Двойственный симплексный метод. Двойственный симплекс-метод. Подробный пример решения

Итак, последовательные переходы от одного сопряженного базиса к другому производят до тех пор, пока не получат решение задачи или не установят ее неразрешимость. Каждый переход от одного псевдоплана к другому составляет одну итерацию (один шаг) .

Каждая итерация содержит два этапа. На первом этапе выясняют, не является ли псевдоплан оптимальным планом прямой задачи, и если нет, то разрешима ли задача. Для этого необходимо вычислить и установить их знаки. Второй этап состоит в осуществлении элементарного преобразования - (одной итерации) метода полного исключения Жордана-Гауса, приводящего к новому псевдоплану с меньшим значением целевой функции.

Описание алгоритма . Задача ЛП должна быть задана в канонической форме (1.1), (1.2) или сведена к ней. Отыскивают сопряженный базис двойственной задачи и обозначают его . Разложим А 0 по векторам базиса А і1 ,.,А іm в соответствии с (1.9) и найдем псевдоплан прямой задачи.

Исследуем знаки {х i0 } . Если имеет место случай , то начальный псевдоплан является оптимальным планом прямой задачи. При наличии отрицательных компонент {х i0 } вычисляем коэффициенты разложения векторов A j по векторами сопряженного базиса {х ij } в соответствии с (1.8).

Если для некоторого r такого, что х r0 <0 , все то задача не разрешима (второй случай), и на этом процесс вычислений заканчивается.

Если имеет место третий случай (то есть для каждого r такого, что х r0 <0 , по крайней мере одна из компонент х rj <0 ), то переходим к второму этапу. С этой целью составляют таблицу k -й итерации (аналогичную симплекс-таблице ), которая состоит (m+2) строк и (n+1) -го столбца (табл. 6.1).

Столбец В x таблицы, как обычно, содержит векторы {A i } базиса псевдоплана хk , а столбец А 0 - базисные компоненти псевдоплана {х i0 (k)} . Строка (m+1) -индексная, ее заполняют параметрами , являющимися оценками векторов А j :

величина - значение целевой функции при псевдоплане

Итерацию k завершают заполнением главной части таблицы (от первой до (m+1) -й строк).

Таблица 6.1.
C C 1 C 2 . C j . C n
B x A 0 A 1 A 2 . A j . A n
C 1 X 1 X 10 X 11 X 12 . X 1j . X 1n
C 2 X 2 X 20 X 21 X 22 . X 2j . X 2n
. . . . . . . . .
C i X i X i0 X i1 X i2 . X ij . X in
. . . . . . . . .
C m X m X m0 X m1 X m2 . X mj . X mn
. .
. .

На первом этапе (k+1) -и итерации выясняют, имеет ли место первый, второй или третий случай.

В третьем случае переходим ко второму этапу. Сначала определяют вектор А r , который необходимо вывести из базиса. Его индекс r определяют из условия

В строке заполняют лишь те позиции, для которых x rj <0 . Вектор А l , который должен быть введен в базис, находят из условия

Определив направляющую строку r и столбец l , вычисляют элементы главной части таблицы (k+1) -й итерации по рекуррентным соотношениям

(1.15)

Где x ri - направляющий элемент преобразования.

Вычислительная схема алгоритма двойственного симплекс-метода похожа на вычислительную схему симплекс-метода . Аналогичны и формы таблиц.

Различие между методами заключается в том, что при симплекс -методе производят последовательный переход от одного допустимого базисного решения (опорного плана) задачи к другому, а при двойственном симплеск-методе - переход от одного псевдоплана к другому.

Формальное различие между вычислительными схемами этих методов проявляется только в правилах перехода от одного базиса к другому, а также в признаках оптимальности и неразрешимости задачи. В симплекс -методе сначала определяют вектор, вводимый в базис, а затем - вектор,исключаемый из базиса, а в двойственном симплекс-методе этот порядок - обратный.

Отметим некоторые важные свойства двойственного симплекс-метода .

В отличие от прямого

Заключается в построении оптимального недопустимого плана с последующим преобразованием его в допустимый, не нарушая оптимальности.

Алгоритм двойственного симплекс-метода

1) выбирают разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных членов;
2) выбирают разрешающий столбец по наименьшему по абсолютной величине отношению элементов L строки к отрицательным элементам разрешающей строки;
3) пересчитывают симплексную таблицу по правилам обычного симплекс-метода;
4) решение проверяют на оптимальность. Признаком получения допустимого оптимального решения является отсутствие в столбце свободных членов отрицательных элементов.
Замечания
1. Если в разрешающей строке нет ни одного отрицательного элемента, задача неразрешима.
2. Если ограничения задачи заданы неравенствами типа «≥», двойственный симплекс-метод позволяет избавиться от необходимости введения искусственных переменных.

Пример . Решить задачу, используя алгоритм двойственного симплекс-метода

L = x 1 + 4x 2 → min

Составляем исходную симплексную таблицу.

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 -2 -3 1 0 0 0 -20
x 5 -5 1 -2 0 1 0 0 -12
x 6 1 2 -1 0 0 1 0 2
x 7 -1 4 -2 0 0 0 1 1
L -1 -4 -1 0 0 0 0 0

Отсутствие в L строке положительных оценок свидетельствует об оптимальности исходного решения, а наличие в столбце свободных членов отрицательных элементов – о его недопустимости. Согласно алгоритму двойственного симплекс-метода выбираем разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных элементов. В нашем примере разрешающая строка – первая. Разрешающий столбец выбирается в соответствии с правилом, изложенным в пункте 2 схемы алгоритма. Разрешающий элемент равен (-4). После пересчета получаем следующую таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 1 0 0 0 5
х 5 0 1 0 0 -2
х 6 0 0 1 0 7
х 7 0 0 0 0 1 11
L 0 0 0 0 5

Аналогично рассуждая, получим еще одну таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 0 1 0 0
х 1 1 0 0 0
х 6 0 0 1 0
х 7 0 0 0 0 1 11
L 0 0 0 0

Отсутствие в столбце свободных членов отрицательных элементов свидетельствует о том, что получено оптимальное решение , .
Замечание . Если решение ЗЛП и недопустимо и неоптимально, то сначала получаем допустимое решение, используя алгоритм двойственного симплекс-метода, а затем по правилам обычного симплекс-метода получаем оптимальное решение.
Пример .
L = 5x 1 – x 2 – x 3 → max
или

Составляем исходную симплекс-таблицу

x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 0 -2 1 0 0 0 -9
x 5 1 -1 0 0 1 0 0 -1
x 6 -1 -1 3 0 0 1 0 -8
x 7 1 0 -1 0 0 0 1 4
L -5 1 4 0 0 0 0 0

Решение недопустимо, так как в столбце свободных членов есть отрицательные элементы и неоптимально, так как в строке L есть отрицательная оценка (-5). Получаем сначала допустимое решение, используя алгоритм двойственного симплекс-метода. После пересчета получаем следующую симплексную таблицу

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
x 5 1 0 2 -1 1 0 0 8
x 6 -1 0 5 -1 0 1 0 1
x 7 0 -1 0 0 0 1 4
L -5 0 2 1 0 0 0 -9

В столбце свободных членов нет отрицательных элементов, но в строке L есть отрицательная оценка (-5), значит решение допустимо, неоптимально.
Используем обычный симплекс-метод и получаем следующие таблицы

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
х 5 0 0 3 -1 1 0 -1 4
х 6 0 0 -1 0 1 1 5
x 1 1 0 -1 0 0 0 1 4
L 0 0 -3 1 0 0 5 11

Краткая теория

Для решения задач линейного программирования предложено немало различных методов. Однако наиболее эффективным и универсальным среди них оказался симплекс-метод. При этом следует отметить, что при решении некоторых задач могут оказаться более эффективными другие методы. Например, при ЗЛП с двумя переменными оптимальным является , а при решении - метод потенциалов. Симплекс-метод является основным и применимым к любой ЗПЛ в канонической форме.

В связи с основной теоремой линейного программирования естественно возникает мысль о следующем пути решения ЗЛП с любым числом переменных. Найти каким-нибудь способом все крайние точки многогранника планов (их не больше, чем ) и сравнить в них значения целевой функции. Такой путь решения даже с относительно небольшим числом переменных и ограничений практически неосуществим, так как процесс отыскания крайних точек сравним по трудности с решением исходной задачи, к тому же число крайних точек многогранника планов может оказаться весьма большим. В связи с этими трудностями возникла задача рационального перебора крайних точек.

Суть симплексного метода в следующем. Если известны какая-нибудь крайняя точка и значение в ней целевой функции, то все крайние точки, в которых целевая функция принимает худшее значение, заведомо не нужны. Отсюда естественно стремление найти способ перехода от данной крайней точки к смежной по ребру лучшей, от нее к еще лучшей (не худшей) и т. д. Для этого нужно иметь признак того, что лучших крайних точек, чем данная крайняя точка, вообще нет. В этом и состоит общая идея наиболее широко применяемого в настоящее время симплексного метода (метода последовательного улучшения плана) для решения ЗЛП. Итак, в алгебраических терминах симплексный метод предполагает:

  1. умение находить начальный опорный план;
  2. наличие признака оптимальности опорного плана;
  3. умение переходить к нехудшему опорному плану.

Пример решения задачи

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве , , , единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве единиц, ресурса второго вида в количестве единиц, ресурса третьего вида в количестве единиц. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве , единиц, ресурсов второго вида в количестве , единиц, ресурсов третьего вида в количестве , единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно , , тыс. руб.

  • Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.
  • К прямой задаче планирования товарооборота, решаемой симплексным методом, составить двойственную задачу линейного программирования.
  • Установить сопряженные пары переменных прямой и двойственной задач.
  • Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи, в которой производится оценка ресурсов, затраченных на продажу товаров.

Если ваш допуск к сессии зависит от решения блока задач, а у вас нет ни времени, ни желания садиться за расчёты – используйте возможности сайта сайт. Заказ задач – дело нескольких минут. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить решение задач по линейному программированию...

Решение задачи

Построение модели

Через обозначим товарооборот 1-го, 2-го и третьего вида товаров соответственно.

Тогда целевая функция, выражающая получаемую прибыль:

Ограничения по материально-денежным ресурсам:

Кроме того, по смыслу задачи

Получаем следующую задачу линейного программирования:

Приведение к каноническому виду ЗЛП

Приведем задачу к каноническому виду. Для преобразования неравенств в равенства введем дополнительные переменные . Переменные входят в ограничения с коэффициентом 1. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю.

Ограничение имеет предпочтительный вид, если при неотрицательности правой части левая часть имеет переменную, входящую с коэффициентом, равным единице, а остальные ограничения-равенства - с коэффициентом, равным нулю. В нашем случае 1-е, 2-е, 3-е ограничения имеют предпочтительный вид с соответствующими базисными переменными .

Решение симплекс-методом

Заполняем симплексную таблицу 0-й итерации.

БП Симплексные
отношения
8 6 4 0 0 0 0 520 16 18 9 1 0 0 65/2 0 140 7 7 2 0 1 0 20 0 810 9 2 1 0 0 1 90 0 -8 -6 -4 0 0 0

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

Ведущий столбец соответствует .

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е.7.

Теперь приступаем к составлению 1-й итерации. Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Получаем таблицу 1-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 0 200 0 2 31/7 1 -16/7 0 1400/31 8 20 1 1 2/7 0 1/7 0 70 0 630 0 -7 -11/7 0 -9/7 1 - 160 0 2 -12/7 0 8/7 0

Ключевой столбец для 1-й итерации соответствует .

Находим ключевую строку, для этого определяем:

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 31/7.

Вектор выводим из базиса и вводим вектор .

Получаем таблицу 2-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 4 1400/31 0 14/31 1 7/31 -16/31 0 8 220/31 1 27/31 0 -2/31 9/31 0 0 21730/31 0 -195/31 0 11/31 -65/31 1 7360/31 0 86/31 0 12/31 8/31 0

В индексной строке все члены неотрицательные, поэтому получено следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Таким образом, необходимо продавать 7,1 тыс.р. товара 1-го вида и 45,2 тыс.р. товара 3-го вида. Товар 2-го вида продавать невыгодно. При этом прибыль будет максимальна и составит 237,4 тыс.р. При реализации оптимального плана остаток ресурса 3-го вида составит 701 ед.

Двойственная задача ЛП

Запишем модель двойственной задачи.

Для построения двойственной задачи необходимо пользоваться следующими правилами:

1) если прямая задача решается на максимум, то двойственная - на минимум, и наоборот;

2) в задаче на максимум ограничения-неравенства имеют смысл ≤, а в задаче минимизации - смысл ≥;

3) каждому ограничению прямой задачи соответствует переменная двойственной задачи, и наоборот, каждому ограничению двойственной задачи соответствует переменная прямой задачи;

4) матрица системы ограничений двойственной задачи получается из матрицы системы ограничений исходной задачи транспонированием;

5) свободные члены системы ограничений прямой задачи являются коэффициентами при соответствующих переменных целевой функции двойственной задачи, и наоборот;

6) если на переменную прямой задачи наложено условие неотрицательности, то соответствующее ограничение двойственной задачи записывается как ограничение-неравенство, если же нет, то как ограничение-равенство;

7) если какое-либо ограничение прямой задачи записано как равенство, то на соответствующую переменную двойственной задачи условие неотрицательности не налагается.

Транспонируем матрицу исходной задачи:

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение двойственной задачи ЛП

Соответствие между переменными исходной и двойственной задачи:

На основании симплексной таблицы получено следующее решение двойственной задачи линейного программирования (выписываем из нижней строки):

Таким образом, наиболее дефицитным является ресурс первого вида. Его оценка максимальна и равна . Ресурс третьего вида является избыточным -его двойственная оценка равна нулю . Каждая дополнительно проданная единица товара 2-й группы будет снижать оптимальную прибыль на
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.

Решение транспортной задачи
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Принятие решений в условиях неопределенности
Рассмотрено решение статистической матричной игры в условиях неопределенности с помощью критериев Вальда, Сэвиджа, Гурвица, Лапласа, Байеса. На примере задачи подробно показано построение платежной матрицы и матрицы рисков.

.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = x 1 + x 2 при следующих условиях-ограничений.
- 5x 1 - 6x 2 ≤-1
- 15x 1 ≤-1
- 7x 1 - 12x 2 ≤-1
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме ).
В 1-м неравенстве смысла (≤) вводим базисную переменную x 3 . В 2-м неравенстве смысла (≤) вводим базисную переменную x 4 . В 3-м неравенстве смысла (≤) вводим базисную переменную x 5 .
-5x 1 -6x 2 + 1x 3 + 0x 4 + 0x 5 = -1
-15x 1 + 0x 2 + 0x 3 + 1x 4 + 0x 5 = -1
-7x 1 -12x 2 + 0x 3 + 0x 4 + 1x 5 = -1
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A= -5 -6 1 0 0
-15 0 0 1 0
-7 -12 0 0 1
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.
Решим систему уравнений относительно базисных переменных:
x 3 , x 4 , x 5 ,
Полагая, что свободные переменные равны 0, получим первый опорный план:
X1 = (0,0,-1,-1,-1)
Базисное решение называется допустимым, если оно неотрицательно.
B x 1 x 2 x 3 x 4 x 5
-1 -5 -6 1 0 0
-1 -15 0 0 1 0
-1 -7 -12 0 0 1
0 -1 -1 0 0 0

.
План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
.

Ведущей будет 1-ая строка, а переменную x 3 следует вывести из базиса.
.
Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-6).
B x 1 x 2 x 3 x 4 x 5
-1 -5 -6 1 0 0
-1 -15 0 0 1 0
-1 -7 -12 0 0 1
0 -1 -1 0 0 0
0 -1: (-5) = 1 / 5 -1: (-6) = 1 / 6 - - -

4. Пересчет симплекс-таблицы .
B x 1 x 2 x 3 x 4 x 5
1 / 6 5 / 6 1 -1 / 6 0 0
-1 -15 0 0 1 0
1 3 0 -2 0 1
1 / 6 -1 / 6 0 -1 / 6 0 0

x 1 x 2 x 3 x 4 x 5
5 / 6: 1 1: 1 -1 / 6: 1 0: 1 0: 1

1-(1 / 6 0):1

-15-(5 / 6 0):1 0-(1 0):1 0-(-1 / 6 0):1 1-(0 0):1 0-(0 0):1
3-(5 / 6 0):1 0-(1 0):1 -2-(-1 / 6 0):1 0-(0 0):1 1-(0 0):1

1 / 6 -(1 / 6 0):1

-1 / 6 -(5 / 6 0):1 0-(1 0):1 -1 / 6 -(-1 / 6 0):1 0-(0 0):1 0-(0 0):1

1. Проверка критерия оптимальности .
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной .
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет 2-ая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной .
Минимальное значение θ соответствует 1-му столбцу, т.е. переменную x 1 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-15).
B x 1 x 2 x 3 x 4 x 5
1 / 6 5 / 6 1 -1 / 6 0 0
-1 -15 0 0 1 0
1 3 0 -2 0 1
1 / 6 -1 / 6 0 -1 / 6 0 0
0 -1 / 6: (-15) = 1 / 90 - - - -

4. Пересчет симплекс-таблицы .
Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.
B x 1 x 2 x 3 x 4 x 5
1 / 9 0 1 -1 / 6 1 / 18 0
1 / 15 1 0 0 -1 / 15 0
4 / 5 0 0 -2 1 / 5 1
8 / 45 0 0 -1 / 6 -1 / 90 0

Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 x 4 x 5

1 / 9 -(1 / 15 0):1

0-(1 0):1 1-(0 0):1 -1 / 6 -(0 0):1 1 / 18 -(-1 / 15 0):1 0-(0 0):1
1: 1 0: 1 0: 1 -1 / 15: 1 0: 1

4 / 5 -(1 / 15 0):1

0-(1 0):1 0-(0 0):1 -2-(0 0):1 1 / 5 -(-1 / 15 0):1 1-(0 0):1

8 / 45 -(1 / 15 0):1

0-(1 0):1 0-(0 0):1 -1 / 6 -(0 0):1 -1 / 90 -(-1 / 15 0):1 0-(0 0):1

В базисном столбце все элементы положительные.
Переходим к основному алгоритму симплекс-метода.
1. Проверка критерия оптимальности .
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.
Окончательный вариант симплекс-таблицы:
B x 1 x 2 x 3 x 4 x 5
1 / 9 0 1 -1 / 6 1 / 18 0
1 / 15 1 0 0 -1 / 15 0
4 / 5 0 0 -2 1 / 5 1
8 / 45 0 0 -1 / 6 -1 / 90 0
Оптимальный план можно записать так:
x 1 = 1 / 15
x 2 = 1 / 9
F(X) = 1 1 / 9 + 1 1 / 15 = 8 / 45

Так как есть три единичных вектора, то
можно сразу записать опорный план
Х=(0,0,0,360,192,180).
Составим нулевую симплекс-таблицу

Полученный опорный план проверяем
на оптимальность.
Вычисляем значение целевой функции и
симплекс-разности.
F0 c P0 0 360 0 192 0 180 0,
1 z1 c1 c P1 c1 9,
2 z2 c2 cP2 c2 10,...

Как видно из 0-й таблицы отличными от нуля
являются переменные x4 , x5 , x6 , а x , x , x
1
2
3
равны нулю, т.к. они небазисные, а свободные.
Дополнительные же переменные x4 , x5 , x6
принимают свои значения в соответствии с
ограничениями.
Эти значения переменных отвечают такому
«плану», при котором ничего не производится, сырье
не используется и значение целевой функции равно
нулю, т. е. стоимость произведенной продукции
отсутствует.
Такой план, конечно, не является оптимальным.
Это видно и из 4-й строки таблицы, в которой
имеется три отрицательных оценки -9, -16 и -10.

10.

Отрицательные числа не только
свидетельствуют о возможности увеличения
общей стоимости производимой продукции (в
столбцах над отрицательными оценками
стоят положительные числа), но и
показывают, на сколько увеличится эта сумма
при введении в план единицы того или иного
вида продукции.
Так, число -9 означает, что при включении в
план производства одного изделия А
обеспечивается увеличение стоимости
продукции на 9 д.е.

11.

Если включить в план производства по
одному изделию В и С, то общая стоимость
изготовляемой продукции возрастет
соответственно на 10 и 16 д.е. Поэтому с
экономической точки зрения целесообразным
является включение в план изделий С.
Это же необходимо сделать и с той точки
зрения, что -16 является наименьшей
отрицательной оценкой. Значит, в базис
введем вектор P3 .

12.

Найдем число Q .
360 192 180
Q min
;
;
min 30; 24;60
3
12 8
Введем его в последний столбец таблицы.
Число 24 соответствует вектору P5 .
192/8=24 с экономической точки зрения
означает, какое количество изделий С
предприятие может изготовлять с учетом
норм расхода и имеющихся объемов сырья
каждого вида.

13.

Так как сырья каждого вида имеется
соответственно 360, 192 и 180 кг, а на одно
изделие С требуется затратить сырья каждого
вида 12, 8 и 3 кг, то максимальное число
изделий С, которое может быть изготовлено
предприятием равно
min{360/12,192/8,180/3}=192/8=24, т.е.
ограничивающим фактором для производства
изделий С является имеющийся объем сырья
2-го вида. С учетом его предприятие может
производить 24 изделия С.При этом сырье 2го вида будет полностью использовано и,
значит, вектор подлежит исключению из
P5
базиса.

14.

Составляем следующую таблицу. В ней
разрешающей является вторая строка,
а разрешающим столбцом –третий. На
их пересечении стоит элемент 8.
Разделим вторую строку на 8, а затем
обнулим по методу Жордана- Гаусса
или по формулам треугольника третий
столбец.

15.

16.

Подсчитаем симплекс-разности и заполним 4ю строку таблицы.
При данном плане производства
изготовляется 24 изделия С и остается
неиспользованным 72 кг сырья 1-го и 108 кг
сырья 3-го вида. 2-й вид сырья использован
полностью. Стоимость всей продукции при
этом плане составляет 384 д.е. Указанные
числа записаны в столбце План. Это опять
параметры задачи, но они претерпели
изменения. Изменились и данные других
столбцов. Их экономическое содержание
стало еще более сложным.

17.

Имеется одна отрицательная оценка -2.
План можно улучшить. Введем в базис
вектор P2 . Вычислим
72 24 108
Q min ;
;
min 8; 48;72 8.
9 1/ 2 3 / 2
.
Выводим из базиса P4 .

18.

Разрешающими будут 1-я строка и 2-й
столбец. Разрешающий элемент 9.
Разделим на 9 1-ю строку, заполним
1-ю строку новой таблицы, затем
обнулим 2-й столбец. Для этого
умножим 1-ю строку на (-1/2) и
прибавим ко 2-й, а затем умножим 1-ю
строку на (-3/2) и прибавим к 3-й строке.
Заполним таблицу 2.

19.

20.

В этом мы убеждаемся,
вычисляя симплекс-разности
1 cP1 c1 10 1 16 0.25 9 5,
2 cP2 c2 10 1 16 0 10 0,
3 cP3 c3 10 0 16 1 0 0 16 0,
4 cP4 c4 10 1/ 9 16 1/ 8 0 (1/ 6) 2 / 9,
5 cP5 -c5 =10 (-1/6)+16 5/24+0(-1/2)=5/3,
6 0.

21.

Оптимальным планом производства не
предусмотрен выпуск изделий А. Введение в
план выпуска продукции вида А привело бы к
уменьшению указанной общей стоимости.
Это видно из 4-й строки столбца, где число 5
показывает, что при данном плане включение
в него выпуска единицы изделия А приводит
лишь к уменьшению общей величины
стоимости на 5 д.е.
Итак, план предусматривает выпуск 8 изделий
В и 20 изделий С. Сырье видов 1 и 2
используется целиком, а вида 3неиспользованным остается 96 кг.

22. ДВОЙСТВЕННЫЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Каждой ЗЛП можно поставить в соответствие
задачу, называемую двойственной к исходной
задаче.
Рассмотрим задачу об использовании
ресурсов. Предположим, что предприятие А
производит n видов продукции, величина
выпуска которых определяется переменными
x1 , x2 , ..., xn
.
В производстве используются m различных
видов ресурсов, объем которых ограничен
величинами b1 , b2 , ..., bn .

23.

Известны нормы затрат каждого ресурса на единицу
каждого вида продукции, образующие матрицу,
a11
a21
A
...
am1
a12
a22
...
am 2
... a1n
... a2 n
... ...
... amn
а также стоимость единицы продукции каждого вида
c1 , c2 , ..., cn
Требуется организовать производство так, чтобы
предприятию А была обеспечена максимальная
прибыль.

24.

Задача сводится к нахождению
неотрицательных переменных
x1 , x2 , ..., xn ,
при которых расход ресурсов не
превышает заданного их количества, а
стоимость всей продукции достигнет
максимума.

25.

В математической форме задача
записывается следующем виде:
F c1 x1 c2 x2 ... c j x j ... cn xn max
при условиях
a11 x1 a12 x2 ... a1 j x j ... a1n xn b1 ,
a21 x2 a22 x2 ... a2 j x j ... a2 n xn b2 ,
.
...............................................................,
a x a x ... a x ... a x b
mj j
mn n
m
m1 1 m 2 2
x j 0, j 1, n.

26.

По этим же исходным данным может быть
сформулирована другая задача.
Предположим, что предприятие В решило закупить
все ресурсы, которыми располагает предприятие А. В
этом случае предприятию В необходимо установить
оптимальные цены на эти ресурсы, исходя из
следующих условий:
общая стоимость ресурсов для предприятия В
должна быть минимальной;
за каждый вид ресурса предприятию А надо
уплатить не менее той суммы, которую это
предприятие может получить при переработке
данного вида ресурса в готовую продукцию.

27.

Если обозначить через y1 , y2 , ..., yn
цены, по которым предприятие В
покупает ресурсы у предприятия А, то
задача сводится к следующему: найти
такие значения переменных y1 , y2 , ..., yn ,
при которых стоимость ресурсов,
расходуемых на единицу любого вида
продукции не меньше прибыли (цены)
за эту единицу продукции, а общая
стоимость ресурсов достигает
минимума,

28.

т.е.какова должна быть оценка единицы
каждого из ресурсов y1 , y2 , ..., yn ,
чтобы при заданных объемах
имеющихся ресурсов bi , при заданных
стоимостях c j (j 1, n) единицы
продукции и нормах расходов aij
минимизировать общую оценку затрат
на всю продукцию.

29. Мат. модель двойственной задачи

В математической форме задача
записывается в виде:
*
F b1 y1 b2 y2 ... bm ym min
при ограничениях
a11 y1 a21 y2 ... am1 ym c1 ,
a y a y ... a y c ,
m2 m
2
12 1 22 2
..................................................
a y a y ... a y c ,
mn m
n
1n 1 2 n 2
yi 0, i 1, 2,..., m.

30. Экономический смысл переменных двойственной задачи

Переменные yi двойственной задачи в литературе
могут иметь различные названия:учетные, неявные,
теневые, объективно обусловленные оценки,
двойственные оценки или «цены» ресурсов.
Эти две задачи образуют пару взаимно
двойственных задач, любая из которых может
рассматриваться как исходная. Решение одной
задачи дает оптимальный план производства
продукции, а решение другой – оптимальную
систему оценок сырья, используемого для
производства этой продукции.

31.

Двойственные задачи линейного
программирования называют
симметричными, если они удовлетворяют
следующим свойствам:
число переменных в двойственной задаче
равно числу ограничений исходной задачи, а
число ограничений двойственной задачи
равно числу равно числу переменных в
исходной;
в одной задаче ищется максимум целевой
функции, в другой – минимум;
коэффициенты при переменных в целевой
функции одной задачи являются свободными
членами системы ограничений другой задачи;

32.

в каждой задаче система ограничений задается в
виде неравенств, причем, в задаче на отыскание
максимума, все неравенства вида «≤», а в задаче на
отыскание минимума, все неравенства вида «≥»;
матрица коэффициентов системы ограничений
получается одна из другой путем транспонирования;
каждому ограничению одной задачи соответствует
переменная другой задачи, номер переменной
совпадает с номером ограничения;
условия не отрицательности переменных
сохраняются в обеих задачах;

33. Решение симметричных двойственных задач

Первая теорема двойственности.
Если одна из двойственных задач
имеет оптимальное решение, то
оптимальное решение имеет и другая
задача, при этом значения целевых
функций задач равны между собой.
Если целевая функция одной из
задач не ограничена, то другая задача
вообще не имеет решения

34. Экономическое содержание первой теоремы двойственности

Если задача определения оптимального плана,
максимизирующего выпуск продукции, разрешима, то
разрешима и задача определения оценок ресурсов.
Причем цена продукта, полученного в результате
реализации оптимального плана, совпадает с
суммарной оценкой ресурсов.
Совпадения значений целевых функций для
соответствующих решений пары двойственных задач
достаточно для того, чтобы эти решения были
оптимальными.
Решая ЗЛП симплекс-методом, мы одновременно
решаем и исходную и двойственную задачи.

35. Метод одновременного решения пары двойственных задач

Исходная задача: Двойственная задача:
F c1x1 c2 x2 ... c j x j ... F * b1 y1 b2 y2 ...
cn xn max
a11 x1 a12 x2 ... a1n xn xn 1 b1 ,
a21 x1 a22 x2 ... a2 n xn xn 2 b2 ,
..........................................................
a x a x ... a x x b ,
mn n
n m
m
m1 1 m 2 2
x j 0, j 1, 2,..., n m.
bm ym min,
a11 y1 a21 y2 ... am1 ym ym 1 c1 ,
a y a y ... a y y c ,
m2 m
m 2
2
12 1 22 2
.............................................................
a y a y ... a y y c ,
mn m
m n
n
1n 1 2 n 2
yi 0, i 1, 2,..., m n.

36.

Число переменных в задачах одинаково
и равно m + n. В исходной задаче
базисными переменными являются

переменные xn 1 , xn 2 , ..., xn m
,
а в двойственной задаче –
вспомогательные неотрицательные
переменные yn 1 , yn 2 , ..., yn m .
Базисным переменным одной задачи
соответствуют свободные переменные
другой задачи, и наоборот.

37.

38.

При решении ЗЛП табличным симплексметодом решение двойственной задачи
содержится в последней строке таблицы.
Это j.
Причем основные переменные двойственной

соответствующих дополнительным
переменным исходной задачи, а
дополнительные переменные двойственной
задачи содержатся в столбцах,
соответствующих основным
(первоначальным) переменным исходной
задачи.

39. Пример.

Сформулируем модель задачи, двойственной
к задаче из примера 2 (начало лекции):
Найти максимум функции

40.

41.

Переменные исходной задачи x1 , x2 , x3 это количество изделий А,В и С. Введем
переменные двойственной задачи y1 , y2 , y3
Найти минимум функции
F * 360 y1 192 y2 180 y3 min
при ограничениях
18 y1 6 y2 5 y3 9,
15 y1 4 y2 3 y3 10,
12 y 8 y 3 y 16,
2
3
1
y1 , y2 , y3 0.

42. Рассмотрим последнюю таблицу исходной задачи

43.

Значение y1 в последней строке столбца P4 ,
т.е. y1 2 ;
9y 5
значение 2 3 в последней строке столбца P5,
значение y3 0 в последней строке столбца P6 .
Остальные значения находим в столбцах 1,2,3.
2 5
Y (; ;0;5;0;0)
9 3
При этом
2
5
F 360 192 180 0 0 5 0 0 0 0 400
9
3
*
-это минимальные затраты на всю продукцию.
2/9 и 5/3 –это теневые цены сырья 1-го и 2-го
видов соответственно.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: