Постоянное запоминающее устройство (ПЗУ или ROM). Классификация. ПЗУ. Принципы построения и Пзу объем

Постоянные запоминающие устройства (ПЗУ) предназначены для хранения информации, например, таблиц, программ, каких-либо констант. Информация в ПЗУ хранится при отключенном источнике питания, т. е. ПЗУ являются энергонезависимыми микросхемами памяти и работают только в режиме многократного считывания информации.

По способу занесения информации в ПЗУ (программирования) их делят на 3 группы:

§ Однократно программируемые изготовителем, называемые масочными (заказными) или сокращенно ПЗУМ, а по буржуйски ROM.

§ Однократно программируемые пользователем (обычно способом пережигания плавких перемычек на кристалле) или ППЗУ, а по буржуйски PROM.

§ Многократно программируемые пользователем (репрограммируемые) или РПЗУ. По-буржуйски EPROM.

В однократно программируемых ПЗУ вместо элемента памяти, как в ОЗУ, ставится перемычка между шинами в виде пленочных проводников, диодов, транзисторов. Наличие перемычки соответствует лог. 1, ее отсутствие - лог. 0 или наоборот. Процесс программирования таких ПЗУ заключается в пережигании ненужных перемычек и поэтому в дальнейшем ПЗУ такого рода программировать нельзя.

Репрограммируемое ПЗУ

Репрограммируемые ПЗУ разделяются на два класса:

§ С режимом записи и стирания электрическим сигналом.

§ С режимом записи электрическим сигналом и стиранием ультрафиолетовым излучением.

Микросхемы РПЗУ допускают возможность многократного программирования (от сотен до тысяч циклов), способны сохранять информацию при отсутствии питания несколько тысяч часов, требуют значительного времени на перепрограммирование (что исключает возможность использовать в качестве ОЗУ), имеют сравнительно большое время считывания.

Элементом памяти в РПЗУ является полевой транзистор со структурой МНОП или МОП с плавающим затвором или ЛИЗМОП - МОП транзистор с лавинной инжекцией заряда. Эти транзисторы под воздействием программирующего напряжения способны записать электрический заряд под затвором и сохранять его много тысяч часов без напряжения питания. Для того, чтобы перепрограммировать такое ПЗУ необходимо сначала стереть записанную ранее информацию. В РПЗУ на МНОП транзисторах стирание производится электрическим сигналом, который вытесняет накопленный под затвором заряд. В РПЗУ на ЛИЗМОП транзисторах стирание записанной информации происходит под воздействием ультрафиолетового (УФ) излучения, которое облучает кристалл через специальное окно в корпусе микросхемы.



РПЗУ со стиранием УФ излучением имеют ряд недостатков, по сравнению с РПЗУ со стиранием электрическим сигналом. Так, например, для стирания информации УФ необходимо вынимать микросхему из контактных устройств (панелек), что не совсем удобно. К тому же, наличие окна в корпусе обуславливает чувствительность микросхемы РПЗУ к свету, что увеличивает вероятность случайного стирания информации. Да и число циклов перепрограммирования всего лишь нескольких десятков, когда у РПЗУ со стиранием электрическим сигналом это же число достигает 10000.

Элементы памяти ПЗУ (РПЗУ).

Основное требование к такой ячейке – сохранение информации при отключенном питании. Рассмотрим схему однотранзисторной ЗЯ для биполярного ПЗУ.

В эмиттерной цепи транзистора предусмотрена плавкая перемычка (П), которая в необходимых случаях может разрушаться при первоначальном программировании.

При обращении к ЗЯ по адресной линии в случае неразрушенной перемычки в РЛ будет протекать эмитерный ток транзистора. В случае разрушенной перемычки ток протекать не будет.

Элемент памяти ПЗУ может быть выполнен и на МОП-транзисторах. Однако биполярные ПЗУ имеют более высокое быстродействие (время обращения 20…60 нс), но и большую рассеиваемую мощность, чем ПЗУ на МОП-транзисторах (время обращения 200…600 нс).

Репрограммируемые ПЗУ в настоящее время выполняются двух типов. В РПЗУ первого типа матрица элементов памяти изготавливается аналогично матрице ПЗУ на основе МОП-транзисторов, но у которых между металлическим затвором и слоем изолирующего окисла осаждается тонкий слой нитрида кремния (МНОП-транзисторы). Нитрид кремния способен захватывать и сохранять длительное время (до 10 лет и более) электрический заряд. В исходном состоянии транзистор имеет высокое напряжение открывания (10…15)В, которое понижается до рабочих уровней после зарядки слоя нитрида кремния. Чтобы зарядить слой нитрида кремния, на затвор МНОП-транзистора подается высоковольтный программирующий импульс, по амплитуде в несколько раз превышающий рабочие уровни напряжений (15…20)В. При подаче сигнала на адресную линию, подключенную к затворам транзисторов, происходит открывание только заряженных транзисторов. Таким образом, наличие заряда приводит к тому, что ЭП хранит 0, а его отсутствие – 1.



Для стирания записанной информации, т.е. удаления заряда захваченного слоем нитрида кремния, на затвор МНОП-транзистора необходимо подать импульс напряжения противоположный, чем при записи полярности.

Другие варианты ЭП РПЗУ выполняются на МНОП-транзисторах плавающим (изолированным) затвором. Подача высокого напряжения между истоком и стоком вызывает накопление в плавающем затворе заряда, создающего проводящий канал между стоком и истоком. Стирание информации осуществляется облучением транзисторов через кварцевое окно ультрафиолетовым излучением, которое разряжает затворы транзисторов и переводит их в непроводящее состояние.

Стирание информации таким способом имеет ряд очевидных недостатков, которые отсутствуют при электрическом стирании. Для этого в транзисторе выполняется второй управляющий затвор. Однако, ввиду большой площади ЭП, микросхемы РПЗУ с электрическим стиранием имеют в 2…4 раза меньшую информационную емкость, чем микросхемы со стиранием ультрафиолетовым светом.

Вопрос

Аналоговая схемотехника

Несмотря на все достижения цифровой вычислительной техники, в ряде случаев оказывается рационально производить математические вычисления с аналоговыми сигналами в аналоговом виде. Особенно если в окончательном виде необходимо получить результат в виде аналогового сигнала. Вычислительное устройство в этом случае получается намного проще цифрового и намного более быстродействующее. В аналоговом виде можно совершать все основные арифметические операции, операции логарифмирования и антилогарифмирования, дифференцирования и интегрирования и решение систем линейных дифференциальных уравнений. До того, как появились цифровые вычислительные устройства, в научных исследованиях широко использовались аналоговые вычислительные машины. Теперь их время кончилось, но при решении конкретных задач электроники все еще можно в ряде случаев с успехом использовать аналоговые методы вычислений. Погрешность вычислений в аналоговом виде обычно не превышает 1% и результат получается за время порядка 1 микросекунды. Хотя точность получается намного хуже, чем при цифровых методах вычислений, но все же может оказаться приемлемой. Зато по быстродействию аналоговые вычислительные устройства могут иметь преимущество перед цифровыми.

Усилительный каскад

Существенное уменьшение дрейфа нуля в усилителе постоянного тока достигается с помощью схемного решения, которое реализуется в дифференциальном усилительном каскаде. В основу его построения положен принцип сбалансированного моста. Известно, что баланс моста (см. рис.2.15) сохраняется как при изменении подводимого к нему напряжения, так и при изменении сопротивления резисторов, если выполняется условие

Данное свойство моста уменьшают влияние нестабильности источника питания и изменения параметров элементов схемы на процесс усиления входного сигнала.

На рис.2.16 представлена схема, с помощью которой объясняется принцип работы дифференциального усилительного каскада. Схема состоит из двух частей: мостовой и источника стабильного тока, представленные в виде источника тока I э . В мостовой части схемы два плеча моста образуются резисторами R и R (аналоги резисторам R и R схемы рис.2.15), а два других транзисторами Т и Т (аналоги резисторам R и R схемы рис.2.15). Выходное напряжение снимается с коллекторов транзисторов, т.е. с диагонали моста. Оно равно нулю при балансе моста, который достигается при работе одинаковых по параметрам транзисторов Т и Т в одинаковых режимах, а также одинаковых сопротивлениях резисторов R и R . Если при повышении температуры в процессе работы этих элементов значения их параметров изменяются одинаково, то условие (2.18) выполняется. Идентичность параметров соответствующих элементов мостовой части схемы обеспечивается технологией изготовления интегральных микросхем, в состав которых входят дифференциальные каскады.

Рис. 2.15. Схема четырехплечего Рис.2.16. Схема дифференциального моста усилительного каскада

Вопрос

Операционный усилитель - это электронный усилитель напряжения с высоким коэффициентом усиления, имеющий дифференциальный вход и обычно один выход. Напряжение на выходе может превышать разность напряжений на входах в сотни или даже тысячи раз.

Обозначения на схеме

Выводы для подачи напряжения питания (V S+ и V S-) могут обозначаться по-разному. Невзирая на различное обозначение, их функция остаётся одной и той же - обеспечение дополнительной энергии для усиления сигнала.

1) Суммирующие и вычитающие устройства на ОУ

2) Измерительные усилители на ОУ

3) Интегратор

4) Дифференциатор

Вопрос

Статические параметры ОУ:

Коэффициент усиления KД . Является основным параметром ОУ на очень низкой частоте. Он определяется отношением выходного напряжения Uвых ОУ без ОС в режиме холостого хода к дифференциальному (разностному). Uвх.д = Uвх1 - Uвх.

Передаточная характеристика ОУ по постоянному току - это зависимость постоянного

выходного напряжения Uвых от постоянного входного дифференциального сигнала Uвх.д.

Коэффициент ослабления синфазного сигнала K ос. сф = K Д/K с . Можноопределить, если подать на оба входа ОУ одинаковые напряжения, обеспечив при этом нулевое значение

U вх. д. Выходное напряжение также должно остаться равным нулю.

Входное сопротивление . Это сопротивление ОУ по отношению к входному сигналу.

Выходное сопротивление ОУ (R д. вых) . Определяется как для любого дру-

гого усилителя.

Минимальное сопротивление нагрузки (R H min) . Его значение определяется предельным выходным током при номинальном выходном напряжении.

Входное напряжение смещения (U вх. см) . Определяет постоянное напряжение, которое следует присоединить к входу ОУ, чтобы выходное напряжение стало равным нулю. Этот параметр учитывает разбаланс и несимметрию входного дифференциального каскада ОУ.

Входной ток смещения (I вх. см) . Равен среднему арифметическому значению двух входных токов ОУ при выходном напряжении, равном нулю, т. е. I вх. см = (I вх1 + I вх2)/2.

Разность входных токов (ΔI вх = I вх1 - I вх2) . Это абсолютное значение разности токов двух входов ОУ при выходном напряжении, равном нулю. Этот параметр, подобно U вх.см, также в значительной степени характеризует величину несимметрии входных каскадов ОУ.

Температурный дрейф напряжения смещения ΔU вх. см/Δt и разности входных токов ΔI вх/Δt . Температурный дрейф соответствует изменению одного из параметров, вызванному изменением температуры окружающей среды на 1 °C.

Коэффициент влияния нестабильности источника напряжения питания K вл. п . Это отношение изменения напряжения смещения к вызвавшему его изменению одного из питающих напряжений U п.

Характеристики:

Амплитудно-частотная и фазово-частотная характеристики . Операцион-

ные усилители, имеющие трехкаскадную структуру для малого сигнала, об-

ладают амплитудно-частотной характеристикой (АЧХ) с тремя полюсами.

Переходная характеристика ОУ . Переходная характеристика ОУ

позволяет в режиме малого сигнала определить линейные искажения им-

пульсного сигнала, в том числе время нарастания выходного сигнала при

воздействии единичного напряжения на входе усилителя.

Скорость нарастания выходного напряжения V U = ΔU вых/Δt .

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже


Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением

Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя

Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Инвертирующий усилитель

Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже


Схема инвертирующего усилителя.

Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид

Тогда коэффициент усиление данной схемы будет равен

Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже


Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит

Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже


Дифференциатор на операционном усилителе.

Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Постоянная память, или постоянное запоминающее устройство (ПЗУ или ROM, англ.) Служит для хранения программ начальной загрузки компьютера и тестирования его узлов. Используется только для чтения. Она энергонезависима, то есть записанная в ней информация не изменяется после выключения компьютера.

· По виду доступа:

· С параллельным доступом (parallel mode или random access): такое ПЗУ может быть доступно в системе в адресном пространстве ОЗУ. Например, К573РФ5;

· С последовательным доступом: такие ПЗУ часто используются для однократной загрузки констант или прошивки в процессор или ПЛИС, используются для хранения настроек каналов телевизора, и др. Например, 93С46, AT17LV512A.

· По способу программирования микросхем (записи в них прошивки):

· Непрограммируемые ПЗУ;

· ПЗУ, программируемые только с помощью специального устройства - программатора ПЗУ (как однократно, так и многократно прошиваемые). Использование программатора необходимо, в частности, для подачи нестандартных и относительно высоких напряжений (до +/- 27 В) на специальные выводы.

· Внутрисхемно (пере)программируемые ПЗУ (ISP, in-system programming) - такие микросхемы имеют внутри генератор всех необходимых высоких напряжений, и могут быть перепрошиты без программатора и даже без выпайки из печатной платы, программным способом.

В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различнымиконтроллерами, или компьютером (BIOS или OpenBoot на машинах SPARC).

Назначение и характеристика ОЗУ.

Оперативная память, или оперативное запоминающее устройство (ОЗУ или RAM, англ.) Она предназначена для хранения информации, изменяющейся в ходе выполнения процессором операций по ее обработке. Используется как для чтения, так и для записи информации. Энергозависима, то есть вся информация хранится в этой памяти только тогда, когда компьютер включен.

Физически для построения запоминающего устройства типа RАМ используют микросхемы динамической и статической памяти, для которых сохранение бита информации означает сохранение электрического заряда (именно этим объясняется энергозависимость всей оперативной памяти, то есть потеря при выключении компьютера всей информации, хранимой в ней).

Оперативная память компьютера физически выполняется на элементах динамической RАМ, а для согласования работы сравнительно медленных устройств (в нашем случае динамической RАМ) со сравнительно быстрым микропроцессором используют функционально для этого предназначенную кэш-память, построенную из ячеек статической RАМ. Таким образом, в компьютерах присутствуют одновременно оба вида RАМ. Физически внешняя кэш-память также реализуется в виде микросхем на платах, которые вставляются в соответствующие слоты на материнской плате.

Основные элементы ПК.

Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъемы - стыки подключаются внешние устройства: дополнительные блоки памяти, клавиатура, дисплей, принтер и др.

Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств и платы расширения с контроллерами - адаптерами внешних устройств.

В электронных устройствах одним из наиболее важных элементов, обеспечивающих работу всей системы считается память, которая делится на внутреннюю и внешнюю. Элементами внутренней памяти считают ОЗУ, ПЗУ и кеш процессора. Внешняя – это всевозможные накопители, которые подключаются к компьютеру из вне – жесткие диски, флешки, карты памяти и др.

Постоянное запоминающее устройство (ПЗУ) служит для хранения данных, изменение которых в процессе работы невозможно, оперативное запоминающее устройство (ОЗУ) для помещения в её ячейки информации от процессов, происходящих в текущий момент времени в системе, а кеш память используется для срочной обработки сигналов микропроцессором.

Что такое ПЗУ

ПЗУ или ROM (Read only memory – Только для чтения) – типичное устройство хранения неизменяемой информации, включенное в состав почти каждого компонента ПК и телефона и требующееся для запуска и работы всех элементов системы. Содержимое в ROM записано производителем аппаратного обеспечения и содержит директивы для предварительного тестирования и запуска устройства.

Свойствами ПЗУ являются независимость от питания, невозможность перезаписи и возможность хранить информацию длительные сроки. Информация, содержащаяся в ROM, вносится разработчиками однажды, и аппаратное обеспечение не допускает её стирания, хранится до окончания службы компьютера или телефона, или его поломки. Конструктивно ПЗУ защищены от повреждений при перепадах напряжения, поэтому нанести ущерб содержащейся информации могут только механические повреждения.

По архитектуре делятся на масочные и программируемые:

  • В масочных устройствах информация вносится с помощью типичного шаблона на финальном этапе изготовления. Содержащиеся данные не могут быть перезаписаны пользователем. Разделяющими компонентами выступают типичные pnp элементы транзисторов или диодов.
  • В программируемых ПЗУ (Programmable ROM) информация представлена в виде двумерной матрицы проводящих элементов, между которыми расположен pn переход полупроводникового элемента и металлическая перемычка. Программированием такой памяти происходит устранением или созданием перемычек посредством тока высокой амплитуды и продолжительности.

Основные функции

В блоки памяти ROM вносят информацию по управлению аппаратным обеспечением заданного устройства. ПЗУ включает в себя следующие подпрограммы:

  • Директиву старта и контроля за работой микропроцессора.
  • Программу проверяющую работоспособность и целостность всего аппаратного обеспечения, содержащегося в компьютере или телефоне.
  • Программу дающую начало работе системы и завершающее её.
  • Подпрограммы, управляющие периферийным оборудованием и модулями ввода/вывода.
  • Данные о адресе операционной системы на физическом накопителе.

Архитектура

Постоянные запоминающие устройства выполнены в виде двухмерного массива . Элементами массива являются наборы проводников, часть которых не затрагивается, прочие ячейки разрушаются. Проводящие элементы являются простейшими переключателями и формируют матрицу за счет поочередного соединения их к рядам и строкам.

Если проводник замкнут, он содержит логический ноль, разомкнут – логическую единицу. Таким образом в двухмерный массив физических элементов вносят данные в двоичном коде, которые считывает микропроцессор.

Разновидности

В зависимости от способа изготовления устройства ПЗУ делят на:

  • Обыкновенные , создаваемые фабричным способом. Данные в таком устройстве не изменяются.
  • Программируемые ПЗУ, допускающие изменение программы один раз.
  • Стираемое программируемое оборудование , позволяющее очищать данные с элементов и перезаписывать их, например, посредством ультрафиолета.
  • Электрически очищаемые перезаписываемые элементы, в которых допускается многократное изменение . Такой вид применяется в HDD, SSD, Flash и других накопителях. На такой же микросхеме записан BIOS на материнских платах.
  • Магнитные , в которых информация хранилась на намагниченных участках, чередующихся с не намагниченными. В них была возможна перезаписи.

Разница между RAM и ROM

Отличия между двумя видами аппаратного обеспечения, заключаются в её сохранности при отключении питания, скорости и возможности доступа к данным.

В оперативной памяти (Random access memory или RAM) информация содержится в последовательно расположенных ячейках к каждой из которых возможно получить доступ посредством программных интерфейсов . RAM содержит данные о выполняемых в текущий момент процессах в системе, таких как программы, игры, содержит значения переменных и списки данных в стеках и очередях. При отключении компьютера или телефона RAM память полностью очищается . По сравнению с ROM памятью она отличается большей скоростью доступа и потреблением энергии.

ROM память работает медленнее, и для своей работы потребляет меньше энергии. Главное отличие заключается в невозможности изменять входящие данные в ПЗУ, в то время как в ОЗУ информация меняется постоянно.

Дата последнего обновления файла 23.10.2009

Постоянные запоминающие устройства (ПЗУ)

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в , и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.


Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.


Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.


Рисунок 3. Схема многоразрядного ПЗУ (ROM)

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы , необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.


Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.


Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:


Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.



Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 ... 30 минут.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: