Физическое кодирование. Кодирование и декодирование сигналов в системах опознавания

). Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат.

Энциклопедичный YouTube

  • 1 / 5

    Система кодирования сигналов имеет многоуровневую иерархию.

    Физическое кодирование

    Самым нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

    Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

    С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

    Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

    Логическое кодирование

    Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

    В совокупности физическое кодирование и логическое кодирование образуют систему кодирования самого низшего уровня.

    Форматы кодов

    Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

    • Формат БВН (без возвращения к нулю) естественным образом соответствует режиму работы логических схем. Единичный бит передается в пределах такта уровень не меняется. Положительный перепад означает переход из 0 к 1 в исходном коде, отрицательный - от 1 к 0. Отсутствие перепадов показывает, что значения предыдущего и последующего битов равны. Для декодирования кодов в формате БВН необходимы тактовые импульсы, так как в его спектре не содержится тактовая частота. Соответствующий коду формата БВН сигнал содержит низкочастотные компоненты (при передаче длинных серий нулей или единиц перепады не возникают).
    • Формат БВН-1 (без возвращения к нулю с перепадом при передаче 1) является разновидностью формата БВН. В отличие от последнего в БВН-1 уровень не передает данные, так как и положительные и отрицательные перепады соответствуют единичным битам. Перепады сигнала формируются при передаче 1. При передаче 0 уровень не меняется. Для декодирования требуются тактовые импульсы.
    • Формат БВН −0 (без возвращения к нулю с перепадом при передаче 0) является дополнительным к БВН-1 (перепады соответствуют нулевым битам исходного кода). В многодорожечных системах записи цифровых сигналов вместе с кодом в формате БВН надо записывать тактовые импульсы. Возможным вариантом является запись двух дополнительных сигналов, соответствующих кодам в форматах БВН-1 и БВН-0. В одном из двух сигналов перепады происходят в каждом такте, что позволяет получить импульсы тактовой частоты.
    • Формат ВН (с возвращением к нулю) требует передачи импульса, занимающего только часть тактового интервала (например, половину), при одиночном бите. При нулевом бите импульс не формируется.
    • Формат ВН-П (с активной паузой) означает передачу импульса положительной полярности при единичном бите и отрицательной - при нулевом бите. Сигнал этого формата имеет в спектре компоненты тактовой частоты. Он применяется в ряде случаев для передачи данных по линиям связи.
    • Формат ДФ-0 (двухфазный со скачком фазы при передаче 0) соответствует способу представления, при котором перепады формируются в начале каждого такта. При единичных битах сигнал в этом формате меняется с тактовой частотой, то есть в середине каждого такта происходит перепад уровня. При передаче нулевого бита перепад в середине такта не формируется, то есть имеет место скачок фазы. Код в данном формате обладает возможностью самосинхронизации и не требует передачи тактовых сигналов.

    Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

    Системы с двухуровневым кодированием

    Без возврата к нулю

    Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ (англ.) русск. ).

    При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI).

    NRZ

    Для передачи единиц и нулей используются два устойчиво различаемых потенциала:

    • биты 0 представляются нулевым напряжением 0 (В);
    • биты 1 представляются значением U (В).

    NRZ (перевёрнутый):

    • биты 0 представляются значением U (В);
    • биты 1 представляются нулевым напряжением 0 (В).

    Простейший код, обычный цифровой (дискретный) сигнал (может быть преобразован на обратную полярность или изменены уровни соответствующие нулю и единице).

    Достоинства - простая реализация; не нужно кодировать и декодировать на концах. Высокая скорость передачи при заданной полосе пропускания (для обеспечения пропускной способности в 10Мбит/сек полоса пропускания составит 5 МГц, так как одно колебание равно 2 битам). Для синхронизации передачи байта используется старт-стоповый бит.

    Недостатки - Наличие постоянной составляющей, из за чего невозможно обеспечить гальваническую развязку с помощью трансформатора. Высокие требования к синхронизации частот на приёмном и передающем конце - за время передачи одного слова (байта) приемник не должен сбиться больше, чем на бит (например для слова длиной в байт с битом старта и стопа, то есть всего 10 бит канальной информации, рассинхронизация частот приёмника и передатчика не может превышать 10 % в обе стороны, для слова в 16 бит, то есть 18 бит канальной информации, рассинхронизация не должна превышать 5,5 %, а в физических реализациях и того меньше).

    NRZI

    При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

    Достоинства метода NRZI:

    • Простота реализации.
    • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов).
    • Основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N - битовая скорость передачи дискретных данных бит/с), что приводит к узкому спектру.

    Недостатки метода NRZI:

    • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
    • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

    MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZI, но в отличие от последнего имеет три уровня сигнала. Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче «нуля» сигнал не меняется.

    Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

    Гибридный троичный код (англ.) русск.

    Входной бит Предыдущее состояние
    на выходе
    Выходной бит
    0 +
    0
    0
    1 +
    0 +

    4B3T [убрать шаблон]

    Таблица кодирования:

    MMS 43 coding table
    Input Accumulated DC offset
    1 2 3 4
    0000 + 0 + (+2) 0−0 (−1)
    0001 0 − + (+0)
    0010 + − 0 (+0)
    0011 0 0 + (+1) − − 0 (−2)
    0100 − + 0 (+0)
    0101 0 + + (+2) − 0 0 (−1)
    0110 − + + (+1) − − + (−1)
    0111 − 0 + (+0)
    1000 + 0 0 (+1) 0 − − (−2)
    1001 + − + (+1) − − − (−3)
    1010 + + − (+1) + − − (−1)
    1011 + 0 − (+0)
    1100 + + + (+3) − + − (−1)
    1101 0 + 0 (+1) − 0 − (−2)
    1110 0 + − (+0)
    1111 + + 0 (+2) 0 0 − (−1)

    Таблица декодирования.

    Преобразование сигналов

    Погрешности и шумы квантования.

    Квантование по уровню, равномерное и неравномерное квантование.

    Преобразование сигналов.

    Канал есть совокупность технических средств между источником сообщений и потребителœем. Технические устройства, входящие в состав канала, предназначены для того, чтобы сообщения дошли до потребителя наилучшим образом – для этого сигналы преобразуют. Такими полезными преобразованиями сигнала являются модуляция, рассмотренная ранее и преобразование непрерывных сигналов в дискретные. Соответственно, каналы классифицируют по состояниям – непрерывные и дискретные .

    Сигналы, несущие информацию о состоянии какого-либо объекта или процесса, по своей природе непрерывны, как непрерывны сами процессы. По этой причине такие сигналы называют аналоговыми, т.к. они являются аналогом отображаемого ими процесса или состояний объекта. Число значений, ĸᴏᴛᴏᴩᴏᴇ может принимать аналоговый сигнал, бесконечно. Соответственно, каналы, по которым передаются эти сигналы, также являются аналоговыми.

    В АТС задача часто сводится к тому, чтобы различить конечное число состояний объекта͵ к примеру, занята рельсовая цепь или свободна. Для передачи этого числа состояний достаточно сравнить принимаемый сигнал с некоторым опорным сигналом. В случае если он больше опорного, объект находится в одном состоянии, меньше – в другом. Чем больше число состояний объекта͵ тем больше должно быть опорных уровней.

    С другой стороны, информацию о состоянии объекта потребителю достаточно получать не непрерывно во времени, а периодически, и, если период опроса увязать со скоростью изменения состояний объекта͵ то потребитель не будет иметь потерь информации.

    В результате преобразований непрерывного сигнала, называемых квантованием и дискретизацией получают отсчеты сигнала, рассматриваемые как числа в той или иной системе счисления. Эти отсчеты являются дискретными сигналами . Эти числа преобразуют в кодовые комбинации электрических сигналов, которые и передают по линии связи как непрерывные. При использовании в качестве носителя постоянного состояния получают последовательность видеоимпульсов. При крайне важности этой последовательностью модулируют гармоническое колебание и получают последовательность радиоимпульсов.

    Под кодированием понимают преобразование дискретных сигналов в последовательность или комбинацию некоторых символов. Символ кода - ϶ᴛᴏ элементарный сигнал , отличающийся от другого символа кодовым признаком . Число значений кодовых признаков принято называть основанием кода – m . Число символов в кодовой комбинации п определяет длину кода. В случае если длина кода для всœех комбинаций постоянна, код принято называть равномерным. Чаще всœего используются равномерные двоичные (m =2) коды. Максимальное число кодовых комбинаций при равномерном кодировании: N = m n .

    Представление непрерывных сигналов отсчетами, а отсчетов – совокупностью символов принято называть цифровыми видами модуляции . Из них наиболее распространенными являются импульсно-кодовая модуляция (ИКМ) и дельта-модуляция (ДМ).

    Рассмотрим ИКМ. Пусть нам нужно передать непрерывный сигнал с диапазоном изменения от нуля до 15 вольт. Считаем, что нам достаточно передать 16 уровней, ᴛ.ᴇ. N = 16. Отсюда, если m = 2, то n = 4. Кодируем: 0 В – 0000, 1 В – 0001, 2 В – 0010, 3 В – 0011 и т.д. Эти числа в виде импульсов и пауз поступают в линию связи, затем в приемнике декодируются и превращаются, если нужно, снова в непрерывный сигнал. Преобразование непрерывного сигнала в дискретный осуществляется в устройствах, называемых аналого-цифровыми преобразователями (АЦП), обратные преобразования – в устройствах цифро-аналогового преобразования (ЦАП).


  • - Кодирование и декодирование сигналов

    В процессе кодирования амплитуда каждого квантованного по уровню АИМ отсчета представляется в виде двоичной последовательности, содержащей m символов. Как говорилось выше, для качественной передачи телефонного сигнала при равномерном и неравномерном квантовании... [читать подробенее]


  • - Кодирование сигналов в режиме УВД.

    Форматы кодов в СВРЛ. Самолетные ответчики в системе вторичной радиолокации. Радиолокационные самолетные ответчики. Структурная схема ВРЛ Параметры кодов запроса Код запроса Кодовый интервал Информационное содержание Нормы ИКАО... [читать подробенее]


  • - Кодирование сигналов.

    Способы образования и передачи сигналов. Сигналы могут передаваться: 1. Батарейным способом (импульсами постоянного тока): - по разговорным проводам - многопроводным способом - по искусственной линии 2. Индуктивным способом 3. Переменным током тональной или...

  • Кодирование сигналов

    Кодирование сигналов служит для обмена информацией между отдельными составляющими СУ ТОУ (САУ или АСУ) (схемами, узлами, устройствами, блоками), ее обработки и хранение с требуемой точностью и надежностью (самая высокая помехозащищенность). Кодирование состоит в использовании кода – универсального способа отображения информации при ее передаче, обработке и хранении. Код представляет собой систему соответствий между элементами сообщений и сигналами, при помощи которых эти элементы можно зафиксировать. В коде различные виды сигналов одной физической природы называются символами . Конечная совокупность символов, выбранная для передачи конкретного сообщения , называется словом . Кодовый сигнал (код) - особый вид сигналов (цифровой сигнал). Кодирование может производиться либо от аналоговых, либо от дискретных сигналов (рис.1.2).

    пример : 0 или 1 – символы в одном разряде двоичного кода (1 бит информации);

    байт содержит 8 бит информации (8 разрядов), т.е. например, 10001001 байтовое слово.

    В АСУ так же как в любых информационно-измерительных системах (ИИС) применяются два способа передачи сообщений (совокупности слов): параллельным кодом – все символы одного слова передаются одновременно по каналам, число которых соответствует количеству символов, т.е. длине слова (для передачи байтового слова нужно 8 каналов); последовательным кодом - символы одного слова передаются друг за другом по одному каналу.

    Выбор кодов определяется спецификой восприятия и преобразования информации, характерной для данного уровня АСУ ТП и ее составляющих.

    Основными требованиями , которые выдвигаются при выборе способа кодирования, являются: экономичность отображения информации, простота технической реализации устройств кодирования, удобство выполнения вычислительных операций и надежность передачи сообщений.

    Для выполнения этих требований, особенно связанных с удобством выполнения вычислительных операций , наиболее пригоден цифровой код (алфавит), число символов в котором зависит от основания системы счисления и обычно не превышает 10 или 16. Такой подход позволяет осуществлять кодирование не только чисел, но и понятий.

    При помощи кода с основанием n любое число можно представить в виде:

    где N – количество разрядов; a j – количество символов в одном разряде.

    Если опустить n j , то получим более компактную запись N – разрядного (от N –1 до 0) числа М:

    . (1.2)

    Пример: М = 123 = 1×10 3-1 + 2 × 10 2-1 + 3 ×10° (n=10).

    Из формул (1.1) и (1.2) следует, что одно и то же число М в зависимости от основания n при кодировании формируется из разного количества символов в одном разряде (a j )и количества разрядов (N ). Например, цифровой 3-разрядный десятичный вольтметр, представляющий информацию в коде с основанием 10, имеет в каждом разряде 10 различных цифр (символов), может с точностью до 1 младшего разряда выдать 1000 (0, 1, …, 999) различных значений измеряемого параметра (напряжения). для осуществления той же операции в двоичном коде (коде с основанием 2) потребуется 10 разрядов с двумя значащими цифрами в каждом из них (2 10 = 1024).

    Пусть n – максимальное число символов в разряде (основание кода), а N – число разрядов.

    Тогда возможное количество различных сообщений составляет

    Например, 1024 = 2 10 ; в двоичном коде с помощью 10 разрядов можно записать максимальное число 1024, т.е. для передачи числа 1024 понадобится 10 каналов (разрядов) двоичного кода.

    Экономичность кодирования будет тем выше, чем меньше знаков следует затратить на передачу одного и того же сообщения. При передаче сообщений по каналу связи количество знаков определяет также и необходимое для этого время.

    По соображениям простоты технической реализации явное преимущество на стороне кода с n = 2, при котором для хранения, передачи и обработки информации необходимы дискретные элементы с двумя устойчивыми состояниями.

    Пример: логические функции: «да» - «нет», состояние блока ТОУ: «включено» - «отключено», действие (операция): «выполнено» – «не выполнено», техническое состояние узла ТОУ: «исправен» - «неисправен», кодируется цифрами «1» - «0».

    Поэтому двоичный код получил широкое распространение в цифровых устройствах измерения контроля, управления и автоматизации.

    При вводе двоично-кодированной информации в ЭВМ для компактной записи часто используют коды, основание которых являются целой степенью чисел 2:2 3 = 8 (восьмеричный) и 2 4 = 16 (шестнадцатеричный).

    Для примера рассмотрим формирование чисел в различных системах счисления (табл.1.1).

    Таблица 1.1

    Система счисления
    Десятичная n = 10 Двоичная n = 2 Восьмеричная n = 8 Шестнадцатеричная n = 16
    А
    В…F

    Рассмотрим двоичные позиционные коды. Среди них широко используются специальные коды: прямой, обратный, дополнительный . Во всех этих кодах введен специальный знаковый разряд.

    В прямом коде знак кодируется 0 для положительных и 1 – для отрицательных чисел. Пример 1100 (+12) в прямом коде 0.1100. Прямой код удобен для выполнения операций умножения, т.к. знак произведения получается автоматически. Однако затруднено вычитание. Этот недостаток устраняется применением обратного и дополнительного кодов , отличающихся от прямого способом представления отрицательных чисел. Обратный код отрицательного числа образуется инвертированием всех значащих разрядов (-1100 (– 12) в обратном коде: 1.0011). В дополнительном коде после инвертирования разрядов в младший размер добавляется 1. Пример: - 1100 в дополнительном коде: 1.0100.

    В системах и устройствах отображение информации (цифровой индикации) нашли применение двоично-десятичные коды . В этих кодах каждая десятичная цифра представляется четырьмя двоичными (тетрадой).

    Системы кодирования в 2-10 кодах показаны в табл.1.2.

    Таблица 1.2

    Выбор частоты квантования для аналого-цифрового преобразователя (АЦП) . При квантовании и последующем кодировании сигналов, например в случае квантования по времени в виде импульсов, модулированных по амплитуде (рис.1.3, б), дальнейшее преобразование сигналов в АЦП заключается в представлении амплитуды импульсов двоичным кодом. При этом установление частоты квантования усложняется в тех случаях, когда исходный аналоговый сигнал y (f ) является произвольной функцией времени и не поддается аналитическому выражению. Тогда частота квантования определяется на основании теоремы В.А.Котельникова . В этой теореме рассматривается непрерывная функция, имеющая ограниченный спектр частот, т.е. содержит частоты от 0 до f m а x . Такую функцию можно представить с достаточной точностью при помощи чисел, следующих друг за другом через интервалы времени

    Следовательно, исходя из формулы (1.4), определяющей шаг квантования, при частоте квантования

    Стандарты открытых кабельных систем Стандарты открытых кабельных систем, механизм кодирования http://www.сайт/lan/standarti_otkritih_kabeljnih_sistem http://www.сайт/@@site-logo/logo.png

    Стандарты открытых кабельных систем

    Стандарты открытых кабельных систем, механизм кодирования

    Основные понятия: методы кодирования, схема передачи, спектр сигнала, однополосный и двухполосный сигналы

    Информационные системы локальных сетей иногда сравнивают с транспортной инфраструктурой. Кабели - это магистрали, разъемы - стыки дорог, сетевые карты и устройства - терминалы. Сетевые протоколы вызывают ассоциацию с правилами движения, которые к тому же определяют тип, конструкцию и характеристики транспортных средств.

    Стандарты открытых кабельных систем, называемых также структурированными, определяют параметры и правила построения среды для передачи сигналов. Среда передачи - это электропроводные и оптоволоконные кабели, соединенные в каналы с помощью разъемов. При беспроводной связи передача сигналов осуществляется посредством радиоволн, в том числе, инфракрасных. Однако свободное пространство пока не рассматривается в качестве среды для локальных сетей.

    Стандарты определяют частотный и динамический диапазоны элементов - кабелей, разъемов, линий и каналов.

    Другая группа стандартов, разрабатываемая организациями стандартизации, в частности, Институтом инженеров электротехники и электроники (IEEE), и общественными организациями, например, ATM Forum и Gigabit Ethernet Alliance, определяет параметры физического уровня сетевых протоколов. К ним относятся тактовая частота, метод кодирования, схема передачи и спектр сигнала.

    Открытая система обмена информацией OSI (Open System Interconnect), определяющая стандарты связи и передачи данных в любых сетях, разбивает все функции взаимодействия систем на семь уровней.

    Нижний или физический уровень обеспечивает преобразование данных в электромагнитные сигналы, предназначенные для определенной среды передачи, и наоборот. Сигналы, передаваемые с физического уровня на второй или канальный уровень, не зависят от среды передачи. Сетевые протоколы, работающие на первом и втором уровнях, задают параметры сигналов, отправляемых по магистралям.

    Некоторые аналогии, приводимые в статье, позволяют лучше понять взаимосвязь тактовой частоты, спектра сигнала и скорости передачи данных.

    Если представить себе, что тактовая частота - это обороты двигателя автомобиля, то скорость передачи данных - это скорость движения. Преобразование одного в другое обеспечивается кодированием или коробкой передач.

    Механизм кодирования

    Цифровая передача данных требует выполнения нескольких обязательных операций:

    • синхронизация тактовой частоты передатчика и приемника;
    • преобразование последовательности битов в электрический сигнал;
    • уменьшение частоты спектра электрического сигнала с помощью фильтров;
    • передача урезанного спектра по каналу связи;
    • усиление сигнала и восстановление его формы приемником;
    • преобразование аналогвого сигнала в цифровой.

    Рассмотрим взаимосвязь тактовой частоты и битовой последовательности. Битовый поток передается со скоростью, определяемой числом бит в единицу времени. Другими словами биты в секунду - это число дискретных изменений сигнала в единицу времени. Тактовая частота, измеряемая в герцах, это число синусоидальных изменений сигнала в единицу времени.

    Данное очевидное соответствие породило ошибочное представление об адекватности значений герц и бит в секунду. На практике все сложнее. Скорость передачи данных, как правило, выше тактовой частоты. Для увеличения скорости передачи сигнал может идти параллельно по нескольким парам. Данные могут передаваться битами или байтами. Кодированный сигнал может иметь два, три, пять и более уровней. Некоторые методы кодирования сигналов требуют дополнительного кодирования данных или синхронизации, которые уменьшают скорость передачи информационных сигналов.

    Как видно из таблицы, однозначного соответствия МГц и Мбит/с не существует.

    Таблица 1. Соотношение между категорией канала, диапазоном частот и максимальной скоростью передачи данных

    Каждый протокол требует определенную ширину спектра или, если хотите, ширину информационной магистрали. Схемы кодирования усложняют для того, чтобы эффективнее использовать информационные магистрали. Как и в аналогии с двигателем, совсем необязательно раскручивать его до максимальных оборотов, целесообразнее включить передачу.

    Первая передача - коды RZ и манчестер-II

    Код RZ

    RZ - это трехуровневый код, обеспечивающий возврат к нулевому уровню после передачи каждого бита информации. Его так и называют кодирование с возвратом к нулю (Return to Zero). Логическому нулю соответствует положительный импульс, логической единице - отрицательный.

    Информационный переход осуществляется в начале бита, возврат к нулевому уровню - в середине бита. Особенностью кода RZ является то, что в центре бита всегда есть переход (положительный или отрицательный). Следовательно, каждый бит обозначен. Приемник может выделить синхроимпульс (строб), имеющий частоту следования импульсов, из самого сигнала. Привязка производится к каждому биту, что обеспечивает синхронизацию приемника с передатчиком. Такие коды, несущие в себе строб, называются самосинхронизирующимися.

    Недостаток кода RZ состоит в том, что он не дает выигрыша в скорости передачи данных. Для передачи со скоростью10 Мбит/с требуется частота несущей 10 МГц. Кроме того, для различения трех уровней необходимо лучшее соотношение сигнал / шум на входе в приемник, чем для двухуровневых кодов.

    Наиболее часто код RZ используется в оптоволоконных сетях. При передаче света не существует положительных и отрицательных сигналов, поэтому используют три уровня мощности световых импульсов.

    Код Манчестер-II

    Код Манчестер-II или манчестерский код получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от кода RZ имеет не три, а только два уровня, что обеспечивает лучшую помехозащищенность.

    Логическому нулю соответствует переход на верхний уровень в центре битового интервала, логической единице - переход на нижний уровень. Логика кодирования хорошо видна на примере передачи последовательности единиц или нулей. При передаче чередующихся битов частота следования импульсов уменьшается в два раза.

    Информационные переходы в средине бита остаются, а граничные (на границе битовых интервалов) - при чередовании единиц и нулей отсутствуют. Это выполняется с помощью последовательности запрещающих импульсов. Эти импульсы синхронизируются с информационными и обеспечивают запрет нежелательных граничных переходов.

    Изменение сигнала в центре каждого бита позволяет легко выделить синхросигнал. Самосинхронизация дает возможность передачи больших пакетов информацию без потерь из-за различий тактовой частоты передатчика и приемника.

    Большое достоинство манчестерского кода - отсутствие постоянной составляющей при передаче длинной последовательности единиц или нулей. Благодаря этому гальваническая развязка сигналов выполняется простейшими способами, например, с помощью импульсных трансформаторов.

    Частотный спектр сигнала при манчестерском кодировании включает только две несущие частоты. Для десятимегабитного протокола - это 10 МГц при передаче сигнала, состоящего из одних нулей или одних единиц, и 5 МГц - для сигнала с чередованием нулей и единиц. Поэтому с помощью полосовых фильтров можно легко отфильтровать все другие частоты.

    Код Манчестер-II нашел применение в оптоволоконных и электропроводных сетях. Самый распространенный протокол локальных сетей Ethernet 10 Мбит/с использует именно этот код.

    Вторая передача - код NRZ

    Код NRZ (Non Return to Zero) - без возврата к нулю - это простейший двухуровневый код. Нулю соответствует нижний уровень, единице - верхний. Информационные переходы происходят на границе битов. Вариант кода NRZI (Non Return to Zero Inverted) - соответствует обратной полярности.

    Несомненное достоинство кода - простота. Сигнал не надо кодировать и декодировать.

    Кроме того, скорость передачи данных вдвое превышает частоту. Наибольшая частота будет фиксироваться при чередовании единиц и нулей. При частоте 1 Гц обеспечивается передача двух битов. Для других комбинаций частота будет меньше. При передаче последовательности одинаковых битов частота изменения сигнала равна нулю.

    Код NRZ (NRZI) не имеет синхронизации. Это является самым большим его недостатком. Если тактовая частота приемника отличается от частоты передатчика, теряется синхронизация, биты преобразуются, данные теряются.

    Для синхронизации начала приема пакета используется стартовый служебный бит, например, единица. Наиболее известное применение кода NRZI - стандарт ATM155. Самый распространенный протокол RS232, применяемый для соединений через последовательный порт ПК, также использует код NRZ. Передача информации ведется байтами по 8 бит, сопровождаемыми стартовыми и стоповыми битами.

    Четвртая передача - код MLT-3

    Код трехуровневой передачи MLT-3 (Multi Level Transmission - 3) имеет много общего с кодом NRZ. Важнейшее отличие - три уровня сигнала.

    Единице соответствует переход с одного уровня сигнала на другой. Изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. Максимальной частоте сигнала соответствует передача последовательности единиц. При передаче нулей сигнал не меняется. Информационные переходы фиксируются на границе битов. Один цикл сигнала вмещает четыре бита.

    Недостаток кода MLT-3, как и кода NRZ - отсутствие синхронизации. Эту проблему решают с помощью преобразования данных, которое исключает длинные последовательности нулей и возможность рассинхронизации.

    Редуктор - кодирование данных 4B5B

    Протоколы, использующие код NRZ, чаще всего дополняют кодированием данных 4B5B. В отличие от кодирования сигналов, которое использует тактовую частоту и обеспечивает переход от импульсов к битам и наоборот, кодирование данных преобразует одну последовательность битов в другую.

    В коде 4B5B используется пяти-битовая основа для передачи четырех-битовых информационных сигналов. Пяти-битовая схема дает 32 (два в пятой степени) двухразрядных буквенно-цифровых символа, имеющих значение в десятичном коде от 00 до 31. Для данных отводится четыре бита или 16 (два в четвертой степени) символов.

    Четырех-битовый информационный сигнал перекодируется в пяти-битовый сигнал в кодере передатчика. Преобразованный сигнал имеет 16 значений для передачи информации и 16 избыточных значений. В декодере приемника пять битов расшифровываются как информационные и служебные сигналы. Для служебных сигналов отведены девять символов, семь символов - исключены.

    Исключены комбинации, имеющие более трех нулей (01 - 00001, 02 - 00010, 03 - 00011, 08 - 01000, 16 - 10000). Такие сигналы интерпретируются символом V и командой приемника VIOLATION - сбой. Команда означает наличие ошибки из-за высокого уровня помех или сбоя передатчика. Единственная комбинация из пяти нулей (00 - 00000) относится к служебным сигналам, означает символ Q и имеет статус QUIET - отсутствие сигнала в линии.

    Кодирование данных решает две задачи - синхронизации и улучшения помехоустойчивости. Синхронизация происходит за счет исключения последовательности более трех нулей. Высокая помехоустойчивость достигается контролем принимаемых данных на пяти-битовом интервале.

    Цена кодирования данных - снижение скорости передачи полезной информации. В результате добавления одного избыточного бита на четыре информационных, эффективность использования полосы частот в протоколах с кодом MLT-3 и кодированием данных 4B5B уменьшается соответственно на 25%.

    При совместном использовании кодирования сигналов MLT-3 и данных 4В5В четвертая передача работает фактически как третья - 3 бита информации на 1 герц несущей частоты сигнала. Такая схема используется в протоколе TP-PMD.

    Пятая передача - код PAM 5

    Рассмотренные выше схемы кодирования сигналов были битовыми. При битовом кодировании каждому биту соответствует значение сигнала, определяемое логикой протокола.

    При байтовом кодировании уровень сигнала задают два бита и более.

    В пятиуровневом коде PAM 5используется 5 уровней амплитуды и двухбитовое кодирование. Для каждой комбинации задается уровень напряжения. При двухбитовом кодировании для передачи информации необходимо четыре уровня (два во второй степени - 00, 01, 10, 11). Передача двух битов одновременно обеспечивает уменьшение в два раза частоты изменения сигнала.

    Пятый уровень добавлен для создания избыточности кода, используемого для исправления ошибок. Это дает дополнительный резерв соотношения сигнал / шум 6 дБ.

    Код PAM 5 используется в протоколе 1000 Base T Gigabit Ethernet (см. Схема передачи Gigabit Ethernet). Данный протокол обеспечивает передачу данных со скоростью 1000 Мбит/с при ширине спектра сигнала всего 125 МГц.

    Как это достигается? Данные передаются по всем четырем парам одновременно. Следовательно, каждая пара должна обеспечить скорость 250 Мбит/с. Максимальная частота спектра несущей при передаче двухбитовых символов кода PAM 5 составляет 62,5 МГц. С учетом передачи первой гармоники протоколу 1000 Base T требуется полоса частот до 125 МГц. Но о несущей, гармониках и полосе частот следует поговорить отдельно.

    Ширина магистрали - требуемая полоса частот

    Скорость движения зависит не только от возможностей автомобиля, но и от качества магистрали. То же самое справедливо и для передачи данных. Рассмотрим возможности информационных магистралей.

    Кодирование сигналов - это способ преобразования тактовой частоты в скорость передачи данных. С какой целью выполняют преобразование? Для того, чтобы увеличить скорость без изменения частотного диапазона канала связи. Кодирование требует использования более сложной приемо-передающей аппаратуры. Это минус. Зато при переходе к более скоростным протоколам можно использовать те же кабели. А это уже большой плюс.

    Например, протокол Fast Ethernet 100 Base T4 обеспечивает работу сети со скоростью 100 Мбит/с на кабелях категории 3 (16 МГц). Gigabit Ethernet 1000 Base T реализован таким образом, чтобы на базе каналов категории 5 (100 Мгц), имеющий некоторый резерв, передавать 1000 Мбит/с.

    Ширина спектра сигнала

    Сигнал, имеющий синусоидальную форму, называется гармоническим. Его параметры определяются частотой и амплитудой. Чем больше форма сигнала отличается от синусоиды, тем больше гармонических составляющих он несет. Частоты гармоник кратны частоте несущей. Стандарты электропитания, например, требуют оценки качества напряжения сигнала вплоть до тридцатой гармоники.

    Диапазон частот сложного сигнала называется спектральной шириной сигнала. Он включает основную составляющую, которая определяет несущую, и гармонические составляющие, которые задают форму импульсов.

    Восстановление формы импульсов производится на аппаратном уровне, поэтому гармонические составляющие убирают с помощью фильтров.

    Спектральная ширина сигнала зависит от тактовой частоты, метода кодирования и характеристик фильтра передатчика.

    Рисунок 6 иллюстрирует, как метод кодирования позволяет уменьшить частоту несущей. Для трех методов кодирования приведены ситуации, требующие максимальную частоту несущей. Один герц несущей передает один бит (1) при манчестерском кодировании, два бита (01) кода NRZ и четыре бита (1111) кода MLT-3. Фактор кодирования (передача) составляет соответственно один, два и четыре.

    Другие комбинации битов требуют меньшей частоты. Например, при чередовании нулей и единиц частота несущей кода MLT-3 уменьшается еще в два раза, длительная последовательность нулей уменьшает частоту несущей до нуля.

    Спектральную ширину сигнала не следует путать с тактовой частотой. Тактовая частота - это метроном, задающий темп мелодии. На рисунке 6 тактовой частоте соответствует скорость чередования битов. Спектральная ширина сигнала в данной аналогии это огибающая сигнала при условии, что она позволяет восстановить исходный импульсный сигнал.

    В аналоговой передаче спектральная ширина - это мелодия, имеющая гораздо более широкий спектр. Если попытаться передать мелодию по телефону, придется пожертвовать спектром. Линия связи, имеющая узкую полосу пропускания, “обрежет” верхние гармоники. При этом, качество звучания мелодии на выходе узкополосного канала связи ухудшится.

    При цифровой передаче для восстановления исходного сигнала требуется меньше гармоник, чем для аналогового. Технология передачи и приема цифровых сигналов позволяет восстановить исходный сигнал по несущей спектра. Однако для уменьшения коэффициента ошибок необходимо присутствие первой гармоники, что удваивает ширину спектра или частотный диапазон.

    Однополосный и двухполосный сигналы

    Сигнал, который не имеет спектральной энергии нулевой частоты, является двухполосным. У двухполосного ширина первой гармоники в два раза больше, чем у однополосного. Спектр сигнала после манчестерского кодирования является двухполосным. Кодирование методами NRZ, MLT-3 и PAM 5 дает однополосный сигнал.

    Как было отмечено выше, код Манчестер-II дает две несущие частоты: 5 МГц и 10 МГц.

    Частота 10 МГц передается с одной гармоникой (несущая и гармоники обозначены на рис. 7 красным цветом). Частота 5 МГЦ (обозначенная зеленым цветом) имеет три гармоники в верхнем диапазоне. Остальные гармоники обрезаются фильтрами.

    Итак, при передаче однополосного сигнала, кодированного методом NRZ, со скоростью10 Мбит/с, требуется 10 МГц. Для двухполосного сигнала, который создается манчестерским десятимегабитным протоколом необходимо 20 МГц полосы пропускания.

    Для спектра несущей протокола ATM 155, в котором реализован метод кодирования сигналов NRZ, а тактовая частота составляет 155,52 МГц, требуется полоса частот 77,76 МГц. С учетом одной несущей полоса сигнала составляет 155,52 МГц.

    Стандартный канал категории 5 максимальной длины обеспечивает полосу 100 Мгц с запасом сигнал / шум 3,1 дБ. Нулевой запас превышения мощности сигнала на шумом при этом будет на частоте 115 МГц. Таким образом, анализ спектра позволяет сделать вывод о недостаточной ширине информационной магистрали.

    Кроме ширины магистрали качество полотна зависит от неровностей. Применительно к кабельным каналам это отношение сигнал / шум, которое зависит в первую очередь от качества стыков - разъемных соединений. Волновая природа шумов и несоответствие категории 5 требованиям протоколов класса D подробно освещается в статье Дефицит категории 5.

    Выводы

    Методы кодирования и сложные схемы, использующие все витые пары, обеспечивают увеличение скоростей передачи данных без пропорционального увеличения диапазона частот среды передачи или ширины информационных магистралей.

    Анализ методов кодирования позволяет сделать вывод о том, что системы категории 5 имеют дефицит ресурсов даже для приложений своего класса. Современные информационные магистрали требуют более тщательной подготовки для перехода от десятимегабитных приложений к высокоскоростным протоколам.

    Извлечение ссылок на картинки.

    Операции с документом

    В широком смысле под кодированием сигнала понимают процесс преобразования сообщения в сигнал. Как правило, сообщение от источника информации выдается в аналоговой форме, т.е. в виде непрерывного сообщения. Однако как при приеме-передаче информации, так и при ее обработке и хранении значительное преимущество дает дискретная форма представления сигнала. Поэтому в тех случаях, когда исходные сигналы в информационных системах являются непрерывными, необходимо предварительно преобразовать их в дискретные. В связи с этим термин «кодирование» относят обычно к дискретным сигналам и под кодированием в узком смысле понимают представление дискретных сообщений сигналами в виде определенных сочетаний символов. Совокупность правил, в соответствии с которыми производятся эти операции, называется кодом .

    Процесс кодирования заключается в представлении сообщений условными комбинациями, составленными из небольшого количества элементарных сигналов (например, посылка и пауза в коде Бодо, «точка» и «тире» в коде Морзе).

    В зависимости от целей кодирования различают следующие его виды:

    • кодирование по образцу - используется всякий раз при вводе информации в компьютер для ее внутреннего представления;
    • криптографическое кодирование (шифрование) - используется при необходимости защиты информации от несанкционированного доступа;
    • эффективное (оптимальное) кодирование - используется для устранения избыточности информации, т.е. для снижения ее объема (например, в архиваторах);
    • помехозащитное (помехоустойчивое) кодирование - используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха (например, при передаче информации по каналам связи).

    Процесс кодирования информации обеспечивает достижение нескольких целей. Во-первых, сообщения представляют в системе символов, обеспечивающей простоту аппаратной реализации информационных устройств. Задача кодирования сообщений для этого случая представляется как преобразование исходного сообщения в используемую (как правило, двоичную) систему счисления. Число используемых при этом различных элементарных сигналов называется основанием кода, а число элементов, образующих кодовую комбинацию, - значностью кода. Если все комбинации кода имеют одинаковую значность, то такой код называется равномерным, в противном случае - неравномерным. Операция кодирования применяется для цифровых сигналов. Для непрерывных сигналов требуется предварительное преобразование аналогового сигнала в цифровой.

    Во-вторых, кодирование используется для наилучшего согласования свойств источника сообщений со свойствами канала связи - оптимальное статистическое кодирование. Под ним понимают коды, которые обеспечивают минимизацию среднего количества кодовых символов на один элемент сообщения.

    В-третьих, кодирование позволит уменьшить влияние помех на процесс приема-передачи (помехоустойчивое кодирование).

    В-четвертых, кодирование обеспечивает защиту информации от несанкционированного доступа.

    Коды как средство тайнописи появились еще в глубокой древности. Например, древнегреческий историк Геродот в V в. до н.э. приводил примеры писем, понятных только адресату. Секретная азбука использовалась и Юлием Цезарем. Над созданием шифров работали такие известные ученые Средневековья, как Ф. Бэкон, Д. Кардано и др.

    При кодировании в двоичной системе счисления используют два элементарных сигнала, которые технически легко сформировать. Например, одним элементарным сигналом может быть посылка напряжения или тока, вдвое превышающая помеху, а другим - отсутствие посылки. На рисунке 2.1 показаны преобразования исходного аналогового сигнала: сначала в цифровой, а затем в двоичный код с числом двоичных символов п = 2 (двоичное кодирование).

    Рис. 2.1. Двоичное кодирование: а - исходный аналоговый сигнал; б - дискретный по времени и квантованный по уровню цифровой сигнал; в - двоичный код отсчетов с числом двоичных символов п = 2



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: