Проверка простых гипотез критерием хи-квадрат Пирсона в MS EXCEL. Как рассчитать коэффициент корреляции в Excel

Рассмотрим применение в MS EXCEL критерия хи-квадрат Пирсона для проверки простых гипотез.

После получения экспериментальных данных (т.е. когда имеется некая выборка ) обычно производится выбор закона распределения, наиболее хорошо описывающего случайную величину, представленную данной выборкой . Проверка того, насколько хорошо экспериментальные данные описываются выбранным теоретическим законом распределения, осуществляется с использованием критериев согласия . Нулевой гипотезой , обычно выступает гипотеза о равенстве распределения случайной величины некоторому теоретическому закону.

Сначала рассмотрим применение критерия согласия Пирсона Х 2 (хи-квадрат) в отношении простых гипотез (параметры теоретического распределения считаются известными). Затем - , когда задается только форма распределения, а параметры этого распределения и значение статистики Х 2 оцениваются/рассчитываются на основании одной и той же выборки .

Примечание : В англоязычной литературе процедура применения критерия согласия Пирсона Х 2 имеет название The chi-square goodness of fit test .

Напомним процедуру проверки гипотез:

  • на основе выборки вычисляется значение статистики , которая соответствует типу проверяемой гипотезы. Например, для используется t -статистика (если не известно);
  • при условии истинности нулевой гипотезы , распределение этой статистики известно и может быть использовано для вычисления вероятностей (например, для t -статистики это );
  • вычисленное на основе выборки значение статистики сравнивается с критическим для заданного значением ();
  • нулевую гипотезу отвергают, если значение статистики больше критического (или если вероятность получить это значение статистики () меньше уровня значимости , что является эквивалентным подходом).

Проведем проверку гипотез для различных распределений.

Дискретный случай

Предположим, что два человека играют в кости. У каждого игрока свой набор костей. Игроки по очереди кидают сразу по 3 кубика. Каждый раунд выигрывает тот, кто выкинет за раз больше шестерок. Результаты записываются. У одного из игроков после 100 раундов возникло подозрение, что кости его соперника – несимметричные, т.к. тот часто выигрывает (часто выбрасывает шестерки). Он решил проанализировать насколько вероятно такое количество исходов противника.

Примечание : Т.к. кубиков 3, то за раз можно выкинуть 0; 1; 2 или 3 шестерки, т.е. случайная величина может принимать 4 значения.

Из теории вероятности нам известно, что если кубики симметричные, то вероятность выпадения шестерок подчиняется . Поэтому, после 100 раундов частоты выпадения шестерок могут быть вычислены с помощью формулы
=БИНОМ.РАСП(A7;3;1/6;ЛОЖЬ)*100

В формуле предполагается, что в ячейке А7 содержится соответствующее количество выпавших шестерок в одном раунде.

Примечание : Расчеты приведены в файле примера на листе Дискретное .

Для сравнения наблюденных (Observed) и теоретических частот (Expected) удобно пользоваться .

При значительном отклонении наблюденных частот от теоретического распределения, нулевая гипотеза о распределении случайной величины по теоретическому закону, должна быть отклонена. Т.е., если игральные кости соперника несимметричны, то наблюденные частоты будут «существенно отличаться» от биномиального распределения .

В нашем случае на первый взгляд частоты достаточно близки и без вычислений сложно сделать однозначный вывод. Применим критерий согласия Пирсона Х 2 , чтобы вместо субъективного высказывания «существенно отличаться», которое можно сделать на основании сравнения гистограмм , использовать математически корректное утверждение.

Используем тот факт, что в силу закона больших чисел наблюденная частота (Observed) с ростом объема выборки n стремится к вероятности, соответствующей теоретическому закону (в нашем случае, биномиальному закону ). В нашем случае объем выборки n равен 100.

Введем тестовую статистику , которую обозначим Х 2:

где O l – это наблюденная частота событий, что случайная величина приняла определенные допустимые значения, E l – это соответствующая теоретическая частота (Expected). L – это количество значений, которые может принимать случайная величина (в нашем случае равна 4).

Как видно из формулы, эта статистика является мерой близости наблюденных частот к теоретическим, т.е. с помощью нее можно оценить «расстояния» между этими частотами. Если сумма этих «расстояний» «слишком велика», то эти частоты «существенно отличаются». Понятно, что если наш кубик симметричный (т.е. применим биномиальный закон ), то вероятность того, что сумма «расстояний» будет «слишком велика» будет малой. Чтобы вычислить эту вероятность нам необходимо знать распределение статистики Х 2 (статистика Х 2 вычислена на основе случайной выборки , поэтому она является случайной величиной и, следовательно, имеет свое распределение вероятностей ).

Из многомерного аналога интегральной теоремы Муавра-Лапласа известно, что при n->∞ наша случайная величина Х 2 асимптотически с L - 1 степенями свободы.

Итак, если вычисленное значение статистики Х 2 (сумма «расстояний» между частотами) будет больше чем некое предельное значение, то у нас будет основание отвергнуть нулевую гипотезу . Как и при проверке параметрических гипотез , предельное значение задается через уровень значимости . Если вероятность того, что статистика Х 2 примет значение меньше или равное вычисленному (p -значение ), будет меньше уровня значимости , то нулевую гипотезу можно отвергнуть.

В нашем случае, значение статистики равно 22,757. Вероятность, что статистика Х 2 примет значение больше или равное 22,757 очень мала (0,000045) и может быть вычислена по формулам
=ХИ2.РАСП.ПХ(22,757;4-1) или
=ХИ2.ТЕСТ(Observed; Expected)

Примечание : Функция ХИ2.ТЕСТ() специально создана для проверки связи между двумя категориальными переменными (см. ).

Вероятность 0,000045 существенно меньше обычного уровня значимости 0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности (нулевая гипотеза о его честности отвергается).

При применении критерия Х 2 необходимо следить за тем, чтобы объем выборки n был достаточно большой, иначе будет неправомочна аппроксимация распределения статистики Х 2 . Обычно считается, что для этого достаточно, чтобы наблюденные частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы Х 2 -распределения .

Для того чтобы улучшить качество применения критерия Х 2 (), необходимо уменьшать интервалы разбиения (увеличивать L и, соответственно, увеличивать количество степеней свободы ), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (д.б.>5).

Непрерывный случай

Критерий согласия Пирсона Х 2 можно применить так же в случае .

Рассмотрим некую выборку , состоящую из 200 значений. Нулевая гипотеза утверждает, что выборка сделана из .

Примечание : Cлучайные величины в файле примера на листе Непрерывное сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) . Поэтому, новые значения выборки генерируются при каждом пересчете листа.

Соответствует ли имеющийся набор данных можно визуально оценить .

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в для проверки гипотезы применим Критерий согласия Пирсона Х 2 .

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5 . Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции ЧАСТОТА() , а теоретические – с помощью функции НОРМ.СТ.РАСП() .

Примечание : Как и для дискретного случая , необходимо следить, чтобы выборка была достаточно большая, а в интервал попадало >5 значений.

Вычислим статистику Х 2 и сравним ее с критическим значением для заданного уровня значимости (0,05). Т.к. мы разбили диапазон изменения случайной величины на 10 интервалов, то число степеней свободы равно 9. Критическое значение можно вычислить по формуле
=ХИ2.ОБР.ПХ(0,05;9) или
=ХИ2.ОБР(1-0,05;9)

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше критического значения нулевая гипотеза не отвергается.

Ниже приведена , на которой выборка приняла маловероятное значение и на основании критерия согласия Пирсона Х 2 нулевая гипотеза была отклонена (не смотря на то, что случайные значения были сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) , обеспечивающей выборку из стандартного нормального распределения ).

Нулевая гипотеза отклонена, хотя визуально данные располагаются довольно близко к прямой линии.

В качестве примера также возьмем выборку из U(-3; 3). В этом случае, даже из графика очевидно, что нулевая гипотеза должна быть отклонена.

Критерий согласия Пирсона Х 2 также подтверждает, что нулевая гипотеза должна быть отклонена.

Оценка соответствия нормальному распределению

Этот метод используется для проверки согласия опытного и теоретического распределения, если число испытаний больше 100.

Суть метода заключается в определении критерия Пирсона (c 2 ) с последующим сравнением полученного значения с теоретическим.

Порядок определения критерия Пирсона:

Определяют среднее значение и среднее квадратическое отклонение. Для расчета критерия Пирсона составляют таблицу (таблице 11).

2. Определяют отношение

3. С помощью специальной таблицы (таблица 12) определяют частоту распределения Y 0 .


Таблица 11


Таблица 12

t 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 0,3989 0,2420 0,0544 0,0044

4. Рассчитывают теоретическое значение частот

(40)

где n - общее число испытаний;

k - классовый интервал;

S - среднее квадратическое отклонение.

5. Определяют разность между фактической и теоретической частотой распределения

y i – U т (41)

рассчитывают

6. Находят критерий Пирсона

(43)

7. Определяют число степеней свободы

С = m-3 (44)

где C - число степеней свободы;

m - число классов или строк.

8. Задаваясь доверительной вероятностью q , определяют теоретическое значение критерия Пирсона.

9. Сравнивают c ф 2 с c т 2. Если c 2 ф < c 2 т , то для принятой доверительной вероятности гипотеза о согласии опытного и теоретического распределения принимается, в противном случае отвергается.

В программе Excel проверка осуществляется с помощью функции ХИ2ТЕСТ (рис. 22). ХИ2ТЕСТ возвращает значение для распределения χ 2 Критерий используется для определения того, подтверждается ли гипотеза экспериментом.

Рис. 22. Функция ХИ2ТЕСТ

ХИ2ТЕСТ (фактический_интервал ;ожидаемый_интервал )

Фактический_интервал - это интервал данных, которые содержат наблюдения, подлежащие сравнению с ожидаемыми значениями.

Ожидаемый_интервал - это интервал данных, который содержит отношение произведений итогов по строкам и столбцам к общему итогу.

Если фактический_интервал и ожидаемый_интервал имеют различное количество точек данных, то функция ХИ2ТЕСТ возвращает значение ошибки #Н/Д.

Критерий χ 2 сначала вычисляет χ 2 статистику, используя формулу:

(45)

где A ij - фактическая частота в i -ой строке, j -ом столбце

E ij - ожидаемая частота в i-ой строке, j-ом столбце

r - число строк

c - число столбцов

Значение критерия χ 2 является индикатором независимости. Как видно из формулы, критерий χ 2 всегда положительный или равен 0, а последнее возможно только, если A ij = E ij при любых значениях i,j .

ХИ2ТЕСТ возвращает вероятность того, что при условии независимости может быть получено значение χ 2 статистики по крайней мере такое же высокое, как полученное из приведенной выше формулы. Чтобы вычислить эту вероятность, ХИ2ТЕСТ использует распределение χ 2 с соответствующим числом степеней свободы (df ). Если r > 1, а c > 1, то df = (r - 1)(c - 1). Если r = 1, а c > 1, то df = c - 1 или если r > 1, а c = 1, то df = r - 1. Равенство, где r = c= 1, не позволительно, поэтому появится сообщение об ошибке #Н/Д.

Функцию ХИ2ТЕСТ можно использовать в тех случаях, когда гипотетическое распределение задано полностью, то есть заданы не только вид гипотетического закона распределения, но и все параметры этого закона. Только в этом случае функция правильно выдает число степеней свободы.

ХИ2РАСП (x;степени_свободы) (рис. 23) возвращает одностороннюю вероятность распределения хи-квадрат. Распределение χ 2 связано с критерием χ 2 . Критерий χ 2 используется для сравнения предполагаемых и наблюдаемых значений. Например, в генетическом эксперименте выдвигается гипотеза, что следующее поколение растений будет обладать определенной окраской. Сравнивая наблюдаемые результаты с предполагаемыми, можно определить, была ли верна исходная гипотеза.

х – значение, для которого требуется вычислить распределение.

Степени_свободы – число степеней свободы.

Рис. 23. Функция ХИ2РАСП

Если какой-либо из аргументов не является числом, функция ХИ2РАСП возвращает значение ошибки #ЗНАЧ!.

Если x отрицательное значение, функция ХИ2РАСП

Если степени_свободы < 1 или степени_свободы > 10^10, функция ХИ2РАСП возвращает значение ошибки #ЧИСЛО!.

ХИ2РАСП вычисляется как ХИ2РАСП = P(X> x), где x - χ 2 случайная величина.

ХИ2ОБР (вероятность;степени_свободы) (рис. 24) возвращает значение, обратное односторонней вероятности распределения хи-квадрат. Если вероятность = ХИ2РАСП (x;...), то ХИ2ОБР (вероятность;...) = x. Данная функция позволяет сравнить наблюдаемые результаты с ожидаемыми, чтобы определить, была ли верна исходная гипотеза.

Вероятность - вероятность, связанная с распределением c2 (хи-квадрат).

Степени_свободы - число степеней свободы.

Если какой-либо из аргументов не является числом, функция ХИ2ОБР возвращает значение ошибки #ЗНАЧ!

Рис. 24. Функция ХИ2ОБР

Если вероятность < 0 или вероятность > 1, функция ХИ2ОБР возвращает значение ошибки #ЧИСЛО!

Если значение аргумента «степени_свободы» не является целым числом, оно усекается.

Если степени_свободы < 1 или степени_свободы ≥ 10^10, ХИ2ОБР возвращает значение ошибки #ЧИСЛО!

Если задано значение вероятности, то функция ХИ2ОБР ищет значение x, для которого функция ХИ2РАСП (x; степень_свободы) = вероятность. Однако точность функции ХИ2ОБР зависит от точности ХИ2РАСП . В функции ХИ2ОБР для поиска применяется метод итераций. Если поиск не закончился после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.

Функция ПИРСОН (вводить следует PEARSON на английском) предназначена для вычисления коэффициента корреляции Пирсона r . Данную функцию используют в работе в том случае, когда необходимо отразить степень линейной зависимости между двумя массивами данных. В Excel имеется несколько функций с помощью которых можно получить такой же результат, однако универсальность и простота функции Пирсон делают выбор в ее пользу.

Как работает функция ПИРСОН в Excel?

Рассмотрим пример расчета корреляции Пирсона между двумя массивами данных при помощи функции PEARSON в MS EXCEL. Первый массив представляет собой значения температур, второй давление в определенный летний период. Пример заполненной таблицы изображен на рисунке:

Задача следующая: необходимо определить взаимосвязь между температурой и давлением за июнь месяц.

Пример решения с функцией ПИРСОН при анализе в Excel


Данный показатель -0,14 по Пирсону, который вернула функция, говорит об неблагоприятной зависимости температуры и давления в раннее время суток.



Функция ПИРСОН пошаговая инструкция

Коэффициент корреляции является самым удобным показателем сопряженности количественных признаков.

Задача: Определить линейный коэффициент корреляции Пирсона.

Пример решения:

Таким образом, по результату вычисления статистическим выводом эксперимента выявлена отрицательная зависимость между возрастом и количеством выкуренных сигарет в день.

Корреляционный анализ по Пирсону в Excel

Задача: школьникам были даны тесты на наглядное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Психолога интересует вопрос: существует ли взаимосвязь между временем решения этих задач?

Пример решения: представим исходные данные в виде таблицы:


Интерпретация результата вычисления по Пирсону

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 – являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 – следовательно, произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.

Ширина интервала составит:

Xmax - максимальное значение группировочного признака в совокупности.
Xmin - минимальное значение группировочного признака.
Определим границы группы.

Номер группы Нижняя граница Верхняя граница
1 43 45.83
2 45.83 48.66
3 48.66 51.49
4 51.49 54.32
5 54.32 57.15
6 57.15 60

Одно и тоже значение признака служит верхней и нижней границами двух смежных (предыдущей и последующей) групп.
Для каждого значения ряда подсчитаем, какое количество раз оно попадает в тот или иной интервал. Для этого сортируем ряд по возрастанию.
43 43 - 45.83 1
48.5 45.83 - 48.66 1
49 48.66 - 51.49 1
49 48.66 - 51.49 2
49.5 48.66 - 51.49 3
50 48.66 - 51.49 4
50 48.66 - 51.49 5
50.5 48.66 - 51.49 6
51.5 51.49 - 54.32 1
51.5 51.49 - 54.32 2
52 51.49 - 54.32 3
52 51.49 - 54.32 4
52 51.49 - 54.32 5
52 51.49 - 54.32 6
52 51.49 - 54.32 7
52 51.49 - 54.32 8
52 51.49 - 54.32 9
52.5 51.49 - 54.32 10
52.5 51.49 - 54.32 11
53 51.49 - 54.32 12
53 51.49 - 54.32 13
53 51.49 - 54.32 14
53.5 51.49 - 54.32 15
54 51.49 - 54.32 16
54 51.49 - 54.32 17
54 51.49 - 54.32 18
54.5 54.32 - 57.15 1
54.5 54.32 - 57.15 2
55.5 54.32 - 57.15 3
57 54.32 - 57.15 4
57.5 57.15 - 59.98 1
57.5 57.15 - 59.98 2
58 57.15 - 59.98 3
58 57.15 - 59.98 4
58.5 57.15 - 59.98 5
60 57.15 - 59.98 6

Результаты группировки оформим в виде таблицы:
Группы № совокупности Частота fi
43 - 45.83 1 1
45.83 - 48.66 2 1
48.66 - 51.49 3,4,5,6,7,8 6
51.49 - 54.32 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 18
54.32 - 57.15 27,28,29,30 4
57.15 - 59.98 31,32,33,34,35,36 6

Таблица для расчета показателей.
Группы x i Кол-во, f i x i * f i Накопленная частота, S |x - x ср |*f (x - x ср) 2 *f Частота, f i /n
43 - 45.83 44.42 1 44.42 1 8.88 78.91 0.0278
45.83 - 48.66 47.25 1 47.25 2 6.05 36.64 0.0278
48.66 - 51.49 50.08 6 300.45 8 19.34 62.33 0.17
51.49 - 54.32 52.91 18 952.29 26 7.07 2.78 0.5
54.32 - 57.15 55.74 4 222.94 30 9.75 23.75 0.11
57.15 - 59.98 58.57 6 351.39 36 31.6 166.44 0.17
36 1918.73 82.7 370.86 1

Для оценки ряда распределения найдем следующие показатели:
Показатели центра распределения .
Средняя взвешенная


Мода
Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x 0 – начало модального интервала; h – величина интервала; f 2 –частота, соответствующая модальному интервалу; f 1 – предмодальная частота; f 3 – послемодальная частота.
Выбираем в качестве начала интервала 51.49, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 52.8
Медиана
Медиана делит выборку на две части: половина вариант меньше медианы, половина - больше.
В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 51.49 - 54.32, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).


Таким образом, 50% единиц совокупности будут меньше по величине 53.06
Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 60 - 43 = 17
Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.


Каждое значение ряда отличается от другого не более, чем на 2.3
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 53.3 не более, чем на 3.21
Оценка среднеквадратического отклонения .

Относительные показатели вариации .
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.
Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v ≤ 30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.
Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Проверка гипотез о виде распределения .
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где p i - вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону
Для вычисления вероятностей p i применим формулу и таблицу функции Лапласа

где
s = 3.21, x ср = 53.3
Теоретическая (ожидаемая) частота равна n i = np i , где n = 36
Интервалы группировки Наблюдаемая частота n i x 1 = (x i - x ср)/s x 2 = (x i+1 - x ср)/s Ф(x 1) Ф(x 2) Вероятность попадания в i-й интервал, p i = Ф(x 2) - Ф(x 1) Ожидаемая частота, 36p i Слагаемые статистики Пирсона, K i
43 - 45.83 1 -3.16 -2.29 -0.5 -0.49 0.01 0.36 1.14
45.83 - 48.66 1 -2.29 -1.42 -0.49 -0.42 0.0657 2.37 0.79
48.66 - 51.49 6 -1.42 -0.56 -0.42 -0.21 0.21 7.61 0.34
51.49 - 54.32 18 -0.56 0.31 -0.21 0.13 0.34 12.16 2.8
54.32 - 57.15 4 0.31 1.18 0.13 0.38 0.26 9.27 3
57.15 - 59.98 6 1.18 2.06 0.38 0.48 0.0973 3.5 1.78
36 9.84

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: }

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: