Введение в Win32 API. Что такое Windows API


Windows (правда, это не относится к Windows 9x и Windows СЕ) сертифицирована Управлением национальной безопасности (National Security Agency, NSA) как система, обеспечивающая уровень безопасности С2.

Применение большинства других ОС, отличных от UNIX, Linux и Windows, ограничивается только системами, предоставляемыми единственным поставщиком.

Операционные системы семейства Windows предлагают ряд возможностей, которые в стандартной системе UNIX отсутствуют, хотя и могут быть доступными в некоторых реализациях. В качестве примера можно привести систему безопасности уровня С2, а также службы NT Services.

Windows предоставляет функциональность современных ОС, а диапазон систем, которые могут работать под ее управлением, простирается от текстовых процессоров и почтовых программ до интегрированных систем предприятия и серверов крупных баз данных. На принятие решений относительно способа разработки Windows-приложений оказывают влияние как соображения технического порядка, так и корпоративные требования.

Windows, стандарты и открытые системы

Эта книга посвящена разработке приложений с использованием Windows API. Вполне естественно, что у программистов, воспитанных на UNIX и открытых системах, могут возникнуть следующие вопросы: "Является ли Windows открытой системой?", "Представляет ли собой Windows промышленный стандарт?", "Не является ли Windows всего лишь очередным патентованным API?" Ответы на эти вопросы во многом зависят от того, что именно понимается под определениями открытая (open), промышленный стандарт (industry standard) или патентованный (proprietary), а также от того, какие преимущества ожидаются от использования открытых систем.

Windows API полностью отличается от API стандарта POSIX, поддерживаемого системами Linux и UNIX. Windows не подчиняется стандарту Х/Open, как не подчиняется и никакому другому открытому промышленному стандарту из тех, которые были предложены соответствующими органами стандартизации или промышленными консорциумами.

Windows контролируется единственным поставщиком. Хотя Microsoft и заявляет о своей готовности приспосабливаться к требованиям отрасли и учитывать их, в этих вопросах сама же она является арбитром и исполнителем в одном лице. Отсюда следует, что, помимо других преимуществ, пользователи Windows получают многие из выгод, которые обычно предлагают открытые стандарты.

Унифицированные реализации быстрее достигают рынка.

Отсутствуют какие-либо неожиданные фирменные "улучшения" или "расширения", с которыми потом приходится бороться программисту, хотя небольшие различия, существующие между различными платформами Windows, все же приходится учитывать.

Вся совокупность полноценных ОС-продуктов, предлагающих все необходимые возможности, определена и реализована одним и тем же поставщиком. Разработчикам приложений остается решать только высокоуровневые задачи.

Базовая аппаратная платформа является открытой. Разработчики могут выбирать любого из многочисленных поставщиков платформ по своему усмотрению.

Жаркие споры относительно того, к добру ли такая ситуация для пользователей и компьютерной индустрии в целом, или она только вредит общему делу, еще не закончились. Мы не будем пытаться участвовать в этом споре; задача данной книги состоит лишь в том, чтобы помочь разработчикам приложений как можно скорее приступить к работе в Windows.

В действительности системы Windows поддерживают многие важные стандарты. Так, Windows поддерживает стандартные библиотеки С и С+ и целый ряд открытых стандартов межплатформенного взаимодействия. В качестве примера можно привести сокеты Windows (Windows Sockets), предоставляющие стандартный интерфейс сетевого программирования, который обеспечивает возможность использования TCP/IP и других сетевых протоколов и тем самым открывает возможности доступа в Internet и взаимодействия с системами, не принадлежащими семейству Windows. To же самое остается справедливым и по отношению к протоколу удаленного вызова процедур (Remote Procedure Calls, RPC). Системы самой различной природы могут связываться с высокоуровневыми системами управления базами данных (СУБД) при помощи языка структурированных запросов (SQL). Наконец, в общий круг предложений Windows входит поддержка Internet, обеспечиваемая Web-серверами и серверам иного рода. Windows поддерживает такие ключевые стандарты, как TCP/IP, а на активно действующем рынке поставщиков решений Windows вам предлагают приобрести за разумную плату множество других ценных дополнительных продуктов, в том числе клиенты и серверы X Window.

Резюмируя, можно утверждать, что Windows поддерживает наиболее важные из стандартов межплатформенного взаимодействия, и хотя основной API является собственностью компании, он доступен по умеренной цене для широкого ряда систем.

Библиотеки совместимости

Несмотря на наличие библиотек совместимости (compatibility libraries), ими пользуются очень редко. Существуют две возможности.

В системах на основе UNIX, Linux, Macintosh и некоторых других может быть развернута одна из библиотек совместимости Windows, например, эмулятор Windows с открытым исходным кодом Wine, что обеспечивает переносимость исходного кода из Windows.

За счет использования программного обеспечения с открытым исходным кодом и набора инструментальных средств Windows Resource Kit компании Microsoft поверх подсистемы Windows может быть развернута библиотека совместимости POSIX. Весьма ограниченная по своим возможностям библиотека совместимости входит в состав среды визуальной разработки при ложений Microsoft Visual C++.

Таким образом, имеется, пусть даже и редко используемая, возможность выбора одного API и развертывания разработанных с его помощью переносимых приложений на системах Windows, POSIX и даже Macintosh.

Принципы, лежащие в основе Windows

Полезно никогда не забывать о некоторых базовых принципах Windows. В Windows API имеется множество как самых незаметных, так и значительных отличий от других API, таких как POSIX API, с которым знакомы программисты, работающие в UNIX и Linux. И хотя с применением Windows не связаны какие-либо специфические трудности в работе, она потребует от вас внесения некоторых изменений в привычные стиль и методику программирования.

Ниже описаны некоторые из важнейших характеристик Windows, с которыми вы ближе познакомитесь по мере дальнейшего изложения материала.

Многие системные ресурсы Windows представляются в виде объектов ядра (kernel objects), для идентификации и обращения к которым используются дескрипторы (handles). По смыслу эти дескрипторы аналогичны дескрипторам (descriptors) файлов и идентификаторам (ID) процессов в UNIX.

Любые манипуляции с объектами ядра осуществляются только с использованием Windows API. "Лазеек" для обхода этого правила нет. Подобная организация работы согласуется с принципами абстрагирования данных, используемыми в объектно-ориентированном программировании, хотя сама система Windows объектно-ориентированной не является.

К объектам относятся файлы, процессы, потоки, каналы межпроцессного взаимодействия, объекты отображения файлов, события и многое другое. Объекты имеют атрибуты защиты.

Windows - богатый возможностями и гибкий интерфейс. Во-первых, одни и те же или аналогичные задачи могут решаться с помощью сразу нескольких функций; так, имеются вспомогательные функции (convenience functions), полученные объединением часто встречающихся последовательностей функциональных вызовов в одну функцию (к числу подобных функций принадлежит и функция CopyFile, используемая в одном из примеров далее в этой главе). Во-вторых, функции часто имеют многочисленные параметры и флаги, многие из которых обычно игнорируются. Данная книга не претендует на роль энциклопедического справочника, и основное внимание в ней концентрируется лишь на наиболее важных функциях и параметрах.

Windows предлагает многочисленные механизмы синхронизации и взаимодействия, обеспечивающие удовлетворение самых разнообразных запросов.

Базовой единицей выполнения в Windows является поток (thread). В одном процессе (process) могут выполняться один или несколько потоков.

Для функций Windows используются длинные описательные имена. Приведенные ниже в качестве примера имена функций иллюстрируют не только соглашения об использовании имен, но и многоликость функций Windows:

Существует также несколько соглашений, регулирующих порядок использования имен типов:

Имена предопределенных типов данных, необходимых API, также являются описательными, и в них должны использоваться прописные буквы.

К числу наиболее распространенных относятся следующие типы данных:

BOOL (определен как 32-битовый объект, предназначенный для хранения одного логического значения)

DWORD (вездесущее 32-битовое целое без знака)

LPTSTR (указатель на строку, состоящую из 8– или 16-битовых символов)

LPSECURITY_ATTRIBUTES

С другими многочисленными типами данных вы будете знакомиться по мере изложения материала.

В именах предопределенных типов указателей операция * не используется, и они отражают дополнительные отличия между указателями различного типа, как, например, в случае типов LPTSTR (определен как TCHAR *) и LPCTSTR (определен как const TCHAR *). Примечание. Тип TCHAR может обозначать как обычный символьный тип char, так и двухбайтовый тип wchar_t.

В отношении использования имен переменных, - по крайней мере, в прототипах функций, - также имеются определенные соглашения. Так, имя lpszFileName соответствует "длинному указателю на строку, завершающуюся нулевым символом", которая содержит имя файла. Этот пример иллюстрирует применение так называемой "венгерской нотации", которой мы в данной книге, как правило, не стремимся придерживаться. Точно так же, dwAccess - двойное слово (32 бита), содержащее флаги прав доступа к файлу, где "dw" означает "double word" - "двойное слово".

Примечание

Будет очень полезно, если вы просмотрите системные заголовочные (включаемые) файлы, в которых содержатся определения функций, констант, флагов, кодов ошибок и тому подобное. Многие из представляющих для нас интерес файлов, аналогичных тем, которые предложены ниже в качестве примера, являются частью среды Microsoft Visual C++ и обычно устанавливаются в каталоге Program Files\Microsoft Visual Studio.NET\Vc7\PlatformSDK\Include (или Program Files\Microsoft Visual Studio\VC98\Include в случае VC++ 6.0):

WINDOWS.H (файл, обеспечивающий включение всех остальных заголовочных файлов)

Наконец, несмотря на то что оригинальный API Win32 с самого начала разрабатывался как совершенно независимый интерфейс, он проектировался с учетом обеспечения обратной совместимости с API Winl6, входившим в состав Windows 3.1. Это привело к некоторым досадным с точки зрения программиста последствиям:

В названиях типов встречаются элементы анахронизма, как, например, в случае типов LPTSTR и LPDWORD, ссылающихся на "длинный указатель", который является простым 32– или 64-битовым указателем. Необходимость в указателях какого-либо иного типа отсутствует. Иногда составляющая "длинный" опускается, и тогда, например, типы LPVOID и PVOID являются эквивалентными.

В имена некоторых символических констант, например WIN32_FIND_DATA, входит компонент "WIN32", хотя те же константы используются и в Win64.

Несмотря на то что упомянутая проблема обратной совместимости в настоящее время потеряла свою актуальность, она оставила после себя множество 16-разрядных функций, ни одна из которых в этой книге не используется, хотя и могло бы показаться, что эти функции играют весьма важную роль. В качестве примера можно привести функцию OpenFile, которая, судя по ее названию, нужна для открытия файлов, тогда как в действительно сти для открытия существующих файлов всегда следует пользоваться только функцией CreateFile.

Подготовка к работе с Win64

Интерфейс Win64, который во время написания данной книги поддерживался Windows XP и Windows Server 2003 на процессорах семейства AMD64 (Opteron и Athlon 64) компании AMD и процессорах семейства Itanium (ранее известных под кодовыми названиями Merced, McKinley, Madison и IA-64) компании Intel, будет играть все более важную роль при создании крупных приложений. Существенные отличия между Win32 и Win64 обусловлены различиями в размере указателей (64 бита в Win64) и объеме доступного виртуального адресного пространства.

Проблемы переноса приложений на платформу Win64 обсуждаются по мере изложения материала на протяжении всей книги, а программы организованы таким образом, чтобы создание их в виде приложений Win64 обеспечивалось простым указанием соответствующих параметров на стадии компиляции. В находящихся на Web-хосте книги проектах с программами примеров в необходимых случаях предусмотрен вывод сообщений, предупреждающих о возникновении проблем при переходе к 64 разрядам, но большинство ситуаций (хотя и не полностью все), которые могли бы приводить к генерации таких сообщений, из программного кода исключены.

С точки зрения программиста основные отличия при переходе к Win64 обусловлены размерами указателей и необходимостью помнить о том, что длины указателя и целочисленной переменной (LONG, DWORD и так далее) не обязательно должны совпадать. С этой целью определены, например, типы DWORD32 и DWORD64, позволяющие явно управлять размером переменных. Два других типа, POINTER_32 и POINTER_64, позволяют управлять размером указателей.

Как вы сами убедитесь, приложив лишь самые незначительные усилия, можно добиться того, чтобы программы работали как в Win32, так и в Win64, и поэтому мы будем часто ссылаться на API просто как на Windows или, иногда, Win32. Дополнительная информация относительно Win64 содержится в главе 16, где, в частности, обсуждаются вопросы совместимости исходных и двоичных кодов.

Программисты, работающие с UNIX и Linux, столкнутся в Windows с рядом интересных особенностей. Так, в Windows дескрипторы HANDLE являются "непрозрачными". Они не представляют собой ряд последовательно возрастающих целых чисел. В то же время, например, в UNIX дескрипторы файлов 0, 1 и 2 имеют специальное назначение, что должно обязательно учитываться при написании программ. Ничего подобного в Windows вы не обнаружите.

Многие из различий, например грань между идентификаторами процессов и дескрипторами файлов, в Windows оказываются стертыми. В Windows объекты обеих типов описываются дескрипторами типа HANDLE. Во многих важных функциях могут наравне использоваться дескрипторы файлов, процессов, событий, каналов и других объектов.

Программистам, которые, работая в UNIX, привыкли к коротким именам функций и параметров и использовали преимущественно строчные буквы, придется приспосабливаться к более пространному стилю Windows. Стиль Windows близок к стилю интерфейса компании Hewlett Packard (ранее - DEC и Compaq); программистам, работающим с OpenVMS, многое покажется знакомым. Указанное сходство между OpenVMS и Windows частично объясняется тем, что Дэвид Катлер (David Cutler), создатель первоначальной архитектуры VMS, предполагал, что она должна играть ту же роль, что и NT или Windows.

Радикальные отличия касаются такого хорошо знакомого нам всем понятия, как процессы. В Windows процессы не обладают свойствами наследования, хотя и могут быть организованы в виде объектов заданий.

В завершение следует отметить, что в текстовых файлах Windows конец строки отмечается последовательностью управляющих символов CR-LF, а не LF, как в это принято в UNIX.

О целесообразности привлечения функций стандартной библиотеки C для обработки файлов

Несмотря на всю уникальность возможностей Windows, старый добрый язык С и его стандартная библиотека ANSI С по-прежнему могут с успехом использоваться при решении большинства задач, связанных с обработкой файлов. Кроме того, библиотека С (указание на ее соответствие стандарту ANSI С мы будем часто опускать) содержит большое число очень нужных функций, аналогов которых среди системных вызовов нет. К их числу относятся, например, функции, описанные в заголовочных файлах , и , а также функции форматированного и символьного ввода/вывода. В то же время, имеются и такие функции, как fopen и fread, описанные в заголовочном файле , для которых находятся близко соответствующие им системные вызовы.

В каких же случаях при обработке файлов можно обойтись библиотекой С, а в каких необходимо использовать системные вызовы Windows? Тот же вопрос можно задать и в отношении использования потоков (streams) ввода/вывода C++ или системы ввода/вывода, которая предоставляется платформой.NET. Простых ответов на эти вопросы не существует, но если во главу угла поставить переносимость программ на платформы, отличные от Windows, то в тех случаях, когда приложению требуется только обработка файлов, а не, например, управление процессами или другие специфические возможности Windows, предпочтение следует отдавать библиотеке С и потокам ввода/вывода C++. Вместе с тем, многими программистами ранее уже делались попытки выработать рекомендации относительно адекватности использования библиотеки С в тех или иных случаях, и эти же рекомендации должны быть применимы и в отношении Windows. Кроме того, с учетом возможностей расширения функциональности, а также повышения производительности и гибкости программ, обеспечиваемые Windows, нередко оказывается более удобным или даже необходимым не ограничиваться библиотекой С, в чем вы постепенно станете убеждаться уже начиная с главы 3. К числу возможностей Windows, не поддерживаемых библиотекой С, относятся блокирование и отображение файлов (необходимое для разделения общих областей памяти), асинхронный ввод/вывод, произвольный доступ к файлам чрезвычайно крупных размеров (4 Гбайт и выше) и взаимодействие между процессами.

В случае простых программ вам будет вполне достаточно использовать функции библиотеки С, предназначенные для работы с файлами. Воспользовавшись библиотекой С, можно написать переносимое приложение даже без изучения Windows, однако возможности выбора при этом будут ограниченными. Так, в главе 5 для повышения производительности программы и упрощения программирования применено отображение файлов, однако библиотека С такие возможности не предоставляет.

Что требуется для работы с данной книгой

Ниже перечислено все то, что необходимо вам для создания и выполнения примеров, приведенных в этой и последующих главах книги.

Разумеется, прежде всего, вам потребуется весь ваш опыт в области разработки приложений; предполагается также, что язык С вам знаком. Однако прежде, чем браться за решение упражнений и разбор примеров, вы должны убедиться в том, что располагаете всем необходимым аппаратным и программным обеспечением, перечень которого приводится ниже.

Система с установленной ОС Windows.

Компилятор С и любая подходящая среда разработки приложений, например, Microsoft Visual Studio .NET или Microsoft Visual C++ версии 6.0. Имеются также системы разработки приложений от других поставщиков, и хотя примеры из книги нами на них не тестировались, из поступивших от нескольких читателей писем нам стало известно, что примеры, пусть даже после внесения в них незначительных изменений, в некоторых случаях успешно выполнялись даже при использовании других систем. Кроме того, в приложении А содержится информация, касающаяся использования инструментальных средств с открытым исходным кодом. Примечание. Наше внимание будет сосредоточено на разработке консольных приложений Windows, и поэтому возможности Microsoft Visual Studio .NET будут задействованы далеко не в полной мере.

Достаточный для разработки программ объем ОЗУ и наличие свободного места на жестком диске. Практически любая коммерчески доступная система предоставит вам достаточный объем памяти, место на диске и процессорную мощность, которых хватит для запуска примеров и среды разработки приложений, однако предварительно необходимо проверить, какие именно требования к ресурсам предъявляет эта среда.

Привод компакт-диска, системного или сетевого, для установки среды разработки приложений.

Оперативная документация наподобие той, которая поставляется вместе с Microsoft Visual C++. Желательно, чтобы вы установили эту документацию на своем жестком диске, поскольку к ней будет требоваться частый доступ. Дополнительную информацию вы всегда сможете получить на Web-сайте компании Microsoft.

Пример: простое последовательное копирование файла

В следующих разделах приведены примеры коротких программ, реализующих простое последовательное копирование содержимого файла тремя различными способами:

1. С использованием библиотеки С.

2. С использованием Windows.

3. С использованием вспомогательной функции Windows - CopyFile.

Кроме того, что эти примеры дают возможность сопоставить между собой различные модели программирования, они также демонстрируют возможности и ограничения, присущие библиотеке С и Windows. Альтернативные варианты реализации усилят программу, увеличивая ее производительность и повышая гибкость.

Последовательная обработка файлов является простейшей, наиболее распространенной и самой важной из возможностей, обеспечиваемых любой операционной системой, и почти в каждой большой программе хотя бы несколько файлов обязательно подвергаются этому виду обработки. Поэтому простая программа обработки файлов предоставляет прекрасную возможность ознакомиться с Windows и принятыми в ней соглашениями.

Копирование файлов, нередко осуществляемое совместно с обновлением их содержимого, и слияние отсортированных файлов являются распространенными формами последовательной обработки файлов. Примерами других приложений, осуществляющих последовательный доступ к файлам, могут служить компиляторы и инструментальные средства, предназначенные для обработки текста.

Несмотря на концептуальную простоту последовательной обработки файлов, эффективная реализация этого процесса, обеспечивающая оптимальную скорость его выполнения, может оказаться нелегкой задачей. Для этого может потребоваться использование перекрывающегося ввода/вывода, отображения файлов, потоков и других дополнительных методов.

Само по себе копирование файлов не представляет особого интереса, однако сравнение программ не только позволит вам быстро оценить, чем отличаются друг от друга различные системы, но и послужит хорошим предлогом для знакомства с Windows. В последующих примерах реализуется ограниченный вариант одной из команд UNIX - cp, осуществляющей копирование одного файла в другой и требующей задания имен файлов в командной строке. В приведенных программах организована лишь простейшая проверка ошибок, которые могут возникать на стадии выполнения, а существующие файлы просто перезаписываются. Эти и другие недостатки будут учтены в последующих Windows-реализациях этой и других программ. Примечание. Реализация программы для UNIX находится на Web-сайте книги.

Копирование файлов с использованием стандартной библиотеки С

Как видно из текста программы 1.1, стандартная библиотека С поддерживает объекты потоков ввода/вывода FILE, которые напоминают, несмотря на меньшую общность, объекты Windows HANDLE, представленные в программе 1.2.

Программа 1.1. срC: копирование файлов с использованием библиотеки С
/* Глава 1. Базовая программа копирования файлов cp. Реализация, использующая библиотеку С. */
/* cp файл1 файл2: Копировать файл1 в файл2. */

int main(int argc, char *argv) {
printf("Использование: срС файл1 файл2\n");
in_file = fopen(argv , "rb");
out_file = fopen(argv , "wb");
/* Обработать входной файл по одной записи за один раз. */
while ((bytes_in = fread(rec, 1, BUF_SIZE, in_file)) > 0) {
bytes_out = fwrite(rec, 1, bytes_in, out_file);
perror("Неустранимая ошибка записи.");

Этот простой пример может служить наглядной иллюстрацией ряда общепринятых допущений и соглашений программирования, которые не всегда применяются в Windows.

1. Объекты открытых файлов идентифицируются указателями на структуры FILE (в UNIX используются целочисленные дескрипторы файлов). Указателю NULL соответствует несуществующий объект. По сути, указатели являются разновидностью дескрипторов объектов открытых файлов.

2. В вызове функции fopen указывается, каким образом должен обрабатываться файл - как текстовый или как двоичный. В текстовых файлах содержатся специфические для каждой системы последовательности символов, используемых, например, для обозначения конца строки. Во многих системах, включая Windows, в процессе выполнения операций ввода/вывода каждая из таких последовательностей автоматически преобразуется в нулевой символ, который интерпретируется в языке С как метка конца строки, и наоборот. В нашем примере оба файла открываются как двоичные.

3. Диагностика ошибок реализуется с помощью функции perror, которая, в свою очередь, получает информацию относительно природы сбоя, возникающего при вызове функции fopen, из глобальной переменной errno. Вместо этого можно было бы воспользоваться функцией ferror, возвращающей код ошибки, ассоциированный не с системой, а с объектом FILE.

4. Функции fread и fwrite возвращают количество обработанных байтов непосредственно, а не через аргумент, что оказывает существенное влияние на логику организации программы. Неотрицательное возвращаемое значение говорит об успешном выполнении операции чтения, тогда как нулевое - о попытке чтения метки конца файла.

5. Функция fclose может применяться лишь к объектам типа FILE (аналогичное утверждение справедливо и в отношении дескрипторов файлов UNIX).

6. Операции ввода/вывода осуществляются в синхронном режиме, то есть прежде чем программа сможет выполняться дальше, она должна дождаться завершения операции ввода/вывода.

7. Для вывода сообщений об ошибках удобно использовать входящую в библиотеку С функцию ввода/вывода printf, которая даже будет использована в первом примере Windows-программы.

Преимуществом реализации, использующей библиотеку С, является ее переносимость на платформы UNIX, Windows, а также другие системы, которые поддерживают стандарт ANSI С. Кроме того, как показано в приложении В, в том, что касается производительности, вариант, использующий функции ввода/вывода библиотеки С, ничуть не уступает другим вариантам реализации. Тем не менее, в этом случае программы вынуждены ограничиваться синхронными операциями ввода/вывода, хотя влияние этого ограничения будет несколько ослаблено использованием потоков Windows (начиная с главы 7).

Как и их эквиваленты в UNIX, программы, основанные на функциях для работы с файлами, входящих в библиотеку С, способны выполнять операции произвольного доступа к файлам (с использованием функции fseek или, в случае текстовых файлов, функций fsetpos и fgetpos), но это является уже потолком сложности для функций ввода/вывода стандартной библиотеки С, выше которого они подняться не могут. Вместе с тем, Visual C++ предоставляет нестандартные расширения, способные, например, поддерживать блокирование файлов. Наконец, библиотека С не позволяет управлять средствами защиты файлов.

Резюмируя, можно сделать вывод, что если простой синхронный файловый или консольный ввод/вывод - это все, что вам надо, то для написания переносимых программ, которые будут выполняться под управлением Windows, следует использовать библиотеку С.

Копирование файлов с использованием Windows

В программе 1.2 решается та же задача копирования файлов, но делается это с помощью Windows API, а базовые приемы, стиль и соглашения, иллюстрируемые этой программой, будут использоваться на протяжении всей этой книги.

Программа 1.2. cpW: копирование файлов с использованием Windows, первая реализация
/* Глава 1. Базовая программа копирования файлов cp. Реализация, использующая Windows. */
/* cpW файл1 файл2: Копировать файл1 в файл2. */

printf ("Использование: cpW файл1 файл2\n");
hIn = CreateFile(argv , GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);
if (hIn == INVALID_HANDLE_VALUE) {
printf("Невозможно открыть входной файл. Ошибка: %х\n", GetLastError());
hOut = CreateFile(argv, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if (hOut == INVALID_HANDLE_VALUE) {
printf("Невозможно открыть выходной файл. Ошибка: %x\n", GetLastError());
while (ReadFile(hIn, Buffer, BUF_SIZE, &nIn, NULL) && nIn > 0) {
WriteFile(hOut, Buffer, nIn, &nOut, NULL);
printf ("Неустранимая ошибка записи: %x\n", GetLastError());

Этот простой пример иллюстрирует некоторые особенности программирования в среде Windows, к подробному рассмотрению которых мы приступим в главе 2.

1. В программу всегда включается файл , в котором содержатся все необходимые определения функций и типов данных Windows.

2. Все объекты Windows идентифицируются переменными типа Handle, причем для большинства объектов можно использовать одну и ту же общую функцию CloseHandle.

3. Рекомендуется закрывать все ранее открытые дескрипторы, если в необходимость в них отпала, чтобы освободить ресурсы. В то же время, при завершении процессов относящиеся к ним дескрипторы автоматически закрываются ОС, и если не остается ни одного дескриптора, ссылающегося на какой-либо объект, то ОС уничтожает этот объект и освобождает соответствующие ресурсы. (Примечание. Как правило, файлы подобным способом не уничтожаются.)

4. Windows определяет многочисленные символические константы и флаги. Обычно они имеют длинные имена, нередко поясняющие назначение данного объекта. В качестве типичного примера можно привести имена INVALID_HANDLE_VALUE и GENERIC_READ.

5. Функции ReadFile и WriteFile возвращают булевские значения, а не количества обработанных байтов, для передачи которых используются аргументы функций. Это определенным образом изменяет логику организации работы циклов. Нулевое значение счетчика байтов указывает на попытку чтения метки конца файла и не считается ошибкой.

6. Функция GetLastError позволяет получать в любой точке программы коды системных ошибок, представляемые значениями типа DWORD. В программе 1.2 показано, как организовать вывод генерируемых Windows текстовых сообщений об ошибках.

7. Windows NT обладает более мощной системой защиты файлов, описанной в главе 15. В данном примере защита выходного файла не обеспечивается.

8. Такие функции, как CreateFile, обладают богатым набором дополнительных параметров, но в данном примере использованы значения по умолчанию.

Копирование файлов с использованием вспомогательной функции Windows

Для повышения удобства работы в Windows предусмотрено множество вспомогательных функций (convenience functions), которые, объединяя в себе несколько других функций, обеспечивают выполнение часто встречающихся задач программирования. В некоторых случаях использование этих функций может приводить к повышению производительности (см. приложение В). Например, благодаря применению функции CopyFile значительно упрощается программа копирования файлов (программа 1.3). Помимо всего прочего, это избавляет нас от необходимости заботиться о буфере, размер которого в двух предыдущих программах произвольно устанавливался равным 256.

Программа1.3.cpCF: копирование файлов с использованием вспомогательной функции Windows
/* Глава 1. Базовая программа копирования файлов cp. Реализация, в которой для повышения удобства использования и производительности программы используется функция Windows CopyFile. */
/* cpCF файл1 файл2: Копировать файл1 в файл2. */

int main (int argc, LPTSTR argv ) {
printf ("Использование: cpCF файл1 файл2\n");
if (!CopyFile(argv, argv, FALSE)) {
printf("Ошибка при выполнении функции CopyFile: %x\n", GetLastError());

Резюме

Ознакомительные примеры, в качестве которых были использованы три простые программы копирования файлов, демонстрируют многие из отличий, существующих между программами, в которых применяется с одной стороны библиотека С, а с другой - Windows. Отличия в производительности различных вариантов реализации анализируются в приложении В. Примеры, в которых используется Windows, наглядно демонстрируют стиль программирования и некоторые соглашения, принятые в Windows, но дают лишь отдаленное представление о тех функциональных возможностях, которые Windows предлагает программистам.

Целевыми платформами для данной книги и содержащихся в ней примеров являются системы NT5 (Windows XP, 2000 и Server 2003). Тем не менее, большая часть материала книги применима также к ранним версиям NT и системам Windows 9x (95, 98 и Me).

В следующих главах

Главы 2 и 3 посвящены гораздо более пристальному рассмотрению функций ввода/вывода и файловой системы. Они включают в себя такие темы, как консольный ввод/вывод, обработка символов ASCII и Unicode, работа с файлами и каталогами, а также программирование реестра. В указанных главах разрабатываются базовые методики и закладывается фундамент для остальной части книги.

Дополнительная литература

Win32

Двумя доступными в настоящее время книгами, в которых вопросы программирования для Windows рассматриваются с всех возможных точек зрения, являются и . В то же время, существует множество других книг, которые не обновлялись и не отражают прогресс, достигнутый с момента выхода Windows 95 или Windows NT.

По каждой функции Microsoft Visual C++ имеется оперативная гипертекстовая справочная документация, но ту же информацию можно получить, посетив домашнюю страницу компании Microsoft - http://www.microsoft.com, где вы найдете целый ряд ссылок на технические статьи, посвященные различным аспектам Windows. Начните с раздела MSDN (Microsoft Developer"s Network) и произведите поиск по любой интересующей вас теме. Вы обнаружите огромное разнообразие официальной документации, описаний продуктов, примеров программного кода, а также другую полезную информацию.

Win64

Win64 обсуждается в нескольких книгах, но обширный материал по этой теме можно найти на домашней странице компании Microsoft.

Архитектура Windows NT и история ее развития

Читателям, которые хотят больше узнать о целях проектирования Windows NT или понять основные принципы, лежащие в основе ее архитектуры, будет полезна книга . В этой книге рассматриваются объекты, процессы, потоки, виртуальная память, ядро и подсистемы ввода/вывода. Вместе с тем, собственно функции API, а также Windows 9x и СЕ в ней не обсуждаются. Рекомендуем время от времени заглядывать в упомянутую книгу для получения дополнительной информации. Кроме того, обратитесь к ранее вышедшим книгам и , в которых содержится важный ретроспективный анализ эволюции NT.

UNIX

В книге , написанной ныне покойным Уильямом Ричардом Стивенсом (W. Richard Stevens), UNIX обсуждается во многом в тех же терминах, которые в настоящей книге используются для обсуждения Windows. Книга Стивенса по-прежнему остается стандартным справочником по средствам UNIX, но в ней не рассматриваются потоки. Стандартизация UNIX претерпела изменения, однако в книге Стивенса содержатся удобные рабочие определения всего того, что предлагается в UNIX, а также в Linux. В этой книге сопоставлены возможности функций файлового ввода/вывода библиотеки С и функций ввода/вывода системы UNIX, что имеет отношение и к Windows.

Если вас интересуют сравнительные характеристики ОС и более глубокое обсуждение UNIX, обратитесь к книге и ее русскоязычному изданию , которая помимо того, что является весьма полезной, еще и увлекательно написана, хотя некоторым читателям позиция автора может показаться несколько предвзятой.

Программирование с использованием Windows GUI

Пользовательский интерфейс в настоящей книге не рассматривается. В случае необходимости можете обратиться к или .

Теория операционных систем

Существует масса хороших учебников по общей теории ОС. Одной из наиболее популярных является книга .

Стандартная библиотека ANSI С

Исчерпывающим руководством по этой теме служит книга . Для получения беглого обзора можно обратиться к книге или к ее русскоязычному изданию , которая содержит полное описание библиотеки и остается классическим учебником по языку программирования С. Эти книги помогут вам принять решение относительно того, достаточно ли возможностей библиотеки С для решения стоящих перед вами задач обработки файлов.

Windows СЕ

Тем, кто хочет применить материал настоящей книги к Windows СЕ, можно порекомендовать книгу .

Эмуляция Windows в UNIX

Для получения необходимой информации по этому вопросу и загрузки пакета с открытым исходным кодом Wine, позволяющего эмулировать Windows API поверх UNIX и X, посетите сайт http://www.winehq.com.

Упражнения

1.1. Скомпилируйте, скомпонуйте и выполните каждую из трех программ, предназначенных для копирования файлов. К числу других возможных вариантов реализации относится использование библиотек совместимости с UNIX, включая библиотеку Microsoft Visual C++ (программа, использующая эту библиотеку, доступна на Web-сайте книги). Примечание. На Web-сайте книги на ходятся исходные коды всех программ. Краткие рекомендации относительно порядка использования этих кодов в средах Microsoft Visual Studio .NET и Microsoft Visual C++ 6.0 вы найдете в приложении А.

1.2. Ознакомьтесь с одной из сред разработки приложений, например, Microsoft Visual Studio .NET или Microsoft Visual C++. В частности, научитесь создавать в выбранной среде консольные приложения. Для проведения самостоятельных экспериментов с использованием рассмотренных в данной главе программ пользуйтесь отладчиком. Инструкции относительно того, как следует приступать к работе, содержатся в приложении А, а обширную дополнительную информацию вы найдете на Web-сайте компании Microsoft и в документации к используемой вами среде разработки приложений.

1.3. В Windows в качестве метки конца строки используется последовательность символов "возврат каретки-перевод строки" (CR-LF). Определите, как изменится поведение программы 1.1, если входной файл открывать в двоичном режиме, а выходной - в текстовом, или наоборот. Как это будет проявляться в системе UNIX и в других системах?

1.4. Выполните для каждой из программ хронометраж при копировании файлов большого размера. Получите соответствующие данные для как можно большего числа различных вариантов и сравните полученные результаты между собой. Вряд ли следует подчеркивать, что быстродействие программ зависит от множества факторов, однако, в предположении, что все остальные параметры системы остаются неизменными, сопоставление результатов, полученных с использованием различных вариантов реализации программы, может представлять определенную ценность. Совет. Для облегчения анализа результатов расположите их в виде таблицы. Программа, обеспечивающая количественный контроль длительности временных промежутков, приведе на в главе 6, а некоторые экспериментальные результаты представлены в приложении В.

Примечания:

Тем не менее, в тех местах книги, где речь идет о средствах, неприменимых в Windows 9х, делаются соответствующие оговорки.

Замечания, сделанные в адрес UNIX, в равной степени относятся также к Linux и некоторым другим системам, поддерживающим POSIX API.

Иногда, имея в виду в основном серверы, но не исключая и персональные приложения, говорят о возможной угрозе преобладанию Windows со стороны Linux. Хотя сама по себе эта тема является чрезвычайно интересной, размышления о путях будущего развития систем, не имеющие непосредственного отношения к рассмотрению сравнительных достоинств и недостатков Windows и Linux, выходят за рамки данной книги.

О том, насколько разнообразен круг систем, на которых может быть развернута Windows, говорит хотя бы тот факт, что диапазон компьютеров, использованных для тестирования приведенных в этой книге примеров программ, простирается от давно забытой 486-й модели с 16 Мбайт ОЗУ до четырехпроцессорного (процессоры Xeon с рабочей частотой 2 ГГц) сервера масштаба предприятия, оборудованного ОЗУ емкостью 8 Гбайт.

Протоколы Windows Sockets и RPC не являются частью самой Windows, что не воспрепятствовало описанию сокетов в данной книге, поскольку они самым непосредственным образом укладываются в рамки интересующей нас общей темы и используемого подхода.

Несмотря на аналогию между упомянутыми дескрипторами и дескрипторами HWND и HDC, используемыми при написании программ для Windows GUI, между ними существует ряд отличий.

Такие типы, как PVOID, входят в include-файлы без префикса, но в примерах мы будем придерживаться правил их употребления, принятых во многих книгах и документации Microsoft.

О том, какими быстрыми темпами улучшаются показатели стоимости и производительности, вы можете судить хотя бы по тому факту, что еще в 1997 году в первом издании этой книги автор, без тени смущения или неловкости, в качестве необходимых требований указывал 16 Мбайт ОЗУ и 256 Мбайт свободного места на жестком диске. Для написания настоящего, третьего издания книги используется лэптоп стоимостью менее $1000, с объемом ОЗУ в более чем 10 раз превышающим прежний (что больше ранее требуемого объема дискового пространства), 100-кратной емкостью жесткого диска и 50-кратным превышением быстродействия процессора по сравнению с аналогичными характеристиками компьютера стоимостью $2500, который использовался при подготовке первого издания.

В приложении А показано, как исключить ненужные определения для ускорения компиляции и экономии дискового пространства.

Обратите внимание на то, что логика цикла зависит от принятого в стандарте ANSI С порядка вычисления логических операций "и" (&&) и "или" (||) в направлении слева направо.

Поскольку практическая часть данного курса предполагает разработку и выполнение разнообразных Win32-приложений, которые работают в среде, создаваемой Win32-подсистемой, необходимо рассмотреть ее более подробно. Взаимодействие между приложением и операционной системой осуществляется при помощи системных вызовов ( системных сервисов в терминологии Microsoft). Однако приложение не может вызвать системный вызов напрямую (более того, системные вызовы не документированы). Вместо этого приложение должно воспользоваться программным интерфейсом ОС - Win32 API.

Win32 API (Application Programming Interface) - основной интерфейс программирования в семействе операционных систем Microsoft Windows. Функции Win32 API , например, CreateProcess или CreateFile , - документированные, вызываемые подпрограммы, реализуемые Win32 подсистемой.

  • Функция полностью выполняется внутри данной dll (шаг 1).
  • Для выполнения функции привлекается сервер csrss, для чего ему посылается сообщение (шаг 2a, за которым обычно следуют шаги 2b и 2c).
  • Данный вызов транслируется в системный сервис ( системный вызов ), который обычно обрабатывается в модуле ntdll.dll (шаги 3a и 3b). Например, Win32-функция ReadFile выполняется с помощью недокументированного сервиса NtReadFile .

Некоторые функции (например, CreateProcess ) требуют выполнения обоих последних пунктов.

В первых версиях ОС Windows практически все вызовы Win32 API выполнялись, следуя маршруту 2 (2a, 2b, 2c). После того, как существенная часть кода системы для увеличения производительности была перенесена в ядро (начиная с Windows NT 4.0), вызовы Win32 API, как правило, идут напрямую по 3-му (3a, 3b) пути, минуя подсистему окружения Win32. В настоящее время лишь небольшое число вызовов выполняется по длинному 2-му маршруту.

Помимо перечисленных, наиболее важных dll-библиотек, в системном каталоге system32 имеется большое количество других dll-файлов. В настоящее время количество вызовов API составляет несколько десятков тысяч.

Список экспортируемых каждой конкретной dll функций можно посмотреть с помощью утилиты depends , входящей в пакет Platform SDK. Так, на рис. 1.7 приведена информация о структуре библиотеки kernel32.dll ОС Windows XP, экспортирующей 949 функций.

Заключение

В настоящей лекции изложена краткая история создания ОС Windows и ее миграция от микроядерной архитектуры в сторону монолитного дизайна. Описаны возможности и основные структурные компоненты системы. Рассмотрена подсистема Win32, которая объединяет ряд модулей режима ядра и режима пользователя и является базой для разработки приложений.

Приложение. Некоторые понятия и термины

DLL (динамически подключаемая библиотека)

Набор вызываемых подпрограмм, включенных в один двоичный файл, который приложения, использующие эти подпрограммы, могут динамически загружать в процессе своего выполнения. В качестве примера можно привести модули Msvcrt.dll (библиотека исполняющей Си подсистемы) и Kernel32.dll (одна из библиотек подсистемы Win32). DLL активно используются компонентами и приложениями ОС Windows пользовательского режима. Преимущество DLL перед статическими библиотеками состоит в том, что приложения могут разделять DLL-модули, при этом ОС Windows гарантирует, что в памяти будет находиться лишь по одному экземпляру используемых DLL.

Процессы и потоки

Под процессом понимается контейнер ресурсов, используемых потоками . Процесс включает: закрытое адресное пространство, в котором располагаются код, данные и стеки потоков; список открытых описателей ресурсов; контекст защиты; идентификатор процесса.

Поток команд исполняемой программы, или просто поток - сущность внутри процесса, получающая процессорное время. Поток характеризуется набором регистров (состоянием), идентификатором потока, стеками режимов ядра и пользователя.

Более подробно процессы и потоки описаны в части II.

Windows API - набор функций операционной системы

Аббревиатура API многим начинающим программистам кажется весьма таинственной и даже пугающей. На самом же деле Application Programming Interface (API) - это просто некоторый готовый набор функций, который могут использовать разработчики приложений. В общем случае данное понятие эквивалентно тому, что раньше чаще называли библиотекой подпрограмм. Однако обычно под API подразумевается особая категория таких библиотек.

В ходе разработки практически любого достаточно сложного приложения (MyAppication) для конечного пользователя формируется набор специфических внутренних функций, используемых для реализации данной конкретной программы, который называется MyApplication API. Однако часто оказывается, что эти функции могут эффективно использоваться и для создания других приложений, в том числе другими программистами. В этом случае авторы, исходя из стратегии продвижения своего продукта, должны решить вопрос: открывают они доступ к этому набору для внешних пользователей или нет? При утвердительном ответе в описании программного пакета в качестве положительной характеристики появляется фраза: «Комплект включает открытый набор API-функций» (но иногда за дополнительные деньги).

Таким образом, чаще всего под API подразумевается набор функций, являющихся частью одного приложения, но при этом доступных для использования в других программах. Например, Excel, кроме интерфейса для конечного пользователя, имеет набор функций Excel API, который может использоваться, в частности, при создании приложений с помощью VB.

Соответственно Windows API - это набор функций, являющийся частью самой операционной системы и в то же время - доступный для любого другого приложения, в том числе написанного с помощью VB. В этом плане вполне оправданна аналогия с набором системных прерываний BIOS/DOS, который фактически представляет собой DOS API.

Отличие заключается в том, что состав функций Windows API, с одной стороны, значительно шире по сравнению с DOS, с другой - не включает многие средства прямого управления ресурсами компьютера, которые были доступны программистам в предыдущей ОС. Кроме того, обращение к Windows API выполняется с помощью обыкновенных процедурных обращений, а вызов функций DOS - через специальную машинную команду процессора, которая называется Interrupt («прерывание»).

Зачем нужен Win API для VB-программистов

Несмотря на то что VB обладает огромным множеством разнообразных функций, в процессе более-менее серьезной разработки обнаруживается, что их возможностей зачастую не достаточно для решения необходимых задач. При этом программисты-новички часто начинают жаловаться на недостатки VB и подумывать о смене инструмента, не подозревая, что на их компьютере имеется огромный набор средств и нужно только уметь ими воспользоваться.

При знакомстве с Win API обнаруживается, что многие встроенные VB-функции - не что иное, как обращение к соответствующим системным процедурам, но только реализованное в виде синтаксиса данного языка. С учетом этого необходимость использования API определяется следующим вариантами:

  1. API-функции, которые полностью реализованы в виде встроенных VB-функций. Тем не менее иногда и в этом случае бывает полезным перейти к применению API, так как это позволяет порой существенно повысить производительность (в частности, за счет отсутствия ненужных преобразований передаваемых параметров).
  2. Встроенные VB-функции реализуют лишь частный случай соответствующей API-функции. Это довольно обычный вариант. Например, API-функция CreateDirectory обладает более широкими возможностями по сравнению со встроенным VB-оператором MkDir.
  3. Огромное число API-функций вообще не имеет аналогов в существующем сегодня варианте языка VB. Например, удалить каталог средствами VB нельзя - для этого нужно использовать функцию DeleteDirectory.

Следует также подчеркнуть, что некоторые API-функции (их доля в Win API весьма незначительна) не могут вызываться из VB-программ из-за ряда ограничений языка, например из-за отсутствия возможности работы с адресами памяти. Но в ряде случаев могут помочь нетривиальные приемы программирования (в частности, в случае с теми же адресами).

Личная точка зрения автора такова - вместо расширения от версии к версии встроенных функций VВ следовало бы давать хорошее описание наиболее ходовых API-функций. В то же время хочется посоветовать разработчикам не ждать появления новой версии средства с расширенными функциями, а внимательнее изучить состав существующего Win API - вполне вероятно, что нужные вам возможности можно было реализовать уже в версии VB 1.0 выпуска 1991 года.

Как изучать Win API

Это не такой простой вопрос, если учесть, что число функций Win32 API оценивается величиной порядка 10 тысяч (точной цифры не знает никто, даже Microsoft).

В состав VB (версий 4-6) входит файл с описанием объявлений Win API - WIN32API.TXT (подробнее о его применении мы расскажем позднее). Но, во-первых, с его помощью можно получить сведения о назначении той или иной функции и ее параметрах только по используемым мнемоническим именам, а во-вторых - перечень функций в этом файле далеко не полный. В свое время (семь лет назад) в VB 3.0 имелись специальные справочные файлы с описанием функций Win16 API. Однако уже в v.4.0 эта полезная информация с удобным интерфейсом исчезла.

Исчерпывающую информацию о Win32 API можно найти в справочной системе Platform Software Development Kit, которая, в частности, находится на компакт-дисках MSDN Library, включенных в состав VB 5.0 и 6.0 Enterprise Edition и Office 2000 Developer Edition. Однако разыскать там нужную информацию и разобраться в ней совсем не просто. Не говоря уж о том, что все описания там приводятся применительно к языку C.

Общепризнанным в мире пособием для изучения API-программирования в среде VB являются книги известного американского эксперта Даниэля Эпплмана (Daniel Appleman). Его серия Dan Appleman’s Visual Basic Programmer’s Guide to the Windows API (для Win16, Win32, применительно к разным версиям VB) с 1993 года неизменно входит в число бестселлеров для VB-программистов. Книгу Dan Appleman’s VB 5.0 Programmer’s Guide to the Win32 API, выпущенную в 1997 году, автору привез из США приятель, который нашел ее в первом же книжном магазине небольшого провинциального городка.

Эта книга объемом свыше 1500 страниц включает описание общей методики API-программирования в среде VB, а также более 900 функций. Прилагаемый компакт-диск содержит полный текст книги и всех программных примеров, а кроме того, несколько дополнительных глав, не вошедших в печатный вариант. В 1999 году Дэн Эпплман выпустил новую книгу Dan Appleman’s Win32 API Puzzle Book and Tutorial for Visual Basic Programmers, которая включает сведения о еще 7600 функциях (хотя и не столь обстоятельные).

Win API и Dynamic Link Library (DLL)

Набор Win API реализован в виде динамических DLL-библиотек. Далее речь фактически пойдет о технологии использования DLL в среде VB на примере библиотек, входящих в состав Win API. Однако, говоря о DLL, необходимо сделать несколько важных замечаний.

В данном случае под DLL мы подразумеваем традиционный вариант двоичных динамических библиотек, которые обеспечивают прямое обращение приложений к нужным процедурам - подпрограммам или функциям (примерно так же, как это происходит при вызове процедур внутри VB-проекта). Такие библиотеки могут создаваться с помощью разных инструментов: VC++, Delphi, Fortran, кроме VB (посмотрим, что появится в версии 7.0) - последний может делать только ActiveX DLL, доступ к которым выполняется через интерфейс OLE Automation.

Обычно файлы динамических библиотек имеют расширение.DLL, но это совсем не обязательно (для Win16 часто применялось расширение.EXE); драйверы внешних устройств обозначаются с помощью.DRV.

Как мы уже отмечали, определить точное число API-функций Windows и содержащих их файлов достаточно сложно, однако все они находятся в системном каталоге. В этом плане лучше выделить состав библиотек, входящих в ядро операционной системы, и основных библиотек с ключевыми дополнительными функциями.

А теперь несколько советов.

Совет 1. Следите за правильным оформлением объявления DL L-процедур

Само обращение к DLL-процедурам в программе выглядит точно так же, как к «обычным» процедурам Visual Basic, например:

Call DllName ([список аргументов])

Однако для использования внешних DLL-функций (в том числе и Win API) их нужно обязательно объявить в программе с помощью оператора Declare, который имеет следующий вид:

Declare Sub ИмяПроцедуры Lib _ “ИмяБиблиотеки” _ [([СписокАргументов])]

Declare Function ИмяФункции _ Lib “ИмяБиблиотеки” _ [([СписокАргументов])]

Здесь в квадратных скобках приведены необязательные элементы оператора, курсивом выделены переменные выражения, остальные слова - ключевые. В справочной системе приведено достаточно хорошее описание синтаксиса оператора, поэтому сейчас мы только отметим некоторые моменты.

Объявления внешних функций должны размещаться в секции General Declarations модуля. Если вы размещаете его в модуле формы, то обязательно нужно указать ключевое слово Private (это объявление будет доступно только внутри данного модуля) - таково ограничение для всех процедур модуля формы.

Набор Win32 API реализован только в виде функций (в Win16 API было много подпрограмм Sub). В большинстве своем - это функции типа Long, которые чаще всего возвращают код завершения операции.

Оператор Declare появился в MS Basic еще во времена DOS, причем он использовался и для объявления внутренних процедур проекта. В Visual Basic этого не требуется, так как объявлением внутренних процедур автоматически является их описание Sub или Function. По сравнению с Basic/DOS в новом описании обязательно указывать имя файла-библиотеки, где находится искомая процедура. Библиотеки Wip API размещаются в системном каталоге Windows, поэтому достаточно привести только название файла. Если же вы обращаетесь к DLL, которая находится в произвольном месте, нужно записать полный путь к данному файлу.

Описание оператора Declare обычно занимает довольно много места и не помещается в одну строку в окне кода. Поэтому мы рекомендуем придерживаться при написании приложений какой-либо определенной схемы переноса строк, например:

Declare Function GetTempPath _ Lib “kernel32” Alias “GetTempPathA” _ (ByVal nBufferLength As Long, _ ByVal lpBuffer As String) As Long

В этом случае все основные элементы описания разнесены на разные строчки и поэтому хорошо читаются.

Совет 2. Будьте особенно внимательны при работе с DLL-функциями

Использование Win API и разнообразных DLL-функций существенно расширяет функциональные возможности VB и зачастую позволяет повысить производительность программ. Однако расплата за это - риск снижения надежности работы приложения, особенно в процессе его отладки.

Одним из самых важных достоинств среды VB является надежность процесса разработки программ: функционируя под управлением интерпретатора, программный код теоретически не может нарушить работу Windows и самого VB. Программист может не очень внимательно следить за правильностью передачи параметров в вызываемые функции - подобные ошибки будут легко обнаружены самим интерпретатором либо в процессе трансляции кода, либо во время его выполнения. В самом неприятном случае просто произойдет прерывание режима обработки, причем с указанием, где и почему произошла ошибка.

Использование напрямую функций Windows API или других DLL-библиотек снимает такой контроль за передачей данных и процессом выполнения кода вне среды VB. Поэтому ошибка в обращении к внешним функциям может привести к неработоспособности и VB и операционной системы. Это особенно актуально на этапе разработки программы, когда наличие ошибок - дело вполне естественное. Таким образом, применяя более широкие возможности функций базового слоя системы, программист берет на себя ответственность за правильность их применения.

Проблема усугубляется еще и тем, что разные языки программирования используют различные способы передачи параметров между процедурами. (Точнее, разные способы передачи используются по умолчанию, так как многие языки могут поддерживать несколько способов.) Win API реализованы на C/C++ и применяют соглашения о передаче параметров, принятые в этой системе, которые отличаются от привычного для VB варианта.

В связи с этим следует отметить, что появление встроенных в VB аналогов API-функций оправданно именно адаптацией последних к синтаксису VB и реализацией соответствующего механизма контроля обмена данными. Обратим также внимание, что на этапе опытной отладки приложения при создании исполняемого модуля лучше использовать вариант компиляции P-code вместо Native Code (машинный код). В первом случае программа будет работать под управлением интерпретатора - медленнее по сравнению с машинным кодом, но более надежно с точки зрения возможного ошибочного воздействия на операционную систему и обеспечивая более удобный режим выявления возможных ошибок.

Совет 3. Десять рекомендаций Дэна Эпплмана по надежному API-программированию в среде VB

Использование функции API требует более внимательного программирования с использованием некоторых не очень привычных методов обращения к процедурам (по сравнению с VB). Далее мы будем постоянно обращаться к этим вопросам. А сейчас приведем изложение сформулированных Дэном Эпплманом советов на эту тему (их первый вариант появился еще в 1993 году) с некоторыми нашими дополнениями и комментариями.

1. Помните о ByVal. Наиболее частая ошибка, совершаемая при обращении к функциям API и DLL, заключается в некорректном использовании ключевого слова ByVal: его или забывают ставить, или, наоборот, ставят, когда в нем нет необходимости.

На этих примерах показано влияние оператора ByVal на передачу параметров

Тип параметра С ByVal Без ByVal
Integer В стек помещается 16-разрядное целое В стек помещается 32-разрядный адрес 16-разрядного целого
Long В стек помещается 32-разрядное целое В стек помещается 32-разрядный адрес 32-разрядного целого
String Строка преобразуется в формат, используемый в С (данные и завершающий нулевой байт). 32-разрядный адрес новой строки помещается в стек В стек помещается VB-дескриптор строки. (Такие дескрипторы никогда не используются самим Windows API и распознаются только в DLL, реализованных специально для VB.)

Здесь следует напомнить, что передача параметров в любой системе программирования, в том числе и VB, выполняется двумя основными путями: по ссылке (ByRef) или по значению (ByVal). В первом случае передается адрес переменной (этот вариант используется в VB по умолчанию), во втором - ее величина. Принципиальное отличие заключается в том, что с помощью ссылки обеспечивается возврат в вызывающую программу измененного значения передаваемого параметра.

Чтобы разобраться в этом, проведите эксперимент с помощью таких программ:

Dim v As Integer v = 2 Call MyProc(v) MsgBox “v = “ & v Sub MyProc (v As Integer) v = v + 1 End Sub

Запустив на выполнение этот пример, вы получите сообщение со значением переменной, равным 3. Дело в том, что в данном случае в подпрограмму MyProc передается адрес переменной v, физически созданной в вызывающей программе. Теперь измените описание процедуры на

Sub MyProc (ByVal v As Integer)

В результате при выполнении теста вы получите v = 2, потому что в процедуру передается лишь исходное значение переменной - результат выполненных с ним операций не возвращается в вызывающую программу. Режим передачи по значению можно поменять также с помощью оператора Call следующим образом:

Sub MyProc (v As Integer) ... Call MyProc((v)) ‘ (v) - скобки указывают режим _ передачи по значению.

Однако при обращении к внутренним VB-процедурам использование в операторе Call ключевого слова ByVal запрещено - вместо него применяются круглые скобки. Этому есть свое объяснение.

В классическом случае (С, Fortran, Pascal) различие режимов ByRef и ByVal зависит от того, что именно помещается в стек обмена данными - адрес переменной или ее значение. В Basic исторически используется вариант программной эмуляции ByVal - в стеке всегда находится адрес, но только при передаче по значению для этого создается временная переменная. Чтобы отличить два этих варианта (классический и Basic), используются разные способы описания режима ByVal. Отметим, что эмуляция режима ByVal в VB обеспечивает более высокую надежность программы: перепутав форму обращения, программист рискует лишь тем, что в вызывающую программу вернется (или не вернется) исправленное значение переменной. В «классическом» же варианте такая путаница может привести к фатальной ошибке при выполнении процедуры (например, когда вместо адреса памяти будет использоваться значение переменной, равное, скажем, нулю).

DLL-функции реализованы по «классическим» принципам и поэтому требуют обязательного описания того, каким образом происходит обмен данными с каждым из аргументов. Именно этой цели служат объявления функций через описание Declare (точнее, списка передаваемых аргументов). Чаще всего передача параметров в функцию Windows API или DLL выполняется с помощью ключевого слова ByVal. Причем оно может быть задано как в операторе Declare, так и непосредственно при вызове функции.

Последствия неправильной передачи параметров легко предугадать. В случае получения явно недопустимого адреса вам будет выдано сообщение GPF (General Protection Fault - ошибка защиты памяти). Если же функция получит значение, совпадающее с допустимым адресом, то функция API залезет в чужую область (например, в ядро Windows) со всеми вытекающими отсюда катастрофическими последствиями.

2. Проверяйте тип передаваемых параметров. Не менее важны верное число и тип передаваемых параметров. Необходимо, чтобы объявленные в Declare аргументы соответствовали ожидаемым параметрам в функции API. Наиболее часто встречающийся случай ошибки в передаче параметров связан с различием между NULL и строкой нулевой длины - следует помнить, что это не одно и то же.

3. Проверяйте тип возвращаемого значения.

VB довольно терпимо относится к несовпадению типов возвращаемых функцией значений, поскольку числовые значения обычно возвращаются через регистры, а не через стек. Следующие правила помогут определить корректное значение, возвращаемое функцией API:

  • DLL-функция, не возвращающая значения (аналог void в ‘C’), должна быть объявлена как VB Sub.
  • функция API, возвращающая целое значение (Integer или Long), может быть определена или как Sub, или как Function, возвращающая значение соответствующего типа.
  • ни одна из функций API не возвращает числа с плавающей точкой, но некоторые DLL вполне могут возвращать такой тип данных.

4. С большой осторожностью используйте конструкцию «As Any». Множество функций Windows API имеют возможность принимать параметры различных типов и используют при этом обращение с применением конструкции As Any (интерпретация типа выполняется в зависимости от значения других передаваемых параметров).

Хорошим решением в этом случае может быть использование нескольких псевдонимов (Alias) функции с созданием двух и более объявлений для одной и той же функции, причем в каждом из описаний указываются параметры определенного типа.

5. Не забывайте инициализировать строки. В Win API существует множество функций, возвращающих информацию путем загрузки данных в передаваемые как параметр строковые буферы. В своей программе вы можете вроде бы все сделать правильно: не забыть о ByVal, верно передать параметры в функцию. Но Windows не может проверить, насколько велик размер выделенного под строку участка памяти. Размер строки должен быть достаточным для размещения всех данных, которые могут быть в него помещены. Ответственность за резервирование буфера нужного размера лежит на VB-программисте.

Следует отметить, что в 32-разрядных Windows при использовании строк производится преобразование из Unicode (двухбайтовая кодировка) в ANSI (однобайтовая) и обратно, причем с учетом национальных установок системы. Поэтому для резервирования буферов порой удобнее использовать байтовые массивы вместо строковых переменных. (Подробнее об этом будет рассказано ниже.)

Чаще всего функции Win API позволяют вам самим определить максимальный размер блока. В частности, иногда для этого нужно вызвать другую функцию API, которая «подскажет» размер блока. Например, GetWindowTextLength позволяет определить размер строки, необходимый для размещения заголовка окна, получаемого функцией GetWindowText. В этом случае Windows гарантирует, что вы не выйдете за границу.

6. Обязательно используйте Option Explicit.

7. Внимательно проверяйте значения параметров и возвращаемых величин. VB обладает хорошими возможностями по проверке типов. Это означает, что, когда вы пытаетесь передать неверный параметр в функцию VB, самое плохое, что может случиться, - вы получите сообщение об ошибке от VB. Но данный механизм, к сожалению, не работает при обращении к функциям Windows API.

Windows 9x обладает усовершенствованной системой проверки параметров для большинства функций API. Поэтому наличие ошибки в данных обычно не вызывает фатальной ошибки, однако определить, что же явилось ее причиной - не так-то просто.

Здесь можно посоветовать использовать несколько способов отладки ошибки данного типа:

  • используйте пошаговый режим отладки или команду Debug.Print для проверки каждого подозрительного вызова функции API. Проверьте результаты этих вызовов, чтобы удостовериться, что все в пределах нормы и функция корректно завершилась;
  • используйте Windows-отладчик типа CodeView и отладочную версию Windows (имеется в Windows SDK). Эти средства могут обнаружить ошибку параметров и по меньшей мере определить, какая функция API приводит к ошибке;
  • используйте дополнительные средства третьих фирм для проверки типов параметров и допустимости их значений. Такие средства могут не только находить ошибки параметров, но даже указать на строку кода VB, где произошла ошибка.

Кроме того, нужно обязательно проверять результат выполнения API-функции.

8. Помните, что целые числа в VB и в Windows - не одно и то же. В первую очередь следует иметь в виду, что под термином «Integer» в VB понимается 16-разрядное число, в документации Win 32 - 32-разрядное. Во-вторых, целые числа (Integer и Long) в VB - это величины со знаком (то есть один разряд используется как знак, остальные - как мантисса числа), в Windows - используются только неотрицательные числа. Это обстоятельство нужно иметь в виду, когда вы формируете передаваемый параметр с помощью арифметических операций (например, вычисляете адрес с помощью суммирования некоторой базы и смещения). Для этого стандартные арифметические функции VB не годятся. Как быть в этом случае, мы поговорим отдельно.

9. Внимательно следите за именами функций. В отличие от Win16 имена всех функций Win32 API являются чувствительными к точному использованию строчных и прописных букв (в Win16 такого не было). Если вы где-то применяете строчную букву вместо прописной или наоборот, то нужная функция не будет найдена. Следите также за правильным использованием суффикса A или W в функциях, применяющих строковые параметры. (Подробнее об этом – см. ниже.)

10. Чаще сохраняйте результаты работы. Ошибки, связанные с неверным использованием DLL и Win API, могут приводить к аварийному завершению работы VB-среды, а возможно - и всей операционной системы. Вы должны позаботиться о том, чтобы написанный вами код перед тестовым запуском был сохранен. Самое простое - это установить режим автоматической записи модулей проекта перед запуском проекта в среде VB.

После прочтения предыдущего совета может возникнуть мысль, что использование функций Win API - дело рискованное. В какой-то степени это так, но только в сравнении с безопасным программированием, предоставляемым самим VB. Но при умелом их применении и знании возможных подводных камней этот риск минимален. К тому же полностью отказаться от применения Win API зачастую просто невозможно - они все равно потребуются при сколь-нибудь серьезной разработке.

К тому же ранее мы упоминали о «подводных» камнях для широкого класса DLL. В случае с Win API все обстоит гораздо проще, так как здесь четко унифицирована форма обращения к этим функциям. При этом следует иметь в виду следующие основные моменты:

  1. Функции Win32 API являются именно функциями, то есть процедурами типа Function (в Win16 API было много подпрограмм Sub). Все это функции типа Long, поэтому их описания записываются в следующем виде: Declare Function name ... As Long ‘ тип функции _ определяется в явном виде

    Declare Function name& ‘ тип функции _ определяется с помощью суффикса

    Обращение к API-функции выглядит так:

Result& = ApiName& ([СписокАргументов ]
  1. Чаще всего возвращаемое значение функции является кодом завершения операции. Причем ненулевое значение означает в данном случае нормальное завершение, нулевое - ошибку. Обычно (но не всегда) уточнить характер ошибки можно с помощью обращения к функции GetLastError. Описание этой функции имеет такой вид: Declare Function GetLastError& Lib “kernel32” ()

    ВНИМАНИЕ! При работе в среде VB для получения значения уточненного кода ошибки лучше использовать свойство LastDLLError объекта Err, так как иногда VB обнуляет функцию GetLastError в промежутке между обращением к API и продолжением выполнения программы.

    Интерпретировать код, возвращаемый GelLastError, можно с помощью констант, записанных в файле API32.TXT, с именами, начинающимися с суффикса ERROR_.

    Наиболее типичные ошибки имеют следующие коды:

    • ERROR_INVALID_HANDLE = 6& - неверный описатель
    • ERROR_CALL_NOT_IMPLEMENTED = 120& - вызов в Windows 9x функции, доступной только для Windows NT
    • ERROR_INVALID_PARAMETER = 87& - неверное значение параметра

    Однако многие функции возвращают значение некоторого запрашиваемого параметра (например, OpenFile возвращает значение описателя файла). В таких случаях ошибка определяется каким-либо другим специальным значением Return&, чаще всего 0 или –1.

  2. Win32 API используют строго фиксированные способы передачи самых простых типов данных. а) ByVal ... As Long

    С помощью переменных типа Long выполняется не менее 80% передачи аргументов. Обратите внимание, что аргумент всегда сопровождается ключевым словом ByVal, а это, кроме всего прочего, означает, что выполняется односторонняя передача данных - от VB-программы к API-функции.

    Б) ByVal ... As String

    Этот тип передачи данных также встречается достаточно часто, причем с аргументом также всегда применяется ByVal. При вызове API-функции в стек записывается адрес строки, поэтому в данном случае возможен двусторонний обмен данными. При работе со строками нужно учитывать несколько опасностей.

    Первая - резервирование памяти под строку производится в вызывающей программе, поэтому если API-функция будет заполнять строки, то нужно перед ее вызовом создать строку необходимого размера. Например, функция GetWindowsDirectory возвращает путь к каталогу Windows, который по определению не должен занимать более 144 символов. Соответственно обращение к этой функции должно выглядеть примерно так:

    WinPath$ = Space$(144) ‘ резервируем строку в _ 144 символа Result& = GetWindowsDirectory& (WinTath$, 144) _ ‘заполнение буфера ‘ Result& - фактическое число символов в имени _ каталога WinPath$ = Left$(WinPath, Result&)

    Вторая проблема заключается в том, что при обращении к API-функции производится преобразование исходной строки в ее некоторое внутреннее представление, а при выходе из функции - наоборот. Если во времена Win16 эта операция заключалась лишь в добавлении нулевого байта в конце строки, то с появлением Win32 к этому добавилась трансформация двухбайтной кодировки Unicode в ANSI и наоборот. (Об этом подробно говорилось в статье «Особенности работы со строковыми переменными в VB», КомпьютерПресс 10’99 и 01’2000). Сейчас же только отметим, что с помощью конструкции ByVal ... As String можно обмениваться строками только с символьными данными.

    В) ... As Any

    Это означает, что в стек будет помещен некоторый адрес буфера памяти, интерпретация содержимого которого будет выполняться API-функцией, например, в зависимости от значения других аргументов. Однако As Any может использоваться только в операторе Declare - при конкретном обращении к функции в качестве аргумента должна быть определена конкретная переменная.

    Г) ... As UserDefinedType

    Такая конструкция также часто применяется, когда необходимо обменяться данными (в общем случае в обе стороны) с помощью некоторой структуры. На самом деле эта конструкция - некий вид конкретной реализации формы передачи As Any, просто в данном случае функция настроена на фиксированную структуру.

    Форма структуры данных определяется конкретной API-функцией, и на программисте лежит ответственность правильным образом описать и зарезервировать ее в вызывающей программе. Такая конструкция всегда используется без слова ByVal, то есть в данном случае выполняется передача по ссылке - в стек записывается адрес переменной.

Пример обращения к API-функции

Проиллюстрируем сказанное выше на примере использования двух полезных функций работы с файлами - lopen и lread, которые описываются следующим образом:

Declare Function lopen Lib “kernel32” _ Alias “_lopen” (_ ByVal lpFileName As String, _ ByVal wReadWrite As Long) As Long Declare Function lread Lib “kernel32” _ Alias “_lread” (_ ByVal hFile As Long, lpBuffer As Any, _ ByVal wBytes As Long) As Long

В VB их аналогами - в данном случае точными - являются операторы Open и Get (для режима Binary). Обратим сразу внимание на использование ключевого слова Alias в объявлении функции - это как раз тот случай, когда без него не обойтись. Настоящие названия функции в библиотеке начинаются с символа подчеркивания (типичный стиль для языка C), что не разрешается в VB.

Операция открытия файла может выглядеть следующим образом:

Const INVALID_HANDLE_VALUE = -1 ‘ неверное _ значение описателя lpFileName$ = “D:\calc.bas” ‘ имя файла wReadWrite& = 2 ‘ режим “чтения-записи” hFile& = lopen(lpFileName$, wReadWrite&) _ ‘ определяем описатель файла If hFile& = INVALID_HANDLE_VALUE Then _ ‘ ошибка открытия файла ‘ уточняем код ошибки CodeError& = Err.LastDllError ‘CodeError& = GetLastError _ ‘ эта конструкция не работает End If

Здесь нужно обратить внимание на два момента:

  • в качестве значения функции мы получаем значение описателя файла. Ошибке соответствует значение –1;
  • как раз в данном случае не срабатывает обращение к функции GetLastError - для получения уточненного значения ошибки мы обратились к объекту Err (о возможности такой ситуации мы говорили выше).

Далее можно читать содержимое файла, но это предполагает, что программист должен иметь некоторое представление о его структуре (так же как это происходит при работе с произвольными двоичными файлами). В этом случае обращение к функции lread может выглядеть следующим образом:

Dim MyVar As Single wBytes = lread (hFile&, MyVar, Len(MyVar) ‘ чтение вещественного числа, 4 байта ‘ wBytes - число фактически прочитанных данных, ‘ -1 - ошибка... Type MyStruct x As Single i As Integer End Type Dim MyVar As MyStruct wBytes = lread (hFile&, MyVar, Len(MyVar)) ‘ чтение структуры данных, 6 байтов

Еще раз обратите внимание: второй аргумент функции передается по ссылке, остальные - по значению.

Dim MyVar As String MyVar = Space$(10) ‘резервируем переменную для 10 символов wBytes = lread (hFile&, ByVal MyVar, Len(MyVar)) ‘ чтение символьной строки, 10 символов

Здесь видно важное отличие от приведенного ранее примера - строковая переменная обязательно сопровождается ключевым словом ByVal.

Чтение содержимого файла в массиве (для простоты будем использовать одномерный байтовый массив) выполняется следующим образом:

Dim MyArray(1 To 10) As Byte wBytes = lread (hFile&, MyArray(1), _ Len(MyArray(1))* 10) ‘ чтение 10 элементов массива

Указывая первый элемент массива в качестве аргумента, мы передаем адрес начала области памяти, зарезервированной под массив. Очевидно, что таким образом можно заполнить любой фрагмент массива:

WBytes = lread (hFile&, MyArray(4), _ Len(MyArray(1))* 5) ‘ чтение элементов массива с 4-го по 8-й

Совет 5. Используйте Alias для передач и параметров As Any

Здесь на основе предыдущего примера мы раскроем суть четвертого совета Дэна Эпплмана.

Работая с функцией lread, следует помнить, что при обращении к ней с использованием строковой переменной необходимо использовать ключевое слово ByVal (иначе сообщения о нелегальной операции не избежать). Чтобы обезопасить себя, можно сделать дополнительное специальное описание этой же функции для работы только со строковыми переменными:

Declare Function lreadString Lib “kernel32” _ Alias “_lread” (_ ByVal hFile As Long, ByVal lpBuffer As String, _ ByVal wBytes As Long) As Long

При работе с этим описанием указывать ByVal при обращении уже не нужно:

WBytes = lreadString (hFile&, MyVarString, _ Len(MyVarString)) ‘

Казалось бы, синтаксис оператора Declare позволяет сделать подобное специальное описание для массива:

Declare Function lreadString Lib “kernel32” Alias “_lread” (_ ByVal hFile As Long, lpBuffer() As Byte, _ ByVal wBytes As Long) As Long

Однако обращение

WBytes = lreadArray (hFile&, MyArray(), 10)

неизбежно приводит к фатальной ошибке программы.

Это продолжение разговора об особенностях обработки строковых переменных в Visual Basic: VB использует двухбайтную кодировку Unicode, Win API - однобайтную ANSI (причем с форматом, принятым в С, - с нулевым байтом в конце). Соответственно при использовании строковых переменных в качестве аргумента всегда автоматически производится преобразование из Unicode в ANSI при вызове API-функции (точнее, DLL-функции) и обратное преобразование при возврате.

Вывод из этого простой: с помощью переменных String можно обмениваться символьными данными, но нельзя использовать их для обмена произвольной двоичной информацией (как это было при работе с 16-разрядными версиями VB). В последнем случае лучше использовать одномерный байтовый массив.

Как известно, тип String можно использовать для описания пользовательской структуры. В связи с этим нужно помнить следующее:

  • Категорически нельзя использовать для обращения к Win API конструкцию следующего вида: Type MyStruct x As Single s As String ‘ строка переменной длины End Type

    В случае строки переменной длины в составе структуры передается дескриптор строки со всеми вытекающими отсюда последствиями в виде ошибки выполнения программы.

  • Можно использовать в качестве элемента структуры строку фиксированной длины: Type MyStruct x As Single s As String*8 ‘ строка фиксированной длины End Type

При этом производится соответствующее преобразование кодировок.

И последнее замечание: применять массив строковых переменных (как фиксированной, так и переменной длины) при обращении к API-функции нельзя ни в коем случае. Иначе появление «нелегальной операции» будет гарантировано.

Вполне вероятно, что у вас возникнет ситуация, когда вам потребуется написать собственную библиотеку DLL-функций. Потребность в этом неизбежно появится, если вы будете использовать технологию смешанного программирования - использования двух или более языков программирования для реализации одного приложения.

Отметим в связи с этим, что смешанное программирование - это вполне обычное явление для реализации достаточно сложного приложения. Действительно, каждый язык (точнее, система программирования на базе языка) имеет свои сильные и слабые стороны, поэтому вполне логично использовать преимущества различных инструментов для решения разных задач. Например, VB - для создания пользовательского интерфейса, С - для эффективного доступа к системным ресурсам, Fortran - для реализации численных алгоритмов.

Мнение автора таково: сколь-нибудь серьезное занятие программированием требует от разработчика владения по крайней мере двумя инструментами. Разумеется, в современных условиях четкого разделения труда очень сложно быть отличным экспертом даже по двум системам, поэтому более логичной является схема «основной и вспомогательный языки». Идея здесь заключается в том, что даже поверхностное знание «вспомогательного» языка (написание довольно простых процедур) может очень заметно повысить эффективность применения «основного». Отметим, что знание VB хотя бы в качестве вспомогательного является сегодня практически обязательным требованием для профессионального программиста. Кстати, во времена DOS для любого программиста, в том числе Basic, было крайне желательным знание основ Ассемблера.

Так или иначе, но даже в условиях групповой работы, когда каждый программист занимается своим конкретным делом, представление об особенностях процедурного интерфейса в разных языках должны иметь все участники проекта. И знать, что многие системы программирования (в том числе и VB), кроме интерфейса, используемого по умолчанию, позволяют применять иные, расширенные методы обращения к процедурам, которые дают возможность адаптировать интерфейс к другому языку.

При изучении межпроцедурного интерфейса следует обратить внимание на следующие возможные «подводные камни»:

  • Разные языки могут использовать различные соглашения о правилах написания идентификаторов. Например, часто используется знак подчеркивания в начале имени процедуры, что запрещено в VB. Эта проблема легко решается с помощью ключевого слова Alias в операторе Declare (см. пример совета 2.3).
  • Может быть использована разная последовательность записи передаваемых аргументов в стек. Например, во времена DOS (честно признаюсь - не знаю, как это выглядит сейчас в среде Windows), C записывал аргументы с конца списка, другие языки (Fortran, Pascal, Basic) - с начала.
  • По умолчанию используются разные принципы передачи параметров - по ссылке или по значению.
  • Различные принципы хранения строковых переменных. Например, в C (так же как в Fortran и Pascal) длина строки определяется нулевым байтом в ее конце, а в Basic длина записывается в явном виде в дескрипторе строки. Разумеется, нужно иметь в виду возможность использования разных кодировок символов.
  • При передаче многомерных массивов следует помнить, что возможны различные варианты преобразования многомерных структур в одномерные (начиная с первого индекса или с последнего, применительно к двухмерным массивам - «по строчкам» или «по столбцам»).

С учетом всего этого можно сформулировать следующие рекомендации:

  • Используйте самые простые, проверенные способы передачи аргументов в DLL-функции. Стандарты, принятые для Win API, вполне годятся в качестве образца.
  • Ни в коем случае не передавайте массивы строковых переменных.
  • Очень внимательно используйте передачу простых строковых переменных и многомерных массивов.
  • Обязательно специальным образом проверяйте работоспособность механизма передачи аргументов в вызываемую процедуру и обратно. Напишите специальный тест для проверки передачи данных. Отдельно проверьте правильность передачи каждого аргумента. Например, если у вас есть процедура с несколькими аргументами, проверьте сначала корректность передачи каждого параметра для варианта с одним аргументом, а уж потом - для всего списка.

А что делать, если DLL-функция уже написана, например, на Фортране, но ее входной интерфейс не очень хорошо вписывается в приведенные выше стандарты VB? Здесь можно дать два совета. Первый: напишите тестовую DLL-функцию и с ее помощью постарайтесь методом проб и ошибок подобрать нужное обращение из VB-программы. Второй: напишите процедуру-переходник на том же Фортране, который бы обеспечивал простой интерфейс между VB и DLL-функцией с преобразованием простых структур данных в сложные (например, преобразовывал многомерный байтовый массив в строковый массив).

Итак: используйте DLL-функции. Но сохраняйте бдительность...

КомпьютерПресс 9"2000

Win32 API (Application Program Interface) используется для расширения возможностей разрабатываемого приложения VBA. Средства Win32 API, применяемые как в приложениях Windows, так и в самом Windows 95/98 или Windows NT, можно использовать в разрабатываемой программе. Эти средства имеют большие различия друг от друга: одни задают поведение операционной системы, а другие просто подают звуковой сигнал. При использовании функций Win32 API требуется особая осторожность: при неправильном применении подпрограммы API. возникает сбой работы приложения VBA или даже Windows.

Основные вопросы:

Что такое Win32 API

Описание функций Win32 API

Программирование Win32 API с помощью VBA

Использование Win32 API

ЧТО ТАКОЕ WIN32 API?

API (Application Programming Interface) - интерфейс программирования приложений и всегда связан с другим приложением. Например, Microsoft Excel, Lotus Organizer и множество других приложений имеют API. Pазработчики программного обеспечения не покупают программный интерфейс, они строят его при создании приложений.

API позволяет внешним программам обращаться к программе, в которой имеется API. Таким образом, можно получить доступ из одной программы к средствам другой с помощью API основного приложения. Разрабатывая API, программист обеспечивает другим разработчикам возможность применения средств создаваемого приложения без использования его интерфейса.

Однако API используется не только внешними приложениями. Множество больших приложений используют API, чтобы обеспечить связь одной их части с другой. Создавая в таких приложениях вспомогательные функции и обращаясь к ним с помощью программного интерфейса, можно упростить разработку всего приложения.

Рассмотрев, как используется API, требуется описать, что такое API? API - это обычно не более чем просто набор функций, с помощью которых можно обратиться к средствам разрабатываемого приложения. Программа, реализующая API, часто занимает не больше 10 или 20 процентов всего приложения, однако, она должна обеспечивать доступ к 100 процентам функций этого приложения.

Win32 API идеально подходит под это описание: он обеспечивает доступ практически ко всем функциям Windows 95/98 и Windows NT. Win32 API помогает Windows 95/98 и Windows NT управлять памятью, различными устройствами, например принтером, обрабатывать события, рисовать на экране диалоговые окна и т. д.

Кроме того, Win32 API поддерживает связь одного приложения с другим. Например, большая часть Windows 9х является встроенной поддержкой сетей. Конечно, эта часть должна также выводить диалоговые окна, отображать сообщения и управлять памятью. В ней используются функции API, которые можно применять в разрабатываемом приложении VBA.

Во многих программах, например, Microsoft Excel и Lotus cc:Mail, также используется Win32 API. Если приложению или модулю Windows 9х или Wiindows NT требуется некоторое средство, то обычно вызывается функция Win32 API.

Использование библиотек динамической компоновки

Win32 API оформлен в виде библиотек динамической компоновки. В этих библиотеках хранятся все средства, к которым требуется обеспечить доступ в других приложениях. Библиотеки динамической компоновки получили такое имя благодаря тому, что приложения подключаются к ним во время выполнения и используют их функции.

Библиотеки динамической компоновки отличаются от библиотек статической компоновки, в которых программный интерфейс к внешним библиотекам встраивается в программное приложение на этапе компиляции. Кроме того, в разрабатываемом приложении можно задать вызов библиотеки динамической компоновки, даже если этой библиотеки вообще не существует. Поэтому если известно имя требуемой функции, библиотека, где она находится, а также нужные параметры, то можно создать программу, которая обращается к этой библиотеке динамической компоновки.

Одни файлы библиотек динамической компоновки имеют расширение DLL, другие - расширение ЕХЕ. Следующие файлы составляют большую часть Win32 API:

При программировании приложений VBA с использованием Win32 требуется работать с функциями, которые находятся в вышеприведенных файлах.

Когда нужно использовать Win32 API?

С помощью Win32 API можно использовать в разрабатываемом приложении не только средства VBA или основного приложения, но и те же фунции, что применяет Windows 9х или Windows NT. Эти средства позволяю пример, управлять памятью или создавать диалоговые окна для установки системного времени. Хотя в проекте VBA обычно используется только процент функций Win32 API, однако доступны практически все 100 процентов.

Win32 АPI включает более 1500 функций, поэтому здесь невозможно описать каждое средство. Вместо этого приводится классификация функцией API:

Управление Windows. Данная группа функций управляет рисованием окон на экране, а также обрабатывает нажатия клавиш и действия мышью при работе с окнами.

Элементы управления Windows. Данная группа функций управляет инструментами управления, используемыми в приложениях Windows, например, полями, кнопками и списками, а также стандартными диалоговыми окнами, такими как диалоговые окна "Открытие файла" и "Печать".

Настройка. Данная группа функций наиболее часто используется VBA. Эти функции позволяют воспользоваться средствами, которые содержатся на Панели управления. Например, можно использовать инструменты установки программ, а также работать с командной строкой и средством уплотнения файлов.

Графические средства. Win32 API включает большое количество функций, которые управляют графическими элементами окон приложений и самой операционной системой. Данная группа включает базисные функции, которые управляют рисованием точек на экране, а также цветом и печатью.

Системные средства. Данная группа функций управляет памятью, питанием компьютера, правами доступа к файлам, обменом данными между приложениями, системным временем и рядом других средств Windows.

Языковая поддержка. Данная группа обеспечивает языковую поддержку для Windows 9х, Windows NT и их приложений.

Сетевые средства. Данная группа функций обеспечивает сетевую поддержку, включая создание соединений, получение информации о пользователях и правах доступа, а также отсоединение от сервера.

Подробную информацию о группах и функциях Win32 API смотрите в руководстве по Win32 SDK, которое поставляется Microsoft.

ПРОГРАММИРОВАНИЕ WIN32 API В VBA

Описание подпрограммы

До использования функции или подпрограммы Win32 API, необходимо объявить ее в разделе описаний любого модуля. При этом можно создать отдельный модуль, в котором хранятся только описания. Если проект VBA держит ряд подпрограмм Win32 API, то полезно сгруппировать все описания, а также объявить используемые типы данных и константы в одном модуле.

При описании функций требуется задать:

Библиотеку динамической компоновки, в которой хранится требуемая функция

Передаваемые в функцию параметры и их тип

Тип возвращаемого значения

Предупреждение

Очень важно правильно описать подпрограмму API, т. к. при обращении к библиотеке динамической компоновки, которая не применяется в основном приложении. можно случайно занять память, используемую другим приложением или самой операционной системой. Далее возникают ошибки разного рода: от простого сообщения об ошибке до сбоя в работе операционной системы.

Приведем пример описания функций Win32 API:

Declare Function GetWindowsDirectory Lib "kernel32" Alias _ "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As _ Long) As Long - получает путь к каталогу Windows

Declare Function GetSystemDirectory Lib "kernel32" Alias _ "GetSystemDirectoryA" (ByVal IpBuffer As String, ByVal nSize As _ Long) As Long - получает путь к системному каталогу Windows

Declare Function GetTempPath Lib "kernel32" Alias "GetTempPathA" _ (ByVal nBufferLength As Long, ByVal IpBuffer As String) As Long - получает путь к каталогу, выделенному под временные файлы

Declare Function SetCurrentDirectory Lib "kernel32" Alias _ "SetCurrentDirectoryA"(ByVal lpPathName As String) As Long - задает текущий каталог

На первый взгляд приведенные примеры могут показаться очень сложным. Однако усвоив только несколько основных правил, можно безопасно и эффективно использовать Win32 API.

Использование WIN32API.TXT

Microsoft поставляет вместе со многими приложениями, включая Visual Basic, файл WIN32API.TXT, который содержит описание всех функций Win32 API. В данном файле находятся также описание структур данных" констант, используемых подпрограммами API. Длина файла слишком велика, чтобы включать его в каждый проект VBA, поэтому можно скопировать в модуль описание требуемых функций, а также типов данных или констант.

Синтаксис описания

Приведем синтаксис инструкции описания функции Win32 API:

Declare Function | Sub имя Lib "имя библиотеки" (аргументы)

Ниже приводится описание параметров функции.

Функции и процедуры

В Win32 API имеются функции и процедуры. В первом примере показано описание процедуры, а во втором - описание функции:

Declare Sub GetSystemTime Lib "kernel32" Alias "GetSystemTime" _ (lpSystemTime As SYSTEMTIME) - получает текущее системное время

Declare Function VerLanguageName Lib "kerne132" Alias _ "VerLanguageNameA" (ByVal wLang As Long, ByVal szLang As String, _ ByVal nSize As Long) As Long - получает текстовое название языка по идентификатору (&H4E3 - Windows (кириллица)

Обратите внимание на то, что в первом описании используется ключевое слово Sub.

Во втором описании используется ключевое слово Function. Обратите внимание на выражение As Long, которое указывает на тип возвращаемого функцией значения. Покажем фрагмент программы, при выполнении которой возникает ошибка несоответствия типов.

Declare Function SomeFunction Lib "SomeLib" (MyArgument) as Long

Dim MyReturn as String

MyReturn = SomeFunction(My Argument)

Задание имени библиотеки

При описании подпрограммы Win32 API необходимо задать библиотеку динамической компоновки, в которой находится эта подпрограмма.

Имя библиотеки указывается в кавычках после ключевого слова Lib. При этом обычно не требуется задавать расширение или путь к библиотеке.

Примечание

При обращении к функции Win32 API сначала производится поиск библиотеки в папке, из которой запущено приложение, а затем просматривается каталог SYSTEM папки Windows (SYSTEM32 для Windows NT). Если VBA не находит библиотеку в каталоге SYSTEM/SYSTEM32, то он пытается отыскать библиотеку в основном каталоге Windows. Таким образом, если не перемещать файлы из папки Windows, то разработчику совсем необязательно знать расположение библиотек на диске, т. к. они отыскиваются aавтоматически. Более того, перемещать файлы из папки SYSTEM/SYSTEM32 не рекомендуется при любых обстоятельствах.

Использование псевдонимов в описаниях

Псевдонимы позволяют вызвать функцию API в программе VBA под именем, которое отличается от заданного в библиотеке динамической компоновки названия. Псевдонимы появились в Win16 API, используемом в Windows 3.x и 16-битных приложениях Windows, из-за того, что имена функций API совпадали с некоторыми зарезервированными словами языка Visual Basic. По той же причине при описании функций Win32 API задаются псевдонимы, с помощью которых можно вызвать требуемые подпрограммы, т используя имен, эквивалентных ключевым словам VBA. Если имя функции совпадает с ключевым словом, требуется вызвать функцию, ссылаясь на нее c помощью псевдонима.

Наиболее критической и потенциально ошибочной частью описания является список параметров. Поскольку Win32 API разработан прежде всего для использования в языке программирования С, а к подпрограммам обращаются из VBA, то необходимо знать, как передавать аргументы по ссылке и по значению.

В большинство используемых в VBA подпрограмм API требуется передать параметры. По умолчанию VBA передает параметры в подпрограмму по ссылке. Это означает, что вместо того, чтобы использовать в процедуре копию переменной, VBA передает ее 32-битный адрес в памяти. Располагая адресом переменной, т. е. ссылкой на нее, процедура может обращаться и изменять значение самой переменной, а не ее копии.

Кроме того, учитывая, что Win32 API предназначен для использования в языке С, в API используется соглашение этого языка о том, что по умолчанию параметры передаются в подпрограммы по значению, а не по ссылке. Это относится ко всем типам данным, исключая строки и массивы, которые всегда передаются по ссылке. Необходимо также отметить, что для некоторых функций API передача параметров по ссылке обязательна.

Declare Function ReadFile Lib "kernel32" Alias "ReadFile" (ByVal _ hFile As Long, IpBuffer As Any, ByVal nNumberOfBytesToRead As Long, _ IpNumberOfBytesRead As Long, IpOverlapped As OVERLAPPED) As Long

При задании аргументов необходимо правильно указать способ передачи аргументов. При этом рекомендуется придерживаться следующих правил:

Тщательно изучите описание процедуры в файле WIN32API.TXT, чтобы узнать тип передаваемых параметров.

Тщательно изучите документацию по API и по требуемой процедуре. Документация по Win32 API поставляется вместе с Win32SDK, а также с Visual Basic.

Задание строк в качестве параметров описаний

Как уже отмечалось ранее, строки передаются в процедуры библиотеки динамической компоновки по ссылке, т. е. по адресу первого байта строки в оперативной памяти. Для этого в описании процедур используется ключевое слово ByVal. При передаче ссылки на строку она преобразуется в форму, которая применяется в языке С: в конце строки ставится символ Null, который указывает на ее окончание. Приведем пример использования функции Win32 API для запуска приложения со строками в качестве параметров:

Declare Function CreateProcess Lib "kerne132" Alias "CreateProcessA" (ByVal IpApplicationName As String, ByVal IpCommandLine As String, IpProcessAttributes As SECURITY_ATTRIBUTES, IpThreadAttributes As SECURITY_ATTRIBUTES, ByVal bInheritHandles As Long, ByVal dwCreationFlags As Long, lpEnvironment As Any, ByVal IpCurrentDriectory As String, IpStartupInfo As STARTUPINFO, lpProcessInformation As PROCESS_INFORMATION) As Long

Проверка описания

По завершении задания описания необходимо проверить его. Для этого необходимо запустить любую подпрограмму, которая имеется в одном модуле с указанным описанием. При этом можно выявить ошибки в описании, а также неправильное использование констант. Необходимо отметить, что поскольку при запуске процедуры VBA автоматически компилируется модуль, в котором она находится, можно использовать любую подпрограмму она может быть не закончена или не использована в разрабатываемом приложении. Например, следующая подпрограмма устанавливает значение переменной. Конечно, вместо запуска проверочной процедуры можно просто скомпилировать проект.

Public Sub CheckDex ()

Вызов подпрограммы Win32 API

После описания подпрограмм необходимо вызвать их. Обратиться к функции Win32 API настолько же просто, как и вызвать собственную функцию или подпрограмму. Необходимо только следовать следующим правилам:

Правильно описать используемые в подпрограмме переменные

Правильно обработать возвращаемые функцией значения

В программе показан вызов функции, которая определяет тип дисковода, заданного символом "F". Обратите внимание, как передается в функцию строка, как возвращаемое функцией значение записывается в переменную типа Long, и как используется блок Case... Select для обработки всех возвращаемых значений.

" Значения, возвращаемые функцией GetDriveType

Public Const DRIVE_REMOVABLE = 2"

Public Const DRIVE_FIXED = 3

Public Const DRIVE__REMOTE = 4

Public Const DRIVE_CDROM = 5.

Public Const DRIVE_RAMDISK = 6

Declare Function GetDriveType Lib "kerne132" Alias "GetDriveTypeA" (ByVal nDrive As String) As Long

Public Sub DisplayDriveType ()

Dim sDriveLetter As String

Dim lDriveType As Long

sDriveLetter = "F:"

lDriveType = GetDriveType (sDriveLetter)

Select Case lDriveType

Case DRIVE_REMOVABLE

Debug.Print "Дисковод ", sDriveLetter, " используется для чтения дискет."

Case DRIVE_FIXED

Debug.Print "Диск ", sDriveLetter, " - жесткий диск."

Case DRIVE_REMOTE

Debug.Print "Диск ", sDriveLetter, " - сетевой диск."

Base DRIVE_CDROM

Debug.Print "Дисковод ", sDriveLetter, "используется для чтения компакт-дисков."

Case DRIVE__RAMDISK

Debug.Print "Диск ", sDriveLetter, " - виртуальньй диск."

Debug.Print "Ошибка вызова функции."

Использование строк в качестве возвращаемых значений

Ранее рассматривалось, как передать строки в качестве параметров функций Win32 API. Для использования строки в качестве возвращаемого подпро-граммой значения, необходимо передать в функцию строковую переменную, чтобы сама функция установила значение этой переменной.

Рассмотрим функцию GetTempPath (), используемую для определения папки, в которой Windows хранит промежуточные данные. Вызов функции. GetTempPath () является следующим:

return = GetTempPath (PathLength, Path)

Функция записывает в переменную Path путь к папке, в которой хранятся промежуточные данные. Например, в следующем фрагменте в окно отладки. выводится текущий путь к папке с временной информацией:

Return = GetTempPath (len (ThePath) , ThePath)

Debug.Print ThePath

Предупреждение

При вызове функции необходимо заранее указать размер возвращаемой строки, чтобы выделить память на ее хранение. В противном случае при записи строки в память можно испортить важную информацию, используемую основным приложением и даже операционной системой, что может привести к сбою в их работе. Если предварительно задать размер строки то функция вводит в строку только то количество данных, которое определено заданным размером строки.

Public Sub PrintTempPathO

Dim sThePath as String

Dim iPathLength as Long

Dim lResult as Long

iPathLength =256

sthePath = String$(iPathLength,0)

lResult = GetTempPath(iPathLength,sThePath)

Значения, возвращаемые функциями Win32 API

Большинство подпрограмм Win32 API являются функциями. Возвращаемое значение - это либо данные, например, возвращаемое функцией GetDriveType () значение, либо просто результат выполнения функции: успешно или не успешно. Например, рассмотрим функцию SetCurrentDirectory (), которая устанавливает текущую папку:

Dim lReturn as long

lReturn = SetCurrentDirectory(С:\WORK")

Если функция установила папку "C:\WORK" текущей, то переменная lReturn имеет значение отличное от 0. В противном случае, например, если каталог не существует, переменной lReturn присваивается значение 0.

Примечание

Одни функции Win32 API возвращают значение 0 в случае успешного завершения, а другие - в случае ошибки. Подробную информацию о возвращаемых функциями Win32 API значениях смотрите в документации по Win32 SDK.

Кроме того, некоторые функции присваивают значение передаваемому в них параметру, а также имеют возвращаемое значение. Рассмотрим функцию GetPrivateProfile (), которая используется для чтения данных из файла INI, хранящего информацию о конфигурации 16-битных приложений Windows:

Dim lSize as long

Dim strSize as long

Dim strValue as string

StrValue = String$ (strSize, 0)

lSize = GetPrivateProfileString ("CoolApplication", _ "ApplicationPath", "", strValue, strSize, "C:\MYINI.INI")

Функция GetPrivateProfile () извлекает значение параметра ApplicationPath раздела CoolApplication и присваивает его строковой переменной strValue, которая передается в функцию в качестве параметра. Кроме того, в переменную lSize записывается длина строки, присвоенной переменной strValue. Необходимо отметить, что если при выполнении функции GetPrivateProfile () возникает ошибка, то переменной lSize присваивается значение Null.

Работа с дескрипторами

Gри работе с Win32 API используются дескрипторы. Дескриптор - это 32-битное целое число, которое однозначно идентифицирует компоненты, используемые при программировании Win32 API, например, диалоговые окна, элементы управления в них, окна, битовые изображения, кисти, используемые для рисования картинок на экране, аппаратные средства. Необходимо отметить, что компоненту сначала назначается дескриптор, а затем этот дескриптор используется для работы с компонентом. Имена дескрипторов обычно задают имена, начинающиеся с префикса h.

В следующем описании параметр hWnd используется для задания дескриптора окна:

Declare Function GetMessage Lib "user32" Alias "GetMessageA" (lpMsg_ As MSG, ByVal hwnd As Long, ByVal wMsgFilterMin В As Long, ByVal _ wMsgFilterMax As Long) As Long

В следующем описании параметр hDevice является дескриптором конфигурации устройства:

Declare Function DeviceIoControl Lib "kerne132" Alias _ "DeviceIoControl" (ByVal hDevice As Long, ByVal dwIoControlCode As _ Long, lpInBuffer As Any, ByVal nInBufferSize As Long, lpOutBuffer _ As Any, ByVal nOutBufferSize As Long, lpBytesReturned As Long, _ lpOverlapped As OVERLAPPED) As Long

При работе с дескриптором в VBA требуется только знать, где его указывать: обычно одна функция возвращает дескриптор компонента, а затем этот дескриптор используется для работы с элементом в других функциях.

Другие полезные примеры

Здесь приводятся несколько полезных примеров применения функций Win32 АРI.

Завершение работы Windows:

Declare Function ExitWindows Lib "user32" Alias "ExitWindowsEx" _ (ByVal dwReserved As Long, ByVal uReturnCode As Long) As Long

Const EWX_LOGOFF=0

Const EWX_SHUTDOWN=1

Const EWX_REBOOT=2

Const EWX_FORCE=4

Const EWX_POWEROFF=8

Private Sub CommandButton1_Click()

Dim flag As Long

Dim Result As Long

If Me.OptionButton1.Value = True Then flag = 0

Else If Me.OptionButton2.Value = True Then flag = 8

Else If Me.OptionButton3.Value = True Then flag = 2

Result = ExitWindows(flag, 0)

Переключение на русскую кодировку:

Public Declare Function ActivateKeyboardLayout Lib "user32" (ByVal _ HKL As Long, ByVal flags As Long) As Long

Public Declare Function GetKeyboardLayout Lib "user32" (ByVal _ dwLayout As Long) As Long

Private Sub UserForm_Initialize()

Dim lang As Long

lang = GetKeyboardLayout(0)

If lang <> 68748313 Then i = ActivateKeyboardLayout(68748313, 0)

Закрытие окна:

Declare Function FindWindow Lib "user32.dll" Alias "FindWindowA" (ByVal lpClassName As Any, ByVal lpWindowName As Any) As Long

Declare Function DestroyWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

Private Sub CommandButton3_Click()

Dim hwnd As Long, retval As Long

Dim temp As String

hwnd = FindWindow(CLng(0), temp) " look for the window

retval = DestroyWindow(hwnd)

Работа с реестром

В Windows 9х и Windows NT, a также приложениях, работающих под их управлением, используется специальная база данных, в которой хранится требуемая для выполнения программ информация: данные о компьютере, на котором инсталлировано программное обеспечение, о пользователях, об установленных аппаратных средствах и т. д. Эта база данных называется реестром. Для доступа к реестру из VBA используются функции Win32 АРI. Кроме того, чтобы просмотреть и отредактировать реестр вручную, можно запустить программу REGEDIT (REGEDT32 для Windows NT).

Перед рассмотрением функций, используемых для работы с реестром, опишем реестр и его структуру.

Структура реестра

Реестр имеет структуру дерева. В нем имеются шесть основных поддеревьев (пять в Windows NT). Элементы реестра называют ключами. Ключ может иметь подключи, а подключи - включать дополнительные ключи, например HKEY_CURRENT_USER\ControlPanel\ Accessibility.

Данные в реестре используются приложениями и операционной системой способами:

Иногда в приложении требуется просто проверить существование ключа. Например, приложение ищет ключ HKEY_CURRENT_CONFIG\Display\Settings и не проверяет наличие в нем подключей или параметров.

В других случаях требуется использовать данные, хранящиеся под ключом. Под ключами содержатся двоичные или строковые параметры и их значения. Каждый ключ имеет значение по умолчанию, а также любое число именованных значений.

Ключи реестра

В верхней части дерева реестра имеются шесть основных ключей. Рассмотрим каждый из них:

HKEY_LOCAL_MACHINE. Под данным ключом хранятся данные, описывающие установленные на компьютере аппаратные средства и программное обеспечение.

HKEY_CURRENT_CONFIG. Под данным ключом хранится информация о конфигурации установленных на компьютере аппаратных средств.

HKEY_DYN_DATA (только Windows 9х). Под данным ключом хранится информация об установленных на компьютере самонастраивающихся устройств Plug и Play.

HKEY_CLASSES_ROOT. Под данным ключом хранится информация установленном на компьютере программном обеспечении, включая данные, используемые операционной системой.

HKEY_USERS. Под данным ключом хранится информация о пользователях.

HKEY_CURRENT_USER. Под данным ключом хранится информация о текущем пользователе.

Использование VBA для доступа к реестру с помощью функций Win32 API

В VBA можно управлять реестром с помощью функций Win32 API, например:

Создать новые ключи в реестре

Экспортировать реестр в файл

Импортировать данные реестра из внешнего файла

Описания, константы и типы данных реестра

При рассмотрении нижеприведенных примеров предполагается, что описаны функции, константы и типы данных, используемые в подпрограммах Win32 API, которые работают с реестром.

Открытие ключа

Чтобы работать с ключами реестра, необходимо предварительно открыть их. При открытии ключа возвращается его дескриптор. Как уже отмечалось ранее, для ссылки на данные можно использовать их дескриптор, в данном случае для доступа к ключу используется дескриптор ключа. Для открытия ключа используется функция RegOpenKey (), которая возвращает значение, указывающее на то, было ли ее выполнение успешным или нет. Кроме того, данная функция присваивает своему аргументу дескриптор ключа. Покажем пример использования функции RegOpenKey (). В программе выводится число 0 в окне отладки, если при выполнении функции не возникло ошибок, а также отображается значение параметра hSubKeyHandle, который является дескриптором ключа

Программа открытия ключа:

Public Sub OpenRegistryKeyDemo()

Dim lReturn As Long

Dim sSubKey As String

Dim hSubKeyHandle As Long

lReturn = RegOpenKey&(HKEY_LOCAL_MACHINE, "Config", hSubKeyHandle)

Debug.Print lReturn

Debug.Print hSubKeyHandle

Чтение значения параметра реестра

Получив дескриптор ключа, можно извлечь значение параметра реестра. При этом можно прочитать как значение параметра по умолчанию, так и величину любого именованного аргумента. Для чтения значения параметра реестра используется одна из двух функций:

Функция RegQueryValueO. Извлекает значение параметра по умолчанию

Функция RegQueryValueEx (). Извлекает значение именованного параметра.

Чтобы получить значение именованного параметра, используйте функцию RegQueryValueEx(). Например, под ключом HKEY_CURRENT_СОNFIG\Display\Settings имеется параметр Resolution, в котором хранится разрешение экрана. В программе показан пример чтения значения именованного параметра. Программа требует некоторых пояснений:

Функция RegOpenKey () используется для получения дескриптора требуемого ключа. Дескриптор передается в функцию RegQueryValueEx ().

Строковый параметр инициализируется до вызова функции, которая читает значение параметра реестра.

Третий аргумент функции RegQueryValueEx () зарезервирован для использования Windows, ему требуется присвоить значение 0.

Четвертый аргумент функции RegQueryValueEx () используется для задания типа возвращаемых данных. Возможные значения смотрите в списке констант реестра. Поскольку возвращаемая величина является строкой, необходимо указать константу REG_SZ, которая задает заканчивающуюся символом Null строку.

Public Sub GetRegistryNameValueDemo ()

Dim lReturn As Long

Dim sSubKey As String

Dim hSubKeyHandle As Long

Dim sValue As String

Dim lSize As Long

SValue=String$(lSize, 0)

lReturn = RegOpenKeyEx(HKEY_CURRENT__CONFIG, Display\Settings", 0, _ KEY_ALL_ACCESS, hSubKeyHandle)

If lReturn<> 0 Then Exit Sub

lReturn = RegQueryValueEx(hSubKeyHandle, "Resolution", 0, REG_SZ, _ sValue, lSize)

Debug.Print sValue

Создание ключа

Реестр используется не только операционной системой и большими приложениями. Даже в маленькой программе VBA можно сохранить в реестре требуемые данные. При этом, наверное, понадобится создать ключ, выбрав и его хранения любой из основных ключей.

Функция RegCreateKey () используется для создания ключа реестра. Кроме того, для этого применяется функция CreateRegKeyEx (), которая имеет большее число аргументов, например, параметры, гадающие защиту.

С помощью функции RegCreateKey () можно создать как один, так и структуру из нескольких ключей, например, добавить ключ "NEWKEY" под ключ HKEY_CURRENT_USER, или создать структуру KEYONE\KEYTWO\KEYTHREE под ключом HKEY_CURRENT_USER. В программе показано создание структуры разделов под ключом HKEY_LOCAL_MACHINE.

Программа создания ключей реестра

Public Sub CreateRegistryKeyDemo ()

Dim lReturn As Long

Dim sSubKey As String

Dim hSubKeyHandle As Long

sSubKey = "SOFTWARE\Использование VBA\Win32 API\Обзор"

lReturn = RegCreateKey& (HKEY_LOCAL_MACHINE, sSubKey, _ hSubKeyHandle)

Установка значения параметра

Для установки значений параметров реестра по умолчанию используется функция RegSetValue (), а для задания величин именованных параметров- функция RegSetValueEx(). Необходимо отметить, что функцию RegSetValueExО можно применять, например, для установки значений именованных параметров ключа, созданного предыдущей программой. В следующей программе показано использование функции RegSeiValue(). Перед установкой значений требуется открыть ключ, под которым находится требуемый параметр. Единственным исключением из этого правила являются параметры реестра, которые хранятся под одним из шести основных ключей (пяти в Windows NT). В этом случае следует задать имя ключа (например, HKEY_LOCAL_MACHINE), а не дескриптор ключа в качестве первого параметра функции RegSetValue ().

Программа требует некоторых пояснений:

Имя параметра и устанавливаемое значение непосредственно передаются в функцию RegSetValueEx ().

Переменная lValueSize задает длину присваиваемого параметру строкового значения.

В качестве четвертого аргумента функции RegSetValueEx () требуется задать тип устанавливаемого значения (REG_SZ). Список констант, соответствующих допустимым типам, приводится в разделе "Описания, константы и типы данных реестра".

Третий аргумент функции RegSetValueEx () всегда равен 0.

Public Sub SetRegistryValue ()

Dim lReturn As Long

Dim hSubKeyHandle As Long

Dim sSubKeyName as String

Dim sValueName As String

Dim sValue As String

sSubKeyWame = "SOFTWARE\Использование VBA\Win32 API\Обзop"

"Открытие ключа и получение его дескриптора

lReturn = RegOpenKey(HKEY_LOCAL_MACHINE, sSubKeyNaine, hSubKeyHandle)

If lresult <> 0 Then Exit Sub

"Установка первого значения

sValueMame = "Скучно?"

sValue = "Нет"

lValueSize = Len (sValue)

" Установка второго значения

lsValueName = "Весело?"

sValue = "Конечно"

lValueSize = Len (sValue)

lReturn = RegSetValueEx (hSubKeyHandle, sValueName, 0, REG_SZ, sValue, lValueSize)

Взаимодействие между приложением и операционной системой осуществляется при помощи системных вызовов (системных сервисов в терминологии Microsoft). Однако приложение не может вызвать системный вызов напрямую (более того, системные вызовы не документированы). Вместо этого приложение должно воспользоваться программным интерфейсом ОС - Win32 API.Win32 API (Application Programming Interface) - основной интерфейс программирования в семействе операционных систем Microsoft Windows. Функции Win32 API , например,CreateProcess илиCreateFile , - документированные, вызываемые подпрограммы, реализуемые Win32 подсистемой.В состав Win32 подсистемы (см.рис. 1.4 ) входят: cерверный процесс подсистемы окружения csrss.exe, драйвер режима ядра Win32k.sys, dll - модули подсистем (kernel32.dll, advapi32.dll, user32.dll и gdi32.dll), экспортирующие Win32-функции и драйверы графических устройств. В процессе эволюции структура подсистемы претерпела изменения. Например, функции окон и рисования с целью повышения производительности были перенесены из серверного процесса, работающего в режиме пользователя, в драйвер режима ядра Win32k.sys. Однако это и подобные изменения никак не отразились на работоспособности приложений, поскольку существующие вызовы Win32 API не изменяются с новыми выпусками системы Windows, хотя их состав постоянно пополняется. Приложение, ориентированное на использование Win32 API, может работать практически на всех версиях Windows, несмотря на то, что сами системные вызовы в различных системах различны (см.рис. 1.5 ). Таким путем корпорация Microsoft обеспечивает преемственность своих операционных систем.

Рис. 1.5. Поддержка единого программного интерфейса для различных версий Windows

При запуске процесса все требуемые динамические библиотеки отображаются на его виртуальное адресное пространство, а для быстрого вызова библиотечной процедуры используется специальный вектор передачи.

Рис. 1.6. Различные маршруты выполнения вызовов Win32 API.

При вызове приложением одной из Win32-функций dll-подсистем может возникнуть одна из трех ситуаций (см. рис. 1.6 ).

    Функция полностью выполняется внутри данной dll (шаг 1).

    Для выполнения функции привлекается сервер csrss, для чего ему посылается сообщение (шаг 2a, за которым обычно следуют шаги 2b и 2c).

    Данный вызов транслируется в системный сервис (системный вызов), который обычно обрабатывается в модуле ntdll.dll (шаги 3a и 3b). Например, Win32-функция ReadFileвыполняется с помощью недокументированного сервисаNtReadFile .Некоторые функции (например,CreateProcess) требуют выполнения обоих последних пунктов.В первых версиях ОС Windows практически все вызовы Win32 API выполнялись, следуя маршруту 2 (2a, 2b, 2c). После того, как существенная часть кода системы для увеличения производительности была перенесена в ядро (начиная с Windows NT 4.0), вызовы Win32 API, как правило, идут напрямую по 3-му (3a, 3b) пути, минуя подсистему окружения Win32. В настоящее время лишь небольшое число вызовов выполняется по длинному 2-му маршруту.Помимо перечисленных, наиболее важных dll-библиотек, в системном каталогеsystem32имеется большое количество других dll-файлов. В настоящее время количество вызовов API составляет несколько десятков тысяч. Список экспортируемых каждой конкретной dll функций можно посмотреть с помощью утилитыdepends , входящей в пакет Platform SDK. Так, нарис. 1.7 приведена информация о структуре библиотеки kernel32.dll ОС Windows XP, экспортирующей 949 функций.

Рис. 1.7. Окно утилиты depends.exe

DLL (динамически подключаемая библиотека)

Набор вызываемых подпрограмм, включенных в один двоичный файл, который приложения, использующие эти подпрограммы, могут динамически загружать в процессе своего выполнения. В качестве примера можно привести модули Msvcrt.dll (библиотека исполняющей Си подсистемы) и Kernel32.dll (одна из библиотек подсистемы Win32). DLL активно используются компонентами и приложениями ОС Windows пользовательского режима. Преимущество DLL перед статическими библиотеками состоит в том, что приложения могут разделять DLL-модули, при этом ОС Windows гарантирует, что в памяти будет находиться лишь по одному экземпляру используемых DLL.

Процессы и потоки

Под процессом понимается контейнер ресурсов, используемыхпотоками . Процесс включает: закрытое адресное пространство, в котором располагаются код, данные и стеки потоков; список открытых описателей ресурсов; контекст защиты; идентификатор процесса.Поток команд исполняемой программы, или простопоток - сущность внутри процесса, получающая процессорное время. Поток характеризуется набором регистров (состоянием), идентификатором потока, стеками режимов ядра и пользователя.

    Основные компоненты ядра Windows NT . Подсистемы Win 32, POSIX , OS /2. Библиотека NTdll . dll .

Основные компоненты ядра Windows NT . Подсистемы Win 32, POSIX , OS /2. Библиотека NTdll . dll .

В режиме ядра выполняются следующие компоненты ОС:

исполняемая часть NT , которая включает управление памятью, процессами, потоками, безопасностью, вводом/выводом, межпроцессорными обменами;

ядро Windows NT выполняет низкоуровневые функции операционной системы: диспетчеризация потоков, прерываний и исключений, синхронизация процессоров. Ядро также включает набор процедур и базовых объектов, используемый исполняемой частью для создания высокоуровневых конструкций;

слой абстракции от оборудования (HAL - Hardware Abstraction Layer ), изолирует ядро, драйверы устройств и исполняемую часть NT от аппаратных платформ, на которых должна работать операционная система;

драйверы устройств включают как файловую систему, так и аппаратные драйверы, которые транслируют пользовательские вызовы функций ввода/вывода в запросы физических устройств ввода/вывода;

функции графического интерфейса пользователя работают с окнами, элементами управления и рисунками.

Подсистемы среды и библиотеки DLL

Как видно из рис. 1, Windows NT имеет три подсистемы среды (Win32, Posix и OS/2 2.1), которые работают только на платформе х86. Подсистема Win32 специфична для Windows NT и не может работать вне ее.

Каждая из подсистем обеспечивает пользовательским приложениям доступ к разным поднаборам служб Windows NT. Это означает, что некоторые вещи могут быть сделаны из приложения, построенного на одной подсистеме, и не возможны из приложения, построенного в другой подсистеме. Так, приложение для Win32 не может использовать функцию fork подсистемы Posix.

Каждый исполняемый модуль связывается с одной и только одной подсистемой. Когда начинается выполнение модуля, изучается тип кода его заголовка, что позволяет определить подсистему среды для создания новых процессов.

Пользовательские процессы не вызывают службы NT напрямую, а используют библиотеки динамических связей (DLL) соответствующей подсистемы среды. Роль библиотек, принадлежащих подсистеме среды, в том, чтобы транслировать документированные функции среды в соответствующие вызовы недокументированных служб NT. Эти библиотеки DLL экспортируют документированный интерфейс, который могут вызывать связанные с подсистемой программы. Например, библиотеки DLL подсистемы Win32 используют функции Win32 API. Библиотека DLL подсистемы Posix использует функции Posix 1003.1 API.

Подсистема Win32. Главные компоненты подсистемы Win32 - процесс подсистемы среды и драйвер режима ядра. Процесс подсистемы среды поддерживает:

консольные (текстовые) окна;

создание и удаление процессов и потоков;

работу виртуальной 16-разрядной DOS машины;

иные функции (GetTempFile, DefineDosDevice, ExitWindowsEx и др.).

Драйвер режима ядра поддерживает:

менеджер окон, который управляет отображением окон, выводом на экран, вводом с клавиатуры, от мыши и других устройств, а также передачей пользовательских сообщений приложениям;

интерфейс графических устройств GDI (Graphical Device Interface), библиотека функций для вывода на графические устройства, для рисования текста, линий, фигур и манипуляций графическими объектами;

зависимые от устройств драйверы графики, принтера и видеопорта;

несколько библиотек DLL, которые транслируют документированные функции Win32 API в соответствующие недокументированные вызовы NTOSKRNL.EXE и WIN32K.SYS.

Приложения вызывают стандартные функции для создания окон и кнопок на дисплее. Менеджер окон передает эти запросы драйверам графических устройств через интерфейс графических устройств GDI, где они форматируются для вывода средствами конкретных устройств. GDI обеспечивает набор стандартных функций, позволяющих приложениям общаться с графическими устройствами, включая дисплеи и принтеры, без конкретных знаний о них. GDI интерпретирует запросы приложений на графический вывод и посылает их драйверам графических дисплеев. Этот интерфейс позволяет создавать код приложения, независимый от конкретных устройств и их драйверов.

NTDLL.DLL - это специальная система поддержки DLL - библиотек. Она содержит два типа функций.

Первая группа функций обеспечивает интерфейс к службам NT, которые могут быть вызваны из пользовательского режима. Существует более 200 таких функций, например NtCreateFile, NtSetEvent и т.д. Для каждой из них имеется точка входа в NTDLL.DLL с тем же именем. Внутренний код функции содержит специфичные для архитектуры команды, которые вызывают переход в режим ядра для обращения к реальным службам NT, код которых содержится в NTOSKRNL.EXE.

Вторая группа функций содержит большое количество функций поддержки: загрузчик исполняемых модулей, коммуникационные функции для процессов подсистемы Win32, библиотека функций реального времени пользовательского режима, диспетчер вызовов асинхронных процедур АРС (Asynchronous Procedure Call) пользовательского режима, диспетчер исключений.

___________________________________________________

Компоненты ядра

Компоненты пользовательского режима

Подсистема пользовательского интерфейса в Windows NT реализует оконный интерфейс, подобный интерфейсу предыдущих версий Windows. Двумя типами объектов этой подсистемы, отсутствовавшими в 16-битных версиях Windows и в Windows 9x, являются оконные станции и рабочие столы. Оконная станция соответствует одному сеансу пользователя Windows NT - например, при подключении через службу удалённого рабочего стола создаётся новая оконная станция. Каждый запущенный процесс принадлежит к одной из оконных станций; службы, кроме помеченных как способные взаимодействовать с рабочим столом, запускаются в отдельных, невидимых оконных станциях.

Каждая оконная станция имеет собственный буфер обмена, набор глобальных атомов (используемых для операций DDE), и набор рабочих столов. Рабочий стол является контекстом всех глобальных операций подсистемы пользовательского интерфейса, таких как установка хуков и широковещательная рассылка сообщений. Каждый запущенный поток принадлежит к одному из рабочих столов - тому, где расположены обслуживаемые им окна; в частности, один поток не может создать несколько окон, принадлежащих к различным рабочим столам. Один из рабочих столов может быть активным (видимым пользователю и способным реагировать на его действия), остальные рабочие столы спрятаны. Возможность создать для одного сеанса работы несколько рабочих столов и переключаться между ними до настоящего времени не предоставлялась стандартными средствами пользовательского интерфейса Windows, хотя существуют сторонние программы, дающие доступ к этой функциональности.

Оконными станциями и рабочими столами исчерпываются объекты подсистемы пользовательского интерфейса Windows NT, которым могут быть назначены права доступа. Оставшиеся типы объектов - окна и меню - предоставляют полный доступ любому процессу, который находится с ними в одной оконной станции. Поэтому службы Windows NT по умолчанию запускаются в отдельных оконных станциях: они работают с повышенными привилегиями, и возможность процессов пользователя неограниченно манипулировать окнами служб могла бы привести к сбоям и/или проблемам безопасности.

Программные интерфейсы

Для прикладных программ системой Windows NT предоставляется несколько наборов API. Самый основной из них - так называемый «родной» API (NT Native API), реализованный в динамически подключаемой библиотеке ntdll и состоящий из двух частей: системные вызовы ядра NT (функции с префиксами Nt и Zw, передающие выполнение функциям ядра ntoskrnl с теми же названиями) и функции, реализованные в пользовательском режиме (с префиксом Rtl). Часть функций второй группы используют внутри себя системные вызовы; остальные целиком состоят из непривилегированного кода, и могут вызываться не только из кода пользовательского режима, но и из драйверов. Кроме функций Native API, в ntdll также включены функции стандартной библиотеки языка Си.

Официальная документация на Native API весьма скудна, но сообществам энтузиастов удалось методом проб и ошибок собрать достаточно обширные сведения об этом интерфейсе. В частности, в феврале 2000 г. опубликована книга Гэри Неббета «Справочник по базовым функциям API Windows NT/2000» (ISBN 1-57870-199-6); в 2002 г. она была переведена на русский язык (ISBN 5-8459-0238-X). Источником информации о Native API может служить Windows DDK, где описаны некоторые функции ядра, доступные посредством Native API, а также изучение кода Windows (обратный инжиниринг) - посредством дизассемблирования, либо используя исходные тексты Windows 2000, ставшие доступными в результате утечки, либо используя исходные тексты Windows 2003, доступные в рамках программы Windows Research Kernel.

Программы, выполняющиеся до загрузки подсистем, обеспечивающих работу остальных API ОС Windows NT, ограничены использованием Native API. Например, программа autochk, проверяющая диски при загрузке ОС после некорректного завершения работы, использует только Native API.

Чаще всего прикладными программами для Windows NT используется Win32 API - интерфейс, созданный на основе API ОС Windows 3.1, и позволяющий перекомпилировать существующие программы для 16-битных версий Windows с минимальными изменениями исходного кода. Совместимость Win32 API и 16-битного Windows API настолько велика, что 32-битные и 16-битные приложения могут свободно обмениваться сообщениями, работать с окнами друг друга и т. д. Кроме поддержки функций существовавшего Windows API, в Win32 API был также добавлен ряд новых возможностей, в т.ч. поддержка консольных программ, многопоточности, и объектов синхронизации, таких как мутексы и семафоры. Документация на Win32 API входит в состав Microsoft Platform SDK (англ.) и доступна на веб-сайте http://msdn2.microsoft.com/en-us/library/

Библиотеки поддержки Win32 API в основном названы так же, как системные библиотеки Windows 3.x, с добавлением суффикса 32: это библиотеки kernel32, advapi32, gdi32, user32, comctl32, comdlg32, shell32 и ряд других. Функции Win32 API могут либо самостоятельно реализовывать требуемую функциональность в пользовательском режиме, либо вызывать описанные выше функции Native API, либо обращаться к подсистеме csrss посредством механизма LPC (англ.), либо осуществлять системный вызов в библиотеку win32k, реализующую необходимую для Win32 API поддержку в режиме ядра. Четыре перечисленных варианта могут также комбинироваться в любом сочетании: например, функция Win32 API WriteFile обращается к функции Native API NtWriteFile для записи в дисковый файл, и вызывает соответствующую функцию csrss для вывода в консоль.

Поддержка Win32 API включена в семейство ОС Windows 9x; кроме того, она может быть добавлена в Windows 3.1x установкой пакета Win32s. Для облегчения переноса существующих Windows-приложений, использующих для представления строк MBCS-кодировки, все функции Win32 API, принимающие параметрами строки, были созданы в двух версиях: функции с суффиксом A (ANSI) принимают MBCS-строки, а функции с суффиксом W (wide) принимают строки в кодировке Unicode. В Win32s и Windows 9x поддерживаются только A-функции, тогда как в Windows NT, где все строки внутри ОС хранятся исключительно в Юникоде, каждая A-фунция просто преобразует свои строковые параметры в Юникод и вызывает W-версию той же функции. Когда имя функции в исходном тексте программы указано без суффикса, использование A- либо W-версии этой функции определяется опциями компиляции. При этом важно отметить, что большинство новых функций, появившихся в Windows 2000 или более поздних ОС семейства Windows NT, существуют только в Unicode-версии, потому что задача обеспечения совместимости со старыми программами и с ОС Windows 9x уже не стоит так остро, как раньше.

Подсистема окружения POSIX поддерживает приложения написанные в соответствии со стандартом POSIX.1. В отличие от большинства «свободных» Unix-подобных ОС, Windows NT сертифицирована институтом NIST на совместимость со стандартом POSIX.1, и даже с более строгим стандартом FIPS 151-2. Библиотекой psxdll экспортируются стандартные функции POSIX, а также некоторые функции Native API, не имеющие аналогов в POSIX - например, для работы с кучей, со структурными исключениями, с кодировкой Unicode. Внутри этих функций используются как Native API, так и LPC-вызовы в подсистему psxss, являющуюся обычным Win32-процессом. Для загрузки этой подсистемы и выполнения POSIX-программы используется консольная программа-оболочка posix.Поддержка POSIX, включённая в Windows NT, не содержит расширений для работы с графикой или многопоточными приложениями.

Для выполнения 16-битных программ, написанных для OS/2 1.x, в состав Windows NT включены две системных библиотеки OS/2 (doscalls и netapi) и консольная программа-эмулятор os2, которая загружает и использует посредством LPC-вызовов подсистемы os2srv и os2ss. Остальные системные библиотеки OS/2, кроме двух названных (kbdcalls, mailslot, moncalls, nampipes, quecalls, viocalls и ещё десяток), не хранятся как отдельные файлы, а эмулируются.Программы, написанные для OS/2 2.0 и выше, а также оконные программы и программы, напрямую работающие с устройствами компьютера, в том числе драйвера, системой Windows NT не поддерживаются.

Обе эти подсистемы, необязательные для работы большинства приложений, были удалены в Windows XP и последующих выпусках Windows. При помощи манипуляций с реестром их можно было отключить и в предыдущих версиях Windows NT, что рекомендовалось специалистами по компьютерной безопасности в целях сокращения поверхности атаки компьютерной системы.

    Ядро и модуль поддержки оборудования. Драйверы устройств, типы. Усовершенствования в драйверах устройств в Windows NT 2000.

Ядро Windows NT представляет собой следующий уровень после уровня аппаратных абстракций, который обеспечивает работу выполняемого модуля Windows NT и других подсистем. Ядро системы выполняет следующие основные функции:

    помощь в синхронизации данных;

    планирование выполнения потоков и процессов;

    управление прерываниями и исключениями;

    восстановление системы после аварийных ситуаций, например после отказа питания.

Данные ядра всегда находятся в оперативной памяти и никогда не выгружаются на диск, как это происходит с пользовательскими приложениями. Данные ядра не могут быть вытеснены другими данными. Это значит, что выполнение кода ядра не может быть прервано ради другого кода, если только ядро не выполняет это самостоятельно.

Ядро представляет собой объектно-ориентированную систему, в которой используется два класса объектов. 1. Объекты-диспетчеры, которые позволяют управлять потоками и процессами и применяются для синхронизации различных потоков/процессов. В число объектов-диспетчеров входят мьютекс-флаги (mutex - это сокращение от "mutual exclusion", т.е. взаимное исключение), семафоры (semaphore) и таймеры (timer). Мьютекс-флаги являются объектами синхронизации и используются для синхронизации данных между двумя компонентами. 2. Объекты управления, например асинхронные вызовы процедур (asynchronous procedure calls - АРС) и процедуры обслуживания прерываний (interrupt service routines - ISR).

Драйверы устройств – модули в режиме ядра, которые могут подгружаться во время работы ОС.

Дра́йвер (англ.driver , мн. ч.дра́йверы ) -компьютерная программа, с помощью которой другие программы (операционная система) получают доступ каппаратному обеспечениюнекоторого устройства. Обычно с операционными системами поставляются драйверы для ключевых компонентов аппаратного обеспечения, без которых система не сможет работать.

Операционная система управляет некоторым «виртуальным устройством», которое понимает стандартный набор команд. Драйвер переводит эти команды в команды, которые понимает непосредственно устройство. Эта идеология называется «абстрагирование от аппаратного обеспечения».

Задача образуют интерфейс между устройством и диспетчером ввода/вывода. Драйвер может выполняться в режиме ядра в одном из контекстов

1). В контексте пользовательского потока, инициировавшего процедуру ввода/вывода.

2). В контексте системного потока режима ядра.

3). Реализуется как результат прерывания.

Типы драйверов устройств

1). Драйверы аппаратных устройств, которые управляют устройствами оборудования через HAL(другие шины, интерфейсы и т.д.).

2). Драйверы файловой системы – принимают запросы ввода/вывода от пользовательских приложений и транслировать их к виду, в котором их воспримет конкретное устройство.

3). Драйвер фильтров файловой системы – обеспечивают зеркалирование, объединение устройств, шифрование устройств, т.е. нужный драйвер загружается в нужный момент в нужной последовательности(плюс скорость и безопасность).

4). Драйвер протоколов – реализует сетевые протоколы.

5). Драйверы потоковых фильтров ядра – действуют по цепочке для обработки потоковых данных(запись, воспроизведение видео).

Существует 3 типа драйверов

1). Драйвер шин – задача обслужить контроллер шины, адаптерный мост или другие устройства, имеющие дочерние устройства.

2). Функциональный драйвер оснащает другие устройства, предоставляющие его функциональный интерфейс.

3). Драйвер фильтра – фильтрация информации, дополнять функциональные устройства дополнительными, фильтрация информации, передаваемой между устройствами, увеличивает функциональность драйверов устройств.

    Планирование потоков. Сценарии планирования. Кванты.

Планирование процессов и потоков

Одной из основных подсистем мультипрограммной ОС, непосредственно влияющей на функционирование вычислительной машины,является подсистема управления процессами и потоками, которая занимается их созданием и уничтожением, поддерживает взаимодействие между ними, а также распределяет процессорное время между несколькими одновременно существующими в системе процессами и потоками.

Подсистема управления процессами и потоками ответственна за обеспечение процессов необходимыми ресурсами. ОС поддерживает в памяти специальные информационные структуры, в которые записывает, какие ресурсы выделены каждому процессу. Она может назначить процессу ресурсы в единоличное пользование или в совместное пользование с другими процессами. Некоторые из ресурсов выделяются процессу при его создании, а некоторые - динамически по запросам во время выполнения. Ресурсы могут быть приписаны процессу на все время его жизни или только на определенный период. При выполнении этих функций подсистема управления процессами взаимодействует с другими подсистемами ОС, ответственными за управление ресурсами, такими как подсистема управления памятью, подсистема ввода-вывода, файловая система.

Когда в системе одновременно выполняется несколько независимых задач, то возникают дополнительные проблемы. Хотя потоки возникают и выполняются асинхронно, у них может возникнуть необходимость во взаимодействии, например при обмене данными. Согласование скоростей потоков также очень важно для предотвращения эффекта «гонок» (когда несколько потоков пытаются изменить один и тот же файл), взаимных блокировок или других коллизий, которые возникают при совместном использовании ресурсов. Синхронизация потоков является одной из важных функций подсистемы управления процессами и потоками.

Каждый раз, когда процесс завершается, ОС предпринимает шаги, чтобы «зачистить следы» его пребывания в системе. Подсистема управления процессами закрывает все файлы, с которыми работал процесс, освобождает области оперативной памяти, отведенные под коды, данные и системные информационные структуры процесса. Выполняется коррекция всевозможных очередей ОС и списков ресурсов, в которых имелись ссылки на завершаемый процесс.

Алгоритмы планирования, основанные на квантовании

В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени - квант. Смена активного потока происходит, если:

    поток завершился и покинул систему;

    произошла ошибка;

    поток перешел в состояние ожидания;

    исчерпан квант процессорного времени, отведенный данному потоку.

Поток, который исчерпал свой квант, переводится в состояние готовности и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый поток из очереди готовых. Граф состояний потока, изображенный на рис. 4.6, соответствует алгоритму планирования, основанному на квантовании.

Рис. 4.6. Граф состояний потока в системе с квантованием

Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными. Рассмотрим, например, случай, когда всем потокам предоставляются кванты одинаковой длины q (рис. 4.7). Если в системе имеется п потоков, то время, которое поток проводит в ожидании следующего кванта, можно грубо оценить как q(n-l). Чем больше потоков в системе, тем больше время ожидания, тем меньше возможности вести одновременную интерактивную работу нескольким пользователям. Но если величина кванта выбрана очень небольшой, то значение произведения q(n-l) все равно будет достаточно мало для того, чтобы пользователь не ощущал дискомфорта от присутствия в системе других пользователей. Типичное значение кванта в системах разделения времени составляет десятки миллисекунд.

Рис. 4.7. Иллюстрация расчета времени ожидания в очереди

Если квант короткий, то суммарное время, которое проводит поток в ожидании процессора, прямо пропорционально времени, требуемому для его выполнения (то есть времени, которое потребовалось бы для выполнения этого потока при монопольном использовании вычислительной системы). Действительно, поскольку время ожидания между двумя циклами выполнения равно q(n-l), а количество циклов B/q, где В - требуемое время выполнения, то W*B(n-l). Заметим, что эти соотношения представляют собой весьма грубые оценки, основанные на предположении, что В значительно превышает q. При этом не учитывается, что потоки могут использовать кванты не полностью, что часть времени они могут тратить на ввод-вывод, что количество потоков в системе может динамически меняться и т. д.

Чем больше квант, тем выше вероятность того, что потоки завершатся в результате первого же цикла выполнения, и тем менее явной становится зависимость времени ожидания потоков от их времени выполнения. При достаточно большом кванте алгоритм квантования вырождается в алгоритм последовательной обработки, присущий однопрограммным системам, при котором время ожидания задачи в очереди вообще никак не зависит от ее длительности.

Кванты, выделяемые одному потоку, могут быть фиксированной величины, а могут и изменяться в разные периоды жизни потока. Пусть, например, первоначально каждому потоку назначается достаточно большой квант, а величина каждого следующего кванта уменьшается до некоторой заранее заданной величины. В таком случае преимущество получают короткие задачи, которые успевают выполняться в течение первого кванта, а длительные вычисления будут проводиться в фоновом режиме. Можно представить себе алгоритм планирования, в котором каждый следующий квант, выделяемый определенному потоку, больше предыдущего. Такой подход позволяет уменьшить накладные расходы на переключение задач в том случае, когда сразу несколько задач выполняют длительные вычисления.

Потоки получают для выполнения квант времени, но некоторые из них используют его не полностью, например из-за необходимости выполнить ввод или вывод данных. В результате возникает ситуация, когда потоки с интенсивными обращениями к вводу-выводу используют только небольшую часть выделенного им процессорного времени. Алгоритм планирования может исправить эту «несправедливость». В качестве компенсации за неиспользованные полностью кванты потоки получают привилегии при последующем обслуживании. Для этого планировщик создает две очереди готовых потоков (рис. 4.8). Очередь 1 образована потоками, которые пришли в состояние готовности в результате исчерпания кванта времени, а очередь 2 - потоками, у которых завершилась операция ввода-вывода. При выборе потока для выполнения прежде всего просматривается вторая очередь, и только если она пуста, квант выделяется потоку из первой очереди.

Многозадачные ОС теряют некоторое количество процессорного времени для выполнения вспомогательных работ во время переключения контекстов задач. При этом запоминаются и восстанавливаются регистры, флаги и указатели стека, а также проверяется статус задач для передачи управления. Затраты на эти вспомогательные действия не зависят от величины кванта времени, поэтому чем больше квант, тем меньше суммарные накладные расходы, связанные с переключением потоков.

Рис. 4.8. Квантование с предпочтением потоков, интенсивно обращающихся к вводу-выводу

ПРИМЕЧАНИЕ

В алгоритмах, основанных на квантовании, какую бы цель они не преследовали (предпочтение коротких или длинных задач, компенсация недоиспользованного кванта или минимизация накладных расходов, связанных с переключениями), не используется никакой предварительной информации о задачах. При поступлении задачи на обработку ОС не имеет никаких сведений о том, является ли она короткой или длинной, насколько интенсивными будут ее запросы к устройствам ввода-вывода, насколько важно ее быстрое выполнение и т. д.

Вытесняющие и невытесняющие алгоритмы планирования

С самых общих позиций все множество алгоритмов планирования можно разделить на два класса: вытесняющие и невытесняющие алгоритмы планирования.

Невытесняющие (non-preemptive) алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению поток.

Вытесняющие (preemptive) алгоритмы - это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого потока принимается операционной системой, а не активной задачей.

5. Состояния потока. Уровни приоритета.

Состояния потока

ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток может находиться в одном из трех основных состояний:

    выполнение - активное состояние потока, во время которого поток обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

    ожидание - пассивное состояние потока, находясь в котором, поток заблокирован по своим внутренним причинам (ждет осуществления некоторого события, например завершения операции ввода-вывода, получения сообщения от другого потока или освобождения какого-либо необходимого ему ресурса);

    готовность - также пассивное состояние потока, но в этом случае поток заблокирован в связи с внешним по отношению к нему обстоятельством (имеет все требуемые для него ресурсы, готов выполняться, однако процессор занят выполнением другого потока).

ПРИМЕЧАНИЕ

Состояния выполнения и ожидания могут быть отнесены и к задачам, выполняющимся в однопрограммном режиме, а вот состояние готовности характерно только для режима мультипрограммирования.

В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятым в данной операционной системе.

Рассмотрим типичный граф состояния потока (рис. 4.3). Только что созданный поток находится в состоянии готовности, он готов к выполнению и. стоит в очереди к процессору. Когда в результате планирования подсистема управления потоками принимает решение об активизации данного потока, он переходит в состояние выполнения и находится в нем до тех пор, пока либо он сам освободит процессор, перейдя в состояние ожидания какого-нибудь события, либо будет принудительно «вытеснен» из процессора, например вследствие исчерпания отведенного данному потоку кванта процессорного времени. В последнем случае поток возвращается в состояние готовности. В это же состояние поток переходит из состояния ожидания, после того как ожидаемое событие произойдет.

Рис. 4.3. Граф состояний потока в многозадачной среде

В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности - несколько потоков. Эти потоки образуют очереди соответственно ожидающих и готовых потоков. Очереди потоков организуются путем объединения в списки описателей отдельных потоков. Таким образом, каждый описатель потока, кроме всего прочего, содержит по крайней мере один указатель на другой описатель, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать потоки, переводить потоки из одного состояния в другое. Если предположить, что на рис. 4.4 показана очередь готовых потоков, то запланированный порядок выполнения выглядит так: А, В, Е, D, С.

Рис. 4.4. Очередь потоков

Алгоритмы планирования, основанные на приоритетах

Другой важной концепцией, лежащей в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики - приоритета, на основании которой определяется порядок их выполнения. Приоритет - это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.

Приоритет может выражаться целым или дробным, положительным или отрицательным значением. В некоторых ОС принято, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В других системах, наоборот, чем меньше число, тем выше приоритет.

В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании. Значение приоритета включается в описатель процесса и используется при назначении приоритета потокам этого процесса. При назначении приоритета вновь созданному процессу ОС учитывает, является этот процесс системным или прикладным, каков статус пользователя, запустившего процесс, было ли явное указание пользователя на присвоение процессу определенного уровня приоритета. Поток может быть инициирован не только по команде пользователя, но и в результате выполнения системного вызова другим потоком. В этом случае при назначении приоритета новому потоку ОС должна принимать во внимание значение параметров системного вызова.

Во многих ОС предусматривается возможность изменения приоритетов в течение жизни потока. Изменение приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операционной системе, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных, приоритетов.

От того, какие приоритеты назначены потокам, существенно зависит эффективность работы всей вычислительной системы. В современных ОС во избежание разбалансировки системы, которая может возникнуть при неправильном назначении приоритетов, возможности пользователей влиять на приоритеты процессов и потоков стараются ограничивать. При этом обычные пользователи, как правило, не имеют права повышать приоритеты своим потокам, это разрешено делать (да и то в определенных пределах) только администраторам. В большинстве же случаев ОС присваивает приоритеты потокам по умолчанию.

В качестве примера рассмотрим схему назначения приоритетов потокам, принятую в операционной системе Windows NT (рис. 4.9). В системе определено 32 уровня приоритетов и два класса потоков - потоки реального времени и потоки с переменными приоритетами. Диапазон от 1 до 15 включительно отведен для потоков с переменными приоритетами, а от 16 до 31 - для более критичных ко времени потоков реального времени (приоритет 0 зарезервирован для системных целей).

Рис. 4.9 . Схема назначения приоритетов в Windows NT

При создании процесса он в зависимости от класса получает по умолчанию базовый приоритет в верхней 5 или нижней части диапазона. Базовый приоритет процесса в дальнейшем может быть повышен или понижен операционной системой. Первоначально Поток получает значение базового приоритета из диапазона базового приоритета процесса, в котором он был создан. Пусть, например, значение базового приоритета некоторого процесса равно К. Тогда все потоки данного процесса получат базовые приоритеты из диапазона [К-2, К+2]. Отсюда видно, что, изменяя базовый приоритет процесса, ОС может влиять на базовые приоритеты его потоков.

В Windows NT с течением времени приоритет потока, относящегося к классу потоков с переменными приоритетами, может отклоняться от базового приоритета потока, причем эти изменения могут быть не связаны с изменениями базового приоритета процесса. ОС может повышать приоритет потока (который в этом случае называется динамическим) в тех случаях, когда поток не полностью использовал отведенный ему квант, или понижать приоритет, если квант был использован полностью. ОС наращивает приоритет дифференцирование в зависимости от того, какого типа событие не дало потоку полностью использовать квант. В частности, ОС повышает приоритет в большей степени потокам, которые ожидают ввода с клавиатуры (интерактивным приложениям) и в меньшей степени - потокам, выполняющим дисковые операции. Именно на основе динамических приоритетов осуществляется планирование потоков. Начальной точкой отсчета для динамического приоритета является значение базового приоритета потока. Значение динамического приоритета потока ограничено снизу его базовым приоритетом, верхней же границей является нижняя граница диапазона приоритетов реального времени.

Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.

В обоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится). На рис. 4.10, а показан граф состояний потока в системе с относительными приоритетами.

В системах с абсолютными приоритетами выполнение активного потока прерывается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит в состояние готовности (рис. 4.10, б).

В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной работы на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения времени и реального времени такая дисциплина обслуживания не подходит: интерактивное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.

Рис. 4.10. Графы состояний потоков в системах с относительными и абсолютными приоритетами

В системах с абсолютными приоритетами время ожидания потока в очередях может быть сведено к минимуму, если ему назначить самый высокий приоритет. Такой поток будет вытеснять из процессора все остальные потоки (кроме потоков, имеющих такой же наивысший приоритет). Это делает планирование на основе абсолютных приоритетов подходящим для систем управления объектами, в которых важна быстрая реакция на событие.

Уровни приоритета

Существует 32 уровня приоритета от 0 до 31. Они разделены на 3 группы.

1 группа(с 16 по 31) – 16 уровней реального времени.

2 группа(с 1 по 15) – 15 динамических уровней.

3 группа(0) – системный уровень(для потока обнулениястраниц).

    Управление памятью. Резервирование и передача страниц. Защита памяти.

Управление памятью.

В WindowsNTза управление памятью отвечает диспетчер виртуальной памяти. Содержится вNTOSkernel.exeи включает следующие компоненты

1) Набор сервисов исполнительной системы для выделения, освобождения и управления виртуальной памятью.

2) Обработчики ловушек трансляций недействительных адресов и решение доступа для разрешения аппаратно обнаруживаемых исключений.

Виртуальная память в Windows NT имеет страничную организацию, принятую во многих современных операционных системах. В общем виде схема страничной организации описывается следующим образом: линейный адрес разбивается на несколько частей. Старшая часть адреса содержит в себе номер элемента в корневой таблице. Этот элемент содержит адрес таблицы следующего уровня. Следующая часть линейного адреса содержит номер элемента уже в этой таблице и так далее, до последней таблицы, которая содержит номер физической страницы. А самая младшая часть адреса уже является номером байта в этой физической странице.

Процессоры Intel начиная с Pentium Pro позволяют операционным системам применять одно-, двух- и трехступенчатые схемы. И даже разрешается одновременное использование страниц различного размера. Эта возможность, конечно, повысила бы эффективность страничного преобразования, будь она внедрена в Windows NT. Увы, эта ОС возникла раньше и поддерживает только двухступенчатую схему преобразования с фиксированным размером страниц. Размер страниц для платформы Intel составляет 4 Кбайт, а для DEC Alpha - 8 Кбайт. Схема страничного преобразования (рис. 1) выглядит так:

Каждый раз, когда поток использует адрес, менеджер ВП вместе с аппаратными средствами транслирует виртуальный адрес в физический. Подсистема виртуальной памяти, управляя процессом трансляции виртуальных адресов, гарантирует, что нить одного процесса не сможет получить доступ к физической странице памяти, относящейся к другому процессу.

Каждый процесс NT executive имеет большое виртуальное адресное пространство размером в 4Гб, из которых 2 Гб резервируются для системных нужд. Младшие адреса виртуального адресного пространства доступны для потоков, работающих и в пользовательском, и в привилегированном режимах, они указывают на области памяти, уникальные для каждого процесса. Старшая часть адресов доступна для потоков только тогда, когда они выполняются в привилегированном режиме.

Резервирование и передача страниц.

Три состояния страниц.

    Свободное.

    Зарезервированное

    Переданное

В WindowsNTпредусмотрены 4 основные способа защиты памяти.

    Доступ ко всем общесистемным структурам данных и пулам памяти используемых системными компонентами режима ядра возможен лишь в режиме ядра.

    У каждого процесса имеется индивидуальное адресное пространство защищённое от доступа потоков других процессов

    Все процессоры поддерживаемые в WindowsNTпредоставляют ту или иную форму аппаратной защиты памяти.

    Совместное используемый объект имеет стандартный для winntсписки контроля доступа (accesscontrollist) проверяемый при попытках процессов открыть эти страницы

В большинстве современных операционных систем виртуальная память организуется с помощью страничной адресации. Оперативная память делится на страницы: области памяти фиксированной длины (например, 4096 байт), которые являются минимальной единицей выделяемой памяти (то есть даже запрос на 1 байт от приложения приведёт к выделению ему страницы памяти). Процесс обращается к памяти с помощью адреса виртуальной памяти, который содержит в себе номер страницы и смещение внутри страницы. Процессор преобразует номер виртуальной страницы в адрес соответствующей ей физической страницы при помощи буфера ассоциативной трансляции. Если ему не удалось это сделать, то требуется обращение ктаблице страниц(так называемыйPage Walk ), что может сделать либо сам процессор, либо операционная система (в зависимости от архитектуры) . Если страница выгружена из оперативной памяти, то операционная система подкачивает страницу с жёсткого диска (см.свопинг). При запросе на выделение памяти операционная система может «сбросить» на жёсткий диск страницы, к которым давно не было обращений. Критические данные (например, код запущенных и работающих программ, код и памятьядрасистемы) обычно находятся в оперативной памяти (исключения существуют, однако они не касаются тех частей, которые отвечают за обработку аппаратных прерываний, работу с таблицей страниц и использование файла подкачки).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: