет хаотичный характер и любое их направление равновероятно. Если же такой материал поместить во внешнее магнитное поле, то магнитные моменты доменов будут стремиться сориентироваться в направлении, совпадающем с направлением внешнего магнитного поля. Этот эффект и используется при записи цифровых данных магнитным полем головки, изменяющимся в соответствии с сигналом информации.

Минимальным элементом (ячейкой) памяти магнитного регистрирующего слоя, способным хранить один бит информации, является не отдельный домен, а частица (область), состоящая из нескольких десятков доменов (70-100). Если направление суммарного магнитного момента такой частицы совпадает с направлением движения магнитной головки, то такое ее состояние можно сопоставить логическому «0» данных, если направления противоположны, – логической «1».

Однако если соседние области имеют противоположное направление магнитных моментов, то домены, расположенные на границе между ними и соприкасающиеся одноименными полюсами, будут отталкиваться друг от друга и в конце концов изменят направления своих магнитных моментов каким-то непредсказуемым образом с тем чтобы принять энергетически более устойчивое положение. В результате на границе двух областей образуется зона неопределенности, уменьшающая размеры области, хранящей бит записанной информации и, соответственно, уровень полезного сигнала при считывании (рис. 5.6). Уровень шумов при этом, разумеется, увеличивается.

Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и, в конце концов, неизбежно приведут к так называемому суперпарамагнитному эффекту , когда частицы перейдут в однодоменное состояние и будут уже неспособны фиксировать записываемую информацию, поскольку соседние домены с противоположно направленными магнитными моментами будут изменять свою ориентацию сразу же после удаления магнитного поля записывающей головки. Материал регистрирующего слоя превратится в равномерно намагниченный по всему объему.

Таким образом, из-за наличия суперпарамагнетизма технология продольной записи, достигнув к середине первого десятилетия XXI века величины плотности записи в 120 Гбит на дюйм 2 , практически исчерпала свои возможности и уже не в состоянии обеспечивать существенное повышение емкости накопителей на жестких дисках. Это заставило разработчиков обратиться к другим технологиям, свободным от этого недостатка.

Перпендикулярная запись

Возможность перпендикулярной записи основана на том, что в тонких пленках, содержащих кобальт, платину и некоторые другие вещества, атомы этих веществ стремятся ориентироваться таким образом, что их магнитные оси оказываются перпендикулярными поверхности носителя. Домены, сформированные из таких атомов, также располагаются перпендикулярно поверхности носителя.

Сигнал в считывающей магнитной головке формируется только тогда, когда она пересекает силовые линии магнитного поля домена, т.е. в том месте, где эти силовые линии перпендикулярны поверхности носителя. У домена, расположенного параллельно поверхности носителя, силовые линии магнитного поля перпендикулярны поверхности только у его концов, там, где они выходят на поверхность (рис. 5.7,а). Когда головка перемещается параллельно домену и, следовательно, параллельно его силовым линиям сигнал в ней отсутствует. Уменьшать длину домена, стремясь повысить плотность записи, можно только до определенных пределов - пока не начнет сказываться суперпарамагнитный эффект. Если же домены располагаются перпендикулярно поверхности носителя, то силовые линии их магнитных полей всегда будут перпендикулярны поверхности и будут содержать в себе информацию (рис. 5.7,б). «Холостых» пробегов, обусловленных длиной домена, здесь уже не будет. Как не будет и суперпарамагнетизма, поскольку домены с противоположной намагниченностью не будут отталкиваться друг от друга. Очевидно, что плотность записи на носителе с перпендикулярной намагниченностью можно получить более высокую.

Диск, предназначенный для перпендикулярной записи, требует особой технологии изготовления. Основа пластины тщательно полируется, а затем методом вакуумного напыления на ее поверхность наносится выравнивающий слой фосфата никеля NiP толщиной порядка 10 мкм, который, во-первых, уменьшает шероховатость поверхности, во-вторых, увеличивает адгезию к последующим слоям (рис. 5.8).

Далее наносится слой магнитомягкого материала, обеспечивающий возможность считывания данных с регистрирующего слоя, и сам регистрирующий слой из материала с перпендикулярной ориентацией магнитных доменов. В качестве регистрирующего слоя может использоваться кобальт (Со), платина ( Pt ), палладий (Pd ), их сплавы друг с другом и с хромом ( Cr ), а также многослойные структуры, состоящие из тонких пленок этих металлов толщиной в несколько атомов.

Поверх регистрирующего слоя наносится защитная пленка из стеклокерамики, толщиной порядка сотых долей микрона.

Запись информации на регистрирующий слой с перпендикулярной намагниченностью имеет свои особенности. Для того чтобы обеспечить приемлемый уровень сигнала и обеспечить хорошее отношение сигнал/шум, силовые линии магнитного поля, формируемого головкой записи, должны, проходя через регистрирующий слой, вновь замыкаться на сердечник головки. Для этого и служит магнитомягкий подслой, расположенный ниже регистрирующего (рис. 5.9).

По предварительным прогнозам специалистов технология перпендикулярной записи позволит реализовать плотность записи до 500 Гбит/дюйм 2 . При этом емкость 3,5-дюймового накопителя составит 2 Тбайта, 2,5-дюймового - 640 Гбайт, 1-дюймового - 50 Гбайт. Однако это только предварительные прогнозы. Не исключено, что верхним пределом окажется величина в 1 Тбит/дюйм 2 и даже больше. Будущее покажет.

Перспективные технологии магнитной записи

Технология перпендикулярной записи в настоящее время находится в стадии активного развития и до предельных значений плотности записи здесь пока еще далеко. Однако этот момент когда-нибудь все-таки настанет. Может быть даже раньше, чем сейчас представляется. Поэтому исследования в направлении поиска новых высокоэффективных технологий магнитной записи ведутся уже сейчас.

Одной из таких технологий является термомагнитная запись HAMR (Heat Assisted Magnetic Recording) , т.е. запись с предварительным нагревом носителя. Этот метод предусматривает кратковременный (1 пикосекунда) нагрев участка носителя, на который производится запись, сфокусированным лучом лазера - так же, как в магнитооптической записи. Разница между технологиями проявляется в способе чтения информации с диска. В магнитооптических приводах информация считывается лучом лазера, работающего на меньшей, чем при записи, мощности, а при термомагнитной записи информация считывается магнитной головкой так же, как с обычного жесткого диска. Да и плотность записи здесь планируется получить гораздо более высокую, чем в магнитооптических форматах MD , CD - MO или DVD - MO - до 10 Тбит/дюйм 2 . Поэтому в качестве регистрирующей среды здесь необходимы иные материалы. Сейчас в качестве таких материалов рассматриваются различные соединения платины, кобальта, неодима, самария и некоторых других элементов: Fe 14 Nd 2 B, CoPt, FePt, Co 5 Sm и пр. Такие материалы очень дороги - как из-за дороговизны входящих в их состав редкоземельных элементов, так и из-за сложности и дороговизны технологического процесса по их получению и нанесению на поверхность основы предполагаемого носителя. Конструкция головки записи/считывания в технологии HAMR также предполагается совсем иная, чем в магнитооптической записи: лазер должен располагаться с той же стороны, что и магнитная головка, а не с противоположной, как в магнитооптических рекордерах (рис. 5.10). Нагрев предполагается производить до температуры порядка 100 градусов Цельсия, а не 180.

Еще одним перспективным направлением развития магнитной записи является использование в качестве регистрирующего слоя материалов, частицы в которых выстроены в четко структурированный доменный массив ( Bit Patterned Media ). При такой структуре каждый бит информации будет хранится всего в одной ячейке-домене, а не в массиве из 70-100 доменов (рис. 5.11).

Такой материал можно либо создать искусственно с помощью фотолитографии (рис. 5.12), либо найти сплав с подходящей самоорганизующейся структурой.

Первый метод вряд ли получит развитие, поскольку для получения материала, допускающего плотность записи хотя бы 1 Тбит/дюйм 2 , размер одной частицы должен составить максимум 12,5 нм. Ни существующая, ни планируемая в ближайшие 10 лет технология литографии этого не обеспечивает. Хотя есть довольно хитроумные решения, позволяющие не сбрасывать со счетов данный подход.

Поиск самоорганизующихся магнитных материалов (SOMA - Self-Ordered Magnetic Array ) – весьма перспективное направление. Уже несколько лет специалисты компании Seagate указывают на особенности сплава FePt, выпариваемого в гексановом растворителе. Полученный материал имеет идеально ровную ячеистую структуру. Размер одной ячейки – 2,4 нм. Если учесть, что каждый домен обладает высокой стабильностью, можно говорить о допустимой плотности записи на уровне 40-50 Тбит/дюйм 2 ! Похоже, это и есть окончательный предел записи на магнитные носители .


S

Зоны неопределенности

Рис. 5.6. Зоны неопределенности, возникающие при продольной записи

Сигнал есть

Сигнала нет

Рис. 5.7. Носители с параллельной (а)

и перпендикулярной (б) намагниченностью

Подслой из магнитомягкого материала

Основа диска (Al)

Выравнивающий слой ( NiP)

Регистрирующий слой с перпендикулярной намагниченностью

Защитный слой

Рис. 5.8. Структура жесткого диска с перпендикулярной

намагниченностью

Магнитотвердый регистрирующий слой

Магнитомягкий подслой

Рис. 5.9. Запись на материал с перпендикулярной

намагниченностью

Записывающий полюс

Возврат-ный полюс полюс

Рис. 5.10. Магнитооптическая головка HARM

Рис. 5.11. Микроструктура ВРМ: 1 - область, соответствующая одному биту информации при обычной записи; 2 - массив, границы которого совпадают с границами доменов; 3 - домен, который способен хранить один бит данных

Рис. 5.12. Регистрирующий слой, полученный с помощью фотолитографии


А также другие работы, которые могут Вас заинтересовать

34013. Философское понимание культуры. Культура и цивилизация 26 KB
Культура и цивилизация. Культура все созданное человеком; совокупность созданных и создаваемых человеком ценностей; качественная характеристика уровня развития ова. Там где есть человек его деятсть отношения между людьми там имеется и культура. Культура: материальная и духовная не противопоставлять.
34014. Филсофия Древней Индии 23 KB
э Мир вечен никем никогда не был создан остоянно развивается делится на мир приоды и мир людей. Мир природы гормоничен и спокоен; мир людей мир страданий.э Мир вечен никем никогда не создан. Сущность мира изменеие развия.
34015. Философия русской культуры 110 KB
Сущность любой культуры раскрывается в основополагающих ценностях: добре и зле свободе справедливости любви и т. Непосредственный объект любви в нем не человечество потому что вызвать любовь может только нечто наглядное; человечество просто карта которая разыгрывается им против того что ненавидят. Не уважая же никого перестает любить а чтобы не имея любви занять себя и развлечь предается страстям и грубым сладостям и доходит совсем до скотства в пороках своих а все от беспрерывной лжи и людям и себе самому. Однако...
34016. Общество как развивающаяся система 25 KB
В западной социологии с основным классообразующим признаком, т.е. отношение к средствам производства, не согласна теория социальной стратификации. На этой основе она предлагает свои критерии...
34017. Основные модели общественного устройства 38.5 KB
Современная форма либерализма как она утвердилась на Западе наиболее типичными здесь являются США теоретически оформилась и начала осуществляться на практике в Новое время и эпоху Просвещения. Основными посылками либерализма являются: 1. "Lissez fire не мешайте действовать девиз классического либерализма. Идеал минимального государства характерная черта классического либерализма.
34018. Исторические формы общности людей 38.5 KB
Историческими формами общности людей принято считать: род племя народность нацию. Это исторически восходящие формы объединения людей. Это связано с тем что в обществе где господствует коллективная собственность на средства производства и уравнительное распределение еще не дифференцировались интересы людей.
34019. Государство 32 KB
Государство это одна из сложнейших и самых запутанных тем социальной и политической философии что связано в значительной степени с тем что она затрагивала и затрагивает интересы людей находящихся у кормила власти. Цицерон определяет государство как дело достойное народа подчеркивая при этом что народ не любое соединение людей собранных вместе каким бы то ни было образом а соединение многих людей связанных между собою согласием в вопросах права и общностью интересов. Макиавелли определяет государство как аппарат управляющий...
34020. Философия истории 26 KB
Философия истории представляет особую сферу практической философии исследующей смысл и значение уникального явления человеческой жизни исторического бытия. Тем не менее несмотря на большое разнообразие теоретических подходов к феномену истории единой унифицированной философскоисторической концепции до сих пор не существует. Есть все основания полагать что именно в этом отсутствии единой теоретической версии философии истории есть и свои положительные черты. Термин философия истории введен в научный оборот сравнительно недавно...
34021. Глобальные проблемы человечества 23.5 KB
Десять тыяч лет назад было около 5млн человек 2 тысячи лет назад около 200 млн в 1960 г 3 млрд в 1975 4 млрд в 1987 5 млрд в 2000г более 6 млрд человек.

Сегодня многие уверены, что магнитные жесткие диски слишком медлительны, ненадежны и технически устарели. В то же время твердотельные накопители, напротив, находятся на пике своей славы: в каждом мобильном устройстве имеется носитель информации на основе флеш-памяти, и даже настольные ПК используют такие диски. Однако их перспективы весьма ограничены. Согласно прогнозу CHIP, SSD еще немного упадут в цене, плотность записи данных и, следовательно, емкость дисков, скорее всего, удвоятся, а затем настанет конец. Твердотельные накопители емкостью 1 Тбайт всегда будут слишком дорогими. На их фоне жесткие магнитные диски аналогичной вместимости выглядят весьма привлекательно, поэтому говорить о закате эпохи традиционных накопителей рано. Однако сегодня они стоят на распутье. Потенциал текущей технологии - метода перпендикулярной записи - допускает еще два годичных цикла, в течение которых будут выпущены новые модели увеличенной емкости, а затем будет достигнут предел.

Если три основных производителя - Seagate, Western Digital и Toshiba - смогут выполнить переход на одну из представленных в этой статье новых технологий, то 3,5-дюймовые жесткие диски емкостью 60 Тбайт и выше (что в 20 раз больше по сравнению с текущими моделями) перестанут быть недостижимой роскошью. Одновременно с этим возрастет и скорость чтения,достигнув уровня SSD, так как она зависит непосредственно от плотности записываемых данных: чем меньше расстояние, которое необходимо преодолевать считывающей головке, тем быстрее работает диск. Поэтому, если наш «информационный голод» продолжит расти, все «лавры» достанутся жестким магнитным дискам.

Метод перпендикулярной записи

С некоторых пор в жестких дисках используется метод перпендикулярной записи (на вертикально расположенные домены), обеспечивающий более высокую плотность данных. В настоящее время он является нормой. Последующие технологии сохранят данный способ.

6 Тбайт: лимит почти достигнут

Через два года диски с методом перпендикулярной записи дойдут до предела плотности данных на пластине.

В современных жестких дисках емкостью до 4 Тбайт плотность записи магнитных пластин не превышает 740 Гбит на квадратный дюйм. Производители обещают, что накопители, использующие методом перпендикулярной записи, смогут обеспечить показатель в 1 Тбит на квадратный дюйм. Через два года выйдет последнее поколение подобных дисков: емкость моделей форм-фактора 3,5 дюйма достигнет 6 Тбайт, а 2,5-дюймовые смогут предоставить чуть более 2 Тбайт дискового пространства. Однако столь скромные темпы роста плотности записи уже не поспевают за нашим постоянно усиливающимся информационным голодом, что демонстрируют следующие графики.

Проблема выбора материалов

Винчестеры с перпендикулярным методом записи не способны удовлетворить растущие потребности в сфере хранения данных, так как при плотности записи немногим более 1 Тбит на квадратный дюйм они вынуждены бороться с эффектом суперпарамагнетизма. Данный термин означает, что определенного размера частицы магнитных материалов не способны длительное время сохранять состояние намагниченности, которое может внезапно измениться под действием тепла из окружающей среды. То, при каком размере частиц наступает данный эффект, зависит от используемого материала (см. таблицу ниже). Пластины современных HDD с перпендикулярной записью изготавливаются из сплава кобальта, хрома и платины (CoCrPt), частицы которого имеют диаметр 8 нм и длину 16 нм. Для записи одного бита головке необходимо намагнитить около 20 таких частиц. При диаметре 6 нм и меньшем частицы данного сплава не способны надежно сохранять состояние своего магнитного поля.

В индустрии производства жестких дисков часто говорят о «трилемме». Производители могут использовать три основных способа увеличения плотности записи: изменение размера частиц, их количества и типа сплава, из которого они состоят. Но при размере частиц CoCrPt-сплава от 6 нм использование одного из способов приведет к тому, что два других окажутся бесполезными: если уменьшить размер частиц, то они будут терять свою намагниченность. Если уменьшить их количество на бит, их сигнал «растворится» в окружающем шуме соседних битов. Считывающая головка не сможет определить, имеет ли она дело с «0» или «1». Сплав с более высокими магнитными характеристиками позволяет использовать частицы меньших размеров, а также допускает сокращение их количества, однако в данном случае записывающая головка оказывается не в состоянии изменить их намагниченность. Данную трилемму можно решить только в том случае, если производители откажутся от метода перпендикулярной записи. Для этого наготове уже есть несколько технологий.

До 60 Тбайт: новые технологии записи

Плотность записи будущих HDD можно увеличить в десять раз - с помощью микроволн, лазеров, SSD-контроллеров и новых сплавов.

Наиболее перспективной разработкой, способной обеспечить плотность записи свыше 1 Тбит на квадратный дюйм, является технология магнитной записи с частичным перекрытием дорожек (метод «черепичной» записи - Shingled Magnetic Recording, SMR). Ее принцип заключается в том, что магнитные дорожки SMR-диска частично накладываются друг на друга, подобно черепице на крыше. Данная технология позволяет преодолеть присущее методу перпендикулярной записи затруднение: дальнейшее уменьшение ширины дорожек неизбежно приведет к невозможности записи данных. Современные диски имеют раздельные дорожки шириной от 50 до 30 нм. Минимально возможная ширина дорожек при перпендикулярной записи составляет 25 нм. В технологии SMR, благодаря частичному перекрытию, ширина дорожки для считывающей головки может составлять до 10 нм, что соответствует плотности записи в 2,5 Тбит на квадратный дюйм. Хитрость в том, чтобы увеличить ширину дорожек записи до 70 нм, обеспечив при этом стопроцентную намагничиваемость края дорожки. Край дорожки не претерпит изменений, если записать следующую со смещением в 10 нм. Кроме того, записывающая головка оснащается защитным экраном, чтобы ее мощное магнитное поле не повредило расположенные под ней данные. Что касается головки, она уже разработана
компанией Hitachi. Однако существует еще одна проблема: обычно на магнитном диске производится прямая раздельная перезапись битов, а в рамках технологии SMR это возможно только на самой верхней дорожке пластины. Для изменения битов, расположенных на нижней дорожке, потребуется повторная перезапись всей пластины, что снижает производительность.

Перспективный преемник: HAMR

Тем временем международная организация по дисковым накопителям, материалам и оборудованию IDEMA отдает предпочтение термоассистируемой магнитной записи (HAMR, Heat Assisted Magnetic Recording) и рассматривает именно ее в качестве наиболее вероятного претендента на роль преемника технологии перпендикулярной записи. Марк Гинен из советадиректоров IDEMA прогнозирует появление в продаже первых HAMR-дисков в 2015 году.
В отличие от SMR технология HAMR решает трилемму путем уменьшения магнитных частиц, а для этого требуется переход на новый материал. Для HAMR-дисков необходимо использовать материал с более высокой анизотропной энергией - наиболее перспективным является сплав железа и платины (FePt). Анизотропия определяет, сколько потребуется энергии для устранения намагниченности материала. В FePt она настолько высока, что только частицы размером 2,5 нм сталкиваются с суперпарамагнетическим пределом (см. таблицу в следующем разделе). Данное обстоятельство позволило бы производить жесткие диски емкостью 30 Тбайт с плотностью записи 5 Тбит на квадратный дюйм.

Проблема заключается в том, что самостоятельно записывающая головка не способна изменить магнитную ориентацию частиц сплава FePt. Поэтому в HAMR-дисках в нее встраивается лазер, который на мгновение разогревает частицы нап участке площадью несколько нанометров до температуры примерно в 400 °С. В результате записывающей головке требуется меньше энергии для изменения магнитного поля частиц. Исходя из значений плотности записи, диски с термоассистируемой магнитной записью могут иметь высокую скорость чтения (около 400–500 Мбайт/с), которая сегодня достижима только для SSD-накопителей с интерфейсом SATA 3.

Помимо лазера обеспечить возможность записи на пластинах из сплава FePt также способен генератор момента спина (Spin Torque Oscillator), излучающий микроволны. Микроволны изменяют характеристики магнитного поля частиц таким образом, что слабая записывающая головка легко их перемагничивает. В целом, генератор увеличивает эффективность записывающей головки в три раза. Технология микроволновой магнитной записи (Microwave Assisted Magnetic Recording, MAMR), в отличие от HAMR, пока находится в стадии разработки.

Новый сплав металлов для дисков с теромассистируемой магнитной записью

Сплаву FePt в HAMR-диске свойствен более высокий показатель анизотропной энергии и повышенная способность к намагничиванию. По сравнению с методом перпендикулярной записи здесь могут быть использованы частицы меньших размеров.

Что будет после HAMR?

Технология битовых массивов (Bit-Patterned Media, BPM) долгое время считалась самой перспективной. Она предусматривает иное решение трилеммы: в данном случае магнитные частицы отделены друг от друга изоляционным слоем из оксида кремния. В отличие от традиционных магнитных дисков намагничиваемые области наносятся с помощью литографии, как при производстве чипов. Это делает производство BPM-носителей довольно дорогим. BPM позволяет уменьшить количество частиц на бит и при этом избежать влияния шума соседних частиц на сигнал. Единственной проблемой на сегодняшний день является создание головки чтения/записи, которая смогла бы обеспечивать высокую точность управления BPM-битами. Поэтому в настоящее время BPM рассматривается как наиболее вероятный преемник HAMR. Если объединить обе технологии, можно добиться плотности записи в 10 Тбит на квадратный дюйм и производить диски емкостью 60 Тбайт.

Новым предметом изысканий является технология двумерной магнитной записи (Two Dimensional Magnetic Recording, TDMR), которая позволяет решить трилемму путем устранения затруднения, связанного с отношением сигнал/шум. При небольшом количестве частиц на бит считывающая головка получает нечеткий сигнал, так как он имеет низкую мощность и теряется в шуме соседних частиц. Особенность технологии TDMR заключается в возможности восстановления потерянного сигнала. Для этого требуются несколько отпечатков считывающей головки или отпечаток нескольких считывающих головок, которые формируют 2D-изображение поверхности. На основе этих изображений декодер восстанавливает соответствующие биты.

Используют два основных метода записи: метод частотной модуляции (ЧМ) и метод модифицированной ЧМ. В контроллере (адаптере) НГМД данные обрабатываются в двоичном коде и передаются в НГМД в последовательном коде.

Способ частотной модуляции является двухчастотным. При записи в начале тактового интервала производится переключение тока в МГ и направление намагниченности поверхности изменяется. Переключение тока записи отмечает начало тактов записи и используется при считывании для формирования сигналов синхронизации.

Способ обладает свойством самосинхонизации . При записи "1" в середине тактового интервала производится инвертирование тока, а при записи "0" - нет. При считывании в моменты середины тактового интервала определяют наличие сигнала произвольной полярности.

Наличие сигнала в этот момент соответствует "1", а отсутствие - "0".

Формат записи информации на гибком магнитном диске

Каждая дорожка на дискете разделена на секторы. Размер сектора является основной характеристикой формата и определяет наименьший объем данных, который может быть записан одной операцией ввода-вывода. Применяемые в НГМД форматы различаются числом секторов на дорожке и объемом одного сектора. Максимальное количество секторов на дорожке определяется операционной системой. Секторы отделяются друг от друга интервалами, в которых информация не записывается. Произведение числа дорожек на количество секторов и количество сторон дискеты определяет ее информационную емкость.

Каждый сектор включает поле служебной информации и поле данных. Адресный маркер - это специальный код, отличающийся от данных и указывающий на начало сектора или поля данных. Номер головки указывает одну из двух МГ, расположенных на соответствующих сторонах дискеты. Номер сектора - это логический код сектора, который может не совпасть с его физическим номером. Длина сектора указывает размер поля данных. Контрольные байты предназначены

Среднее время доступа к диску в миллисекундах оценивается по следующему выражению: где - число дорожек на рабочей поверхности ГМД; - время перемещения МГ с дорожки на дорожку; - время успокоения системы позиционирования.

Конструкция дискет

Накопитель на жестких магнитных дисках (НЖМД)


Жесткий магнитный диск -это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используется обе поверхности диска.

Принцип работы

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В большинстве накопителей есть два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.


Частота вращения НЖМД в первых моделей составляла 3 600 об/мин (т.е. в 10раз больше, чем в накопителе на гибких дисках), в настоящее время частота вращения жестких дисков возросла до 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка "столкнется" с диском. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные "взлеты" и "приземления" головок, а также более серьезные потрясения.

В некоторых наиболее современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. В механизме загрузки/разгрузки используется наклонная панель, расположенная прямо над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии разблокировка головок происходит только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока - до 96 000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly - блок головок и дисков) собирают в специальных цехах, в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого.

Метод записи данных на жесткий магнитный диск

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL -метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается "0", а предыдущий бит был "1", то синхросигнал также не записывается, как и бит данных. Если перед "0" стоит бит "0", то синхросигнал записывается.

Дорожки и секторы

Дорожка - это одно "кольцо" данных на одной стороне диска. Дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion ), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion ), в котором находится контрольная сумма ( checksum ), необходимая для проверки целостности данных.

Форматирование низкого уровня современных жестких дисков выполняется на заводе, изготовитель указывает только форматную емкость диска. В каждом секторе можно записать 512 байт данных, но область данных - это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Префиксы, суффиксы и промежутки - пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности.

Интервал включения записи следует сразу за байтами CRC ; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок ( Error Correction Code - ЕСС ). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC) .

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число (осуществляется правильность считывания идентификатора). Байт флага содержит флаг - указатель состояния дорожки.

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты предназначены для определения и коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды (зависит от схемной реализации адаптера).

Среднее время доступа к информации на НЖМД составляет

где tn - среднее время позиционирования;

F - скорость вращения диска;

tобм - время обмена.

Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Форматирование дисков

Различают два вида форматирования диска :

  • физическое, или форматирование низкого уровня;
  • логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Проводник (Windows Explorer ) или команды DOS FORMAT выполняются обе операции.

Однако для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа .

  • Форматирование низкого уровня.
  • Организация разделов на диске.
  • Форматирование высокого уровня.
Форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

В первых контроллерах ST-506 /412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах 17-700 и более. Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.

Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке. Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами. Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.


В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).

При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.

Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.

Организация разделов на диске

Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.

В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого-нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов. Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов) . Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT) . Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.

После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector - VBS ), две копии таблицы размещения файлов (FAT ) и корневой каталог ( Root Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: