Солнечные батареи работают благодаря солнечной энергии. Как работают солнечные батареи. Зачем нужен контроллер в солнечной батарее

Достаточно часто тем, кто проживает в своем собственном доме, приходится сталкиваться с тем, что отключают электроэнергию по техническим причинам или из-за чрезвычайной ситуации. Такие проблемы доставляют не только дискомфорт, но и множество проблем, например, портятся продукты, невозможно заниматься работой, если для этого требуется использование электроприборов. Что делать в такой ситуации? Стоит установить солнечные батареи, которые позволяют решить данную задачу максимально быстро и смогут доставить только пользу и ничего более.

Солнечная батарея (или панель) – это элемент питания (называется фотопластина), меняющий свою проводимость и выделяющий энергию при воздействии солнечных лучей. Именно такое преобразование позволят обогащать жилую конструкцию необходимым электричеством. Как правило, солнечные панели имеют различные виды.

В продажу поступают такие конструкции, как:

  • Монокристаллическая;
  • Поликристаллическая;
  • Аморфная.

У каждой конструкции есть определенная производительность, от чего напрямую зависит принцип работы и цена. Пластиной с минимальной мощностью считается батарея, сделанная на основе монокристаллов, а также у них самая низкая цена. В основном, их стараются использовать в тех условиях, где постоянная подача электричества не является слишком важной.

Владелец частного дома и непосредственно таких батарей должен тщательно следить за тем, чтобы фотоэлектрическая панель была чистой, так как если на ее покрытие будет попадать большое количество таких загрязнений, как снег, помет птиц и даже сухая листва, то это снизит эффективность работы и снизит уровень подаваемого напряжения. Солнечная батарейка для дома работает по особому принципу.

А именно:

  1. Происходит улавливание энергии солнца пластиной, сделанной на основе кремния.
  2. При нагревании происходит высвобождение энергии.
  3. Далее активизируются электроны, это способствует их передвижению по проводнику.
  4. Проводниками ток направляется в полость аккумулятора, это формирует своеобразную подзарядку.
  5. Посредством проводного подключения, ток поступает к бытовым приборам.

Принцип действия установки вполне понятен, но стоит ознакомиться с особенностями проведения обслуживания батарей и требуется ли оно вовсе. Первоначально нужно отметить тот факт, что в солнечной батареи полностью отсутствует движущая часть, так как это стационарные конструкции.

Как проводится обслуживание, чтобы работала солнечная батарея

Как правило, очищение покрытия стоит проводить раз в 7 дней. Специалисты считают, что этого вполне достаточно для поддержания оптимального состояния пластин в чистом виде. Также требуется осуществлять еще ряд процедур, это позволит эксплуатировать панели без проблем, а также исключить образование дефектов и неисправностей.

Обязательно проведение:

  1. Внешнего осмотра на предмет выявления расшатывания креплений и образования трещин в каркасе.
  2. Чистки панели.
  3. Проверки силового кабеля на отсутствие оголенных проводов, что может стать причиной возгорания.
  4. Контролирования и фиксирования состояния автоматики и показателей КИПа.
  5. Отслеживание уровня заряда аккумулятора.
  6. Контроля за состоянием конструктивными узлами блока на предмет выявления коррозийных образований.
  7. Осмотра прочности кожуха панели.

Также необходимы корректировки положения конструкции, это зависит от времени года и подтягивание каждого резьбового соединения. Помимо этого, можно проводить полив панелей из шланга самой обычной проточной водой, для чего достаточно 4 процедур в год.

Безопасный и эффективный ветрогенератор можно собрать своими руками. Все этапы работы описаны на следующей странице:

КПД солнечных батарей и другие параметры

Делают солнечные панели из такого материала, как кремний, и при покупке стоит обращать внимание на такие особенности, как наличие показателя КПД, который должен превышать 20%, высокого уровня сопротивления.

Наличие закаленного стекла, устойчивости к самым суровым погодным условиям, поликристаллического покрытия, если изделие устанавливается в регионе с жаркой температурой, необходимо.

Важно монокристаллическое покрытие для областей с неблагоприятными климатическими условиями. Современные кремниевые солнечные плиты обладают рядом преимуществ. Те, кто уже пользуются подобными установками, отзываются исключительно положительно.

Признают такие изделия:

  • Автономными;
  • Максимально экономичными по средствам, так как не требуется оплата электроэнергии;
  • Очень удобными в эксплуатации, так как не нужна регулировка;
  • Выгодными, так как ресурс пополняется автоматически;
  • Экологическими;
  • Безопасными;
  • Практичными, так как они могут быть, как резерв или основной ;
  • Очень долговечными.

Есть и некоторые недостатки, но на фоне множества положительных качеств их можно назвать не существенными. К ним относят высокую стоимость, низкую устойчивость к погодным катаклизмам, надобность в подготовке места для расположения конструкции, в обслуживании, снижение производительности в зимний период времени, необходимость в модернизации, при необходимости увеличить мощность и, соответственно, производительность.

Виды солнечных батарей

Наиболее доступными по цене изделиями для улавливания солнечной энергии признаны монокристаллические, так как они сделаны по простейшей технологии и по мощности могут существенно уступить другим видам пластин. Каждый вид имеет свои особенности, за счет которых и происходит их выбор.

Солнечные плиты бывают трех видов:

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Панели, сделанные на основе поликристаллического кремния – это самые дорогие изделия, так как они могут накапливать солнечную энергию даже в условиях повышенной облачности и пасмурную погоду. Особенность их состоит в высокой производительности, а также медленном остывании кремниевого расплава. После того как полотно полностью остынет, оно подвергается повторной термообработке.

Такие пластины выпускаются темно-синего цвета.

Если для изготовления плиты используется аморфный кремний, то это изделия, не выпускаемые большими партиями. Данные конструкции находятся на стадии совершенствования, модернизации, так как в продажу поступили некоторые тестовые модели.

Из чего в основном делают солнечные батареи

Многие владельцы думают, что если самостоятельно создал такое оборудование, то для этого нужно просто соблюдать технологию сбора системы, но следует и соответствовать поставленным высоким требованиям.

Состав элементов для улавливания солнечной энергии очень прост, так как все конструкции состоят из:

  • Солнечного модуля;
  • Контролера;
  • Аккумулятора;
  • Инвертора;
  • Первичного преобразователя;
  • Комплекта проводов;
  • Приборов способных отслеживать заряд аккумулятора;
  • Устройства забора мощности у батареи.

Помимо этого, на пластинах могут присутствовать полимерные пленочные рулонные покрытия, которые нужны для защиты от воздействия внешних факторов. Солнечная батарея предназначена для улавливания лучей солнца и преобразования их в электроэнергию.

Устройство солнечной батареи и нюансы проектирования

Как только приобретены все необходимые приспособления, а также материалы и инвентарь можно начинать непосредственное строительство. Тот, кто сам придумал и изобрел самостоятельно солнечную батарею, обязательно начинал с проектирования, в котором были учтены важные моменты.

А именно:

  1. Место расположения конструкции.
  2. Угол наклона изделия.
  3. Просчет несущей способности кровли, если монтаж будет проводиться на саму крышу, а не стены или фундамент дома.

Для каркаса используется алюминиевый уголок, толщина которого должна быть не меньше 35 мм. Объем ячеек должен полностью сходиться с количеством фотоэлементов. Например, 835х690 мм. В раме проделываются отверстия под метизы. На внутреннюю часть уголка наносится герметик в 2 слоя. Рама заполняется полотном оргстекла, поликарбоната, плексигласа или же любого другого материала.

Для того чтобы уплотнить швы между рамой и полотном материала, потребуется провести тщательное прижатие листа по всему периметру.

Изделие оставляется на открытом воздухе до полного высыхания. Стекло фиксируется в 10 точках, в заранее подготовленные отверстия, которые должны быть расположены в угловой части рамки и с каждой стороны. Перед тем как крепить фотоэлементы, нужно провести очищение поверхности от пыли. Далее припаивается провод к плитке, для чего предварительно протираются контакты спиртовым раствором, и укладываются под флюс. При работе с кристаллом, следует быть максимально осторожными, так как он обладает слишком хрупкой структурой.

Укладывается шина по всей длине контакта и медленно прогревается при помощи паяльника. Далее пластины нужно перевернуть, и осуществить те же самые действия. Затем происходит выкладывание фотоэлементов на поверхность оргстекла в рамку, а фиксируются они на монтажную ленту. В качестве фиксатора может быть применен обычный силиконовый клей, который наносится точечным способом. Вполне достаточно одной маленькой капли, так как он очень прочный.

Расположение кристаллов должно быть с зазорами между ними в 3-5 мм, чтобы при нагревании под воздействием лучей ультрафиолета не было деформирования поверхности. Обязательно нужно соединить проводник по краям фотоэлементов с полостью общих шин. Посредством специального устройства тестируется качество пайки. Для герметизации панели, наносится герметик между полотнами плит. Нужно сделать осторожное придавливание полотен, чтобы обеспечить максимальное приклеивание к стеклу. Края рамки также промазываются герметиком.

Боковая сторона каркаса снабжается соединительным разъемом, для подключения диодов Шоттки. Рама закрывается стеклом для защиты и также герметизируются стыки, чтобы избежать проникновение влаги внутрь конструкции. С лицевой стороны нужно обработать панель лаком. Панель устанавливается на крышу, стены или любое другое предназначенное для нее заранее место.

Эффективность панели солнечной батареи

Как уже было отмечено, существуют разные типы солнечных батарей и у каждых из них своя характеристика. Стоит заметить, что есть и гибридные конструкции для улавливания солнечной энергии, однако стоимость их гораздо выше, и в основном они применяются для промышленных зданий.

Естественно, качество и производительность любой солнечной батареи напрямую зависит от эффективности ее фотоэлементов, на что может повлиять такой фактор как:

  • Климатические условия;
  • Погода;
  • Длительность дня и ночи;
  • Равномерность освещения панели;
  • Перепады температуры воздуха;
  • Наличие грязи на пластике;
  • Необратимые потери.

В основном, эффективность или, другими словами, производительность солнечных батарей напрямую зависит от равномерности освещения конструкции. К примеру, если один из фотоэлементов сооружения имеет малую интенсивность освещения в отличие от остальных, то это станет причиной неравномерного распределения лучей солнца при попадании на панель, а значит, будет происходить перегрузка и снижение общей энергоотдачи.

Для уменьшения влияния такого фактора в некоторых случаях попросту отключают тот фотоэлемент, который выходит из строя.

Чтобы обеспечить солнечной батареи максимальную производительность, следует направлять ее точно на солнце в зависимости от времени года. Некоторые владельцы таких конструкций предпочитают устанавливать специальные установки, посредством которых возможно дистанционно управлять или, другими словами, поворачивать сооружение в нужную сторону. Существуют системы с автоматическим поворотом в зависимости от расположения солнца, которые двигаются в течение дня самостоятельно без посторонней помощи по заданной программе.

Помимо этого, на эффективность изделия может повлиять наличие пыли и грязи на пластине, так как происходит затемнение некоторых фотоэлементов и таким образом начинается неравномерное распределение забора энергии солнца, что описано ранее. В продаже есть специальный состав, которым можно покрыть поверхность солнечной батареи и тем самым исключить скапливание на ней загрязнителей различного характера.

Как работает солнечная батарея (видео)

Солнечная батарея – дорогостоящее оборудование, независимо от того, будет оно собрано самостоятельно или же куплено в готовом виде, а надобность в постоянном обслуживании может доставить дискомфорт, но однажды вложившись в это изделие, можно на протяжении длительного времени довольствоваться постоянному присутствию электричества и отсутствию платы за него.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Казалось бы, совсем недавно солнечная батарея прочно ассоциировалась с космическими кораблями, орбитальными станциями и луноходами. А сейчас, устройство, способное извлекать электричество из света можно обнаружить в любом калькуляторе. Более того, в богатых солнечным светом странах с жарким летом и мягкой зимой (ученые называют их «страны с высокой инсоляцией»), таких как Италия, Испания, Португалия, южные штаты США и т.д. Солнечная энергетика является заметной статьей экономии средств на электро- и теплоснабжение. Причем экономия эта происходит как по частной инициативе граждан, так и в виде обязательных к выполнению государственных нормативных актов, как например в Испании.

Попытки заставить работать на себя энергию солнца предпринимались человечеством давно, так по легенде Архимед сжег римский флот, приказав сфокусировать множеством зеркал (в другой версии – начищенных до блеска щитов) солнечный свет на парусах римских галер. Но заметные результаты попытки подчинения энергии солнца дали только в прошлом веке. Какие же существуют пути использования солнечной энергии?

Как получить электричество

Самый очевидный путь – это преобразование световой энергии солнца в тепловую. Строго говоря, это даже преобразованием назвать нельзя, ведь свет и тепло имеют одну и ту же природу и отличаются лишь частотой, правильнее будет говорить о сборе тепла. Для сбора солнечного тепла устройства, которые так и называются - («коллектор» буквально означает сборщик). Принцип их действия предельно прост – теплоноситель (вода, реже воздух) нагревается в сделанном из теплопоглощающего материала радиаторе. Такие устройства имеют широкое применение для горячего водоснабжения частных домов.

Другой интересный способ использования энергии ближайшего светила подсказывает нам природа. За миллионы лет эволюции растения научились преобразовывать энергию солнца в энергию химических связей, синтезируя из простых веществ сложное соединение – глюкозу. Тот, кто не прогуливал в школе ботанику, конечно, догадался, что речь идет о фотосинтезе. Но не каждый задумывался об энергетической сущности этого процесса, состоящей как раз в накоплении солнечной энергии и дальнейшего ее использования (в том числе зимой) в «личных» целях. То есть речь идет о биоэнергетике. Реальной, а не той, о которой рассказывают доморощенные маги. Способ использования энергии солнца по такому принципу работы еще только ждет своего применения в рукотворной технике.


Как уже говорилось выше, самый простой способ использования в личных целях энергию солнца – это сбор тепловой энергии. Однако «самый простой» не всегда означает «самый лучший». Дело в том, что тепловая энергия – это, можно сказать, «скоропортящийся продукт». Попробуйте «законсервировать» тепло или передать его на большие расстояния. Скорее всего, затраты перекроют все возможные выгоды. Наиболее удобным для накопления и транспортировки видом энергии является электричество. Его можно без особых проблем собрать в аккумуляторах либо передать по проводам к месту, где оно будет работать, с минимальными потерями. Отсюда следует третий, самый распространенный способ использования солнечного света – преобразование его в электрическую энергию.

Как это работает

Преобразование солнечного света происходит в батареях (то есть последовательно подключенных группах) фотоэлементов, которые подучили название «солнечные батареи». По какому же принципу работают солнечные батареи?


Сердцем фотоэлемента является кремниевый кристалл. С кремнием (точнее его оксидами) мы встречаемся каждый день – это знакомый нам песок. Таким образом, можно сказать, что кремниевый кристалл – это выращенная в лаборатории гигантская песчинка. Кристаллам придают форму куба и режут на платины толщиной в двести микрон (примерно три-четыре толщины человеческого волоса).

На кремниевую пластинку с одной стороны наносят тончайший слой фосфора, с другой стороны – тончайший слой бора. Там, где кремний контактирует с бором, возникает избыток свободных электронов, а там, где кремний контактирует с фосфором, наоборот электроны в недостатке, возникают так называемые «дырки». Стык сред, обладающих избытком и недостатком электронов, называется в физике p-n переход. Фотоны света бомбардируют поверхность пластины и вышибают избыточные электроны фосфора к недостающим электронам бора. Упорядоченное движение электронов – это и есть электрический ток. Осталось только «собрать» его, проведя через пластину металлические дорожки. Так в принципе устроен кремниевый фотоэлемент.

Мощность одной пластинки-фотоэлемента довольно скромная, ее хватит разве что для работы лампочки карманного фонарика. Поэтому отдельные элементы собирают в системы-батареи. Теоретически можно собрать из элементов батарею любой мощности. Батарею укладывают на металлическую подложку, армируют для повышения прочности и накрывают стеклом. Важно, что солнечная батарея преобразует в электричество не только видимую, но и ультрафиолетовую часть солнечного спектра, поэтому стекло, покрывающее батарею обязательно должно пропускать ультрафиолет.

Важным преимуществом солнечной батареи является то, что она использует свет, а не тепло, поэтому, в отличие от коллектора, солнечная батарея может работать и зимой, лишь бы облачность не закрывала солнечный свет. Существуют проекты строительства огромных полей солнечных батарей в Арктике и Антарктике, которые будут накапливать энергию во время полугодового полярного дня, который на севере наступает летом, а на юге – зимой, то есть две гигантских солнечных электростанции никогда не будут бездействовать одновременно.

Это все в далекой перспективе, а извлечь пользу из свойств солнечной батареи можно уже сегодня, оборудовав свое жилище миниатюрной гелиоэлектростанцией. Такая станция конечно вряд ли сможет полностью удовлетворить потребности хозяйства в электричестве, но, без сомнения, станет чувствительным фактором экономии семейного бюджета.

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.


По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя.

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 0 С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Инвертор нужен для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

Вы наверняка обращали внимание, что обычный калькулятор работает при минимальной освещённости любой лампой. Сравнивая размер солнечного элемента калькулятора и стандартного солнечного модуля, мощность излучения, можно представить производительность.

И это не учитывая, спектр солнечного света, который значительно шире видимого излучения лампы. Здесь и инфракрасный и ультрафиолетовый. Этот пример наглядно показывает как солнечная батарея, от рассвета до заката, молча делает своё дело. Хотя КПД, в пасмурную погоду, естественно ниже, чем в солнечную.

Еще, чем ниже температура окружающей среды, тем выше КПД солнечной батареи.

Работа солнечной батареи

В наше время солнечные батареи все больше используются не в космической промышленности, а в повседневной жизни для питания и зарядки портативных электронных устройств. А в некоторых странах энергия Солнца уже активно используется не только в больших промышленных солнечных электростанциях. но и в домашних мини электроустановках. Рассмотрим принцип работы солнечной батареи. Каким образом световая энергия Солнца преобразуется в электрическую? Многим может показаться, что принцип преобразования световой энергии в электрическую в солнечной батарее очень сложен для понимания человеку, не имеющему высшего образования в этой области. Однако это не так. Рассмотрим детально этот процесс на примере работы фотоэлектрического преобразователя, которые используются в солнечных батареях прямого преобразования.

Первые фотоэлектрические преобразователи были созданы инженерами компании Bell Labs в 1950 году специально для использования в космосе. Их основу составляют полупроводниковые элементы. Во время попадания на них солнечного света происходит процесс, основанный на фольтовольтаическом эффекте в неоднородных полупроводниках. преобразования энергии света в электричество. Это прямое преобразование одной энергии в другую, поскольку сам процесс одноступенчатый - не имеет промежуточных преобразований. Эффективность такого преобразования напрямую зависит от электрических и физических свойств полупроводников, а также их фотопроводимости - изменения электропроводимости вещества при его освещении.

Рассмотрим подробнее процессы, происходящие в p-n-переходе полупроводника при воздействии на него солнечного света. Напомню, что p-n-переход - это область полупроводника, где изменяется его тип проводимости с электроннойв дырочную. При попадании на переход солнечного света в n-области в результате перетекания зарядов образуется объемный положительный заряд, а в p-области - объемный отрицательный заряд. Таким образом, в области p-n-перехода возникает разность потенциалов. При объединении в определенном порядке нескольких фотоэлектрических преобразователей в модуль, а модулей в батарею, получаем солнечную батарею, способную генерировать электроэнергию.

Как работает солнечная батарея

Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. В то время, как мы сжигаем тысячи тонн угля и нефтепродуктов для обогрева жилища, страны, расположеные ближе к экватору изнывают от жары. Пустить энергию солнца на нужды человека - вот достойная для пытливых умов задача. В этой статье мы рассмотрим конструкцию прямого преобразователя солнечного света в электрическую энергию - солнечного элемента.

Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний, обладающий дырочной проводимостью. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. На тыльную сторону пластины нанесен сплошной металлический контакт. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход.

Возникший на переходе потенциальный барьер препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электронно-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой. В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой - положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение. Отрицательному полюсу источника тока соответствует n-слой, а p-слой - положительному.

Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше. В типичном многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией.

Батареи работают не от солнечных лучей, а от солнечного света в принципе. Электромагнитное излучение достигает земли в любое время года. Просто в пасмурную погоду энергии вырабатывается меньше. Например, мы устанавливали автономные фонари на солнечных батареях. Конечно, бывают небольшие промежутки, когда батареи не успевают полностью заряжаться. Но в целом за зиму это не так уж и часто происходит.

Интересно, что даже если на солнечную панель попадает снег, она все равно продолжает преобразовывать солнечную энергию. А за счет того, что фотоэлементы нагреваются, снег сам оттаивает. Принцип такой же, как подогрев стекла у машины.

Идеальная зимняя погода для солнечной батареи морозный безоблачный день. Иногда в такие дни даже рекорды по генерации можно устраивать.

Зимой эффективность солнечной батареи падает. В Москве и Подмосковье в среднем в месяц она вырабатывает в 8 раз меньше электроэнергии. Скажем, если летом для работы холодильника, компьютера и верхнего освещения дома нужен 1 кВт энергии, то зимой для надежности лучше запастись 2 кВт.

При этом на Дальнем Востоке продолжительность солнечного сияния больше, эффективность снижается всего в полтора-два раза. Ну и, конечно, чем южнее, тем меньше разница между зимним и летним периодом.

Так же важен угол наклона модулей. Можно выставить универсальный угол, на целый год. А можно каждый раз менять, в зависимости от сезона. Делают это не владельцы дома, а специалисты, которые выезжают на место.

Принцип работы солнечной батареи и их виды

Энергия Солнца используется в промышленности и в повседневной жизни во многих уголках мира. Принцип работы солнечной батареи несложен, и это является одним из качеств данной технологии, которая привлекает большое количество людей. Кремниевый фотогальванический элемент помогает преобразовывать солнечный свет в электричество. Свободные электроны становятся источником электрического тока.

Разобравшись, как работает солнечная батарея, ее легко можно сконструировать самостоятельно и использовать для личных нужд. Такие батареи надежны, легки в использовании и долговечны. Преимуществом такого устройства является то, что оно может быть разного размера в зависимости от необходимого количества энергии.

Стоит выделить отдельные виды солнечных батарей . тонкопленочные, монокристаллические и поликристаллические панели. Самым популярным видом батарей являются монокристаллические. Благодаря фотоэлектрическому эффекту в силиконовых ячейках солнечная энергия преобразуется в электроэнергию. Такие батареи обычно достаточно компактны, поскольку оптимальным количеством ячеек в них считается тридцать шесть. Такие батареи идеально подойдут для установки на неровной поверхности.

Принцип работы солнечной батареи для дома типа не сильно отличается. Благодаря прочному стеклопластиковому корпусу такие батареи могут быть использованы для получения энергии на кораблях. С их помощью можно обеспечить работу оборудования и подзаряжать аккумулятор. Такая установка не будет эффективно работать в облачную погоду. Также существуют определенные ограничения температур, при которых можно получать наибольшее количество энергии.

Большим спросом пользуются тонкопленочные батареи . Принцип работы солнечной батареи этого типа позволяет устанавливать ее в любом месте. Для таких батарей не нужны прямые солнечные лучи. Также эти батареи будут работать при большом количестве пыли. Недостатком таких солнечных батарей являются крупные габариты, из-за чего возникает необходимость в выделении большой площади под такие установки.

Источники: super-alternatiwa.narod.ru, scsiexplorer.com.ua, howitworks.iknowit.ru, recyclemag.ru, energorus.com

Кольский полуостров

Мальтийские рыцари

Дамаск - город мира

Чудеса и телепортация человека

Влюбленный в приведение

Записки современного экзорциста

Английский священник и экзорцист доктор Дональд Оманд услышал от медицинской сестры страшный рассказ о предсмертной истории умирающего человека. Этот человек...

Планирование длительной поездки в авто

При планировании длительной поездки, необходимо не только тщательно подготовиться самому, но и сделать то же самое со своим автомобилем. Важным вопросом...

Армейские грузовые автомобили

К моменту образования 5 августа 1940 года Латвийской ССР эта страна уже располагала своей компактной автомобильной промышленностью. Головным заводом являлся...

Адрианов вал

В истории часто случаются случаи, когда у известных исторических мест или архитектурных памятников есть аналоги, которые менее известны, или неизвестны совсем. ...

Как поверить в свои силы

Наука психология советует: прежде всего, следует понять, что от наших мыслей зависит очень многое. Если мы будем постоянно убеждать...

Превращение НЛО

Наиболее интригующим свойством неопознанных летающих объектов является изменение их размеров и формы. Особенно интересным является способность объектов разделяться на...

Ку-клукс клан - прошлое и настоящее

Первая организация куклуксклановцев закончила свое существование в начале 1870-х гг. когда президент Улисс С. Грант запретил подобные движения, издав закон...

Ракетный комплекс Авангард - технические характеристики и возможности

Новейший российский ракетный комплекс "Авангард" запущен в массовое производство, начата...

Истребитель Су 57 – характеристики и возможности

Истребитель пятого поколения Су 57 разработан в ОКБ им. Сухого...

Мотоциклы с карданным приводом

Мало купить мотоцикл и ездить на нём, заправляя его время...

История еды древних славян

Древние славяне, как и многие народы того времени, верили, что множество...

Как сделать мореный дуб в домашних условиях

Мореный дуб – прекрасный строительный материал. Его необычный цвет очень...

Народные приметы о жемчуге

В первую очередь, жемчуг является невероятно красивым камнем, который был...

Хвост у людей

Забавно, но хвост у человека есть. До определенного периода. Известно, ...

Толщина льда в Антарктиде

Несмотря на сокращение площади материкового льда Антарктиды, его толщина увеличивается.Последняя...



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: