понятие предела отображения. Теория пределов. Методика вычисления

Приводятся формулировки основных теорем и свойств предела функции. Даны определения конечных и бесконечных пределов в конечных точках и на бесконечности (двусторонних и односторонних) по Коши и Гейне. Рассмотрены арифметические свойства; теоремы, связанные с неравенствами; критерий сходимости Коши; предел сложной функции; свойства бесконечно малых, бесконечно больших и монотонных функций. Дано определение функции.

Определение функции

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Зарождение и создание теории действительного числа

3 Становление теории предела

Строгая математическое построение понятия вещественного числа стала возможной благодаря теории предела.

Человек, получивший современное математическое образование с трудом представляет себе дифференциальное и интегральное исчисление без аппарата теории предела. Однако, исторически производная появилась раньше предела. Причины такого явления в объясняются насущной потребностью естествознания в XVII веке методах дифференциального и интегрального исчисления.

В XVII идеи связанные с инфинитезимальными методами начали бурно развиваться. Здесь стоит отметить таких математиков как Декарт, Ферма, Паскаль, Торричелли, Кавальери, Роберваль, Барроу. Метод квадратур, разработанный в античности, нашел широкое применение и развитие. Исследовался вопрос касательных -- было дано определение, более общее чем античное, были построены методы отыскания касательных. Были сделаны попытки ввести производную. Было даже установлено, что задача о нахождении касательной обратна к задаче о квадратуре.

Несмотря на отсутствие строгости «...математики достигали все большего мастерства в обращении с понятиями, лежащими в основе исчисления бесконечно малых».

Методы бесконечно малых завоевывают популярность у математиков и все больше используются и совершенствуются. Интегральное и дифференциальное исчисление постепенно оформляется и обобщается трудами таких ученых как Ньютон(1643-1727) и Лейбниц(1646-1716). Так, Ньютон установил связь между производной и интегралом, предложил новый метод решения уравнений при помощи производной. Он разработал метод флюксий, который связал производную с мгновенной скоростью и ускорением. При помощи этого метода он разрабатывал интегральное и дифференциальное исчисление. Также Ньютон предложил алгоритм для нахождения производной функции, основанный на ранней форме теории пределов. Основой и мощным средством метода флюксий было разложение функций в ряды, правда без должного обоснования их сходимости.

Лейбницу мы обязаны большим количеством удобных и красивых обозначений в интегральном и дифференциальном исчислении. К своим результатам Лейбниц пришел независимо от Ньютона. Пользуясь знаниями из комбинаторики он разработал формальный метод вычисления интегралов. Лейбниц ввел понятие дифференциала определив его через касательные, нашел некоторые правила нахождения дифференциала сложной функции, а также ввёл дифференциалы высших порядков. Также Лейбницем были разработаны методы поиска точек экстремума и точек перегиба. Сильной стороной теории Лейбница, с точки зрения практических вычислений, была алгоритмичность и формальность.

И Ньютон, и Лейбниц решили множество практически важных задач, пользуюясь понятиями бесконечно малых величин, их точки зрения на производную и интеграл отличались друг от друга. Так Ньютон для решения дифференциальных задач использует метод флюксий, а Лейбниц дифференциалы. Ньютон рассматривает интегрирование как задачу обратную дифференцированию(в наших понятиях, отыскание первообразной), а Лейбниц рассматривает интеграл как сумму площадей бесконечно малых прямоугольников. Вполне естесственно, что две эти концепции были конкурирующими друг другу.

Ньютон и Лейбниц, используя в своих выкладках бесконечно малые, не могли объяснить их природу, потому что не представляли себе малой величины и конечной и отличной от 0. Оба ученные близко подошли к понятию предела, но «..узкая концепция числа, не допускавшая отождествления некоторых отношений с числами, была отчасти причиной того, что ни в ньютоновской, ни в лейбницевой теориях не могло "прорезаться" понятие предела». Математики пользовались интуитивными и геометрическими соображениями. Функции понимались как кривые, полученные некоторым движением(так же как их рассматривали древние греки). «Первые создатели анализа и их последователи принимали как нечто само собой разумеющееся справедливость двух основным представлений о пространстве и механическом движени». Вероятно по этой причине связь между непрерывность и дифференцируемость долгое время считались почти синонимами.

Однако метод бесконечно малых доказал свою плодотворность и нужность математике, от этого проблема фундамента для интегрального и дифференциального исчисления становилась еще более острой. Споры были не только среди математиков; жестким нападкам подвергалась вся математика, например, со стороны богослова Д. Беркли. Это состояние математики XVII-XVII получило название второго кризиса математики.

Вслед за Ньютоном и Лейбницем попытки определить понятие бесконечно малой предпринимались Эйлером, Даламбером и Лагранжем. Эти попытки нельзя назвать бесполезными, этими работами укрепилось в матетике понятие функций, что сыграло свою роль дальнейшие поиски теории предела. Однако построить связанную и логически обоснованую теорию не получилось.

Таким образом к XIX веку в математике сложилась парадоксальная ситуация. Налицо были несомненные успехи математических наук в естествознании, разработана методика обращения с рядами, дифференцирования и интегрирования, решены многие важные задачи, но понимния на чем основан математический анализ не было. Необходимость разобраться с фундаметом новой математики стала всеобщей и насущной.

Построением стройной и строгой теории бесконечно малых мы обязаны Огюстену Луи Коши(1789-1857). Следует признать, что Коши был не первым математиком, кто пришел к этой идее, но, исторически, его работы сыграли в развитии математического анализа ключевую роль. Коши дал общее определение предела в описательной форме: «Если значения, последовательно приписываемые одной и той же переменной, неограниченно приближаются к фиксированному значению, так что в конце концов отличаются от него сколь угодно мало, то последнее называют пределом всех остальных»Цитата взята из . С точки зрения этого определения стало понтным что такое бесконечно малая величина -- это всего лишь величина, имеющая предел равный 0, затем Коши определил понятие производной и показал связь этого определения с дифференциалами Лейбница. Также он построил первую строгую теорию интегрирования и доказал связь интегрирования и дифференцирования.

Переоценить вклад Коши в математику трудно. Его работами открывалась новая эпоха в математике, «...начинается так называемая "арифметизация" всей математики». Благодаря работам Коши математический анализ прочно и заслуженно занял в математике одно из главных мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня.

Аксиоматический метод

Исторический процесс развития взглядов на существо математики как науки привел к формированию фундаментальной концепции аксиоматического метода и понятия аксиоматической теории. Суть их состоит в следующем...

Дифференциальные свойства гиперболических функций

Теорема 1. Если существуют причем для всех из некоторой проколотой окрестности точки выполняется условие, то в точке существует предел сложной функции и справедливо Согласно определению предела, функции и определены соответственно в и...

Жизнь и научная деятельность Андрея Николаевича Колмогорова

Когда в 1920 году Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Время было голодное и тревожное. Юноше хотелось получить не только знания, но и профессию, ремесло...

Линейное программирование

Каждый человек ежедневно, не всегда осознавая это, решает проблему получения наибольшего эффекта, при затрате ограниченных средств. К сожалению, наши средства и ресурсы всегда ограничены, приходится действовать очень обдуманно, ответственно...

Математика в современном мире

Создание дедуктивного или аксиоматического метода построения науки является одним из величайших достижений математической мысли. Оно потребовало работы многих поколений ученых...

Математические методы и модели в решении задач по экономике

Найти решение игры заданной матрицей: Нижняя цена игры: Верхняя цена игры: Матрица игры имеет седловую точку V = 4. Из систем уравнений: Таким образом...

Понятие предела - фундаментальное понятие математического анализа. Геометрический смысл понятия предела: известно, что неравенство < е задает часть числовой оси, лежащую между точками a - е и a + е...

Предел последовательности. Теорема Штольца и ее применение

Теорема 1. Сходящаяся последовательность имеет единственный предел. Доказательство. Пусть последовательность xn сходится. Предположим, что её предел не является единственным, то есть что одновременно верны равенства: xn = b иxn = c, где bc...

Предел последовательности. Теорема Штольца и ее применение

Предел последовательности. Теорема Штольца и ее применение

числовой последовательность предел штольц Пример 1. Доказать, что = . Решение. Рассмотрим последовательность an = -. Имеем an = =. Поскольку an = - бесконечно малая последовательность. Это означает, что = . Ответ: = . Пример 2. Вычислить предел. Решение...

Предел последовательности. Теорема Штольца и ее применение

Нам знакомы приложения теории пределов в геометрии. Например, площадь круга, объем цилиндра, конуса и шара были определены, а затем и вычислены как соответствующие пределы. Укажем другой способ использования понятия предела в решении задач...

Применение методов дискретной математики в экономике

Различные определения интеграла Римана и их сравнения

Разбиением множества Mпринято называть совокупность его подмножествсо свойствами: 1) ; 2) . В дальнейшем роль множества Mу нас будет играть промежуток, а разбиения мы будем рассматривать только некоторого специального типа. А именно...

Теория вероятности

Суммой двух событий А и В называется событие АВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно)...

Теория нумераций

Представляется желательным, чтобы все исследования в теории алгоритмов и ее приложениях проводились на основе «общего знаменателя» - класса всех частично рекурсивных функций...

В этой главе изучается операция предельного перехода - основная операция математического анализа. Сначала рассмотрим предел функции натурального аргумента, поскольку все основные результаты теории пределов отчетливо видны в этой простой ситуации. Затем рассмотрим предел в точке функции действительной переменной.

2.1 Предел последовательности

2.1.1 Определение и примеры

Определение 2.1. Функцияf: N → X , областью определения которой является множество натуральных чисел, называется последовательностью.

Значения f(n), n N, называются членами последовательности. Их принято обозначать символом элемента того множества, в которое происходит отображение, снабжая символ соответствующим индексом (аргументом функции f): xn = f(n). Элемент xn называется n-м членом последовательности. В связи с этим последовательность часто обозначают символом {xn } или {xn }+ n=1 ∞ , а также записывают в виде x1 , x2 , . . . , xn , . . . .

В дальнейшем в этой главе будем рассматривать только последовательность f: N → R действительных чисел.

Определение 2.2. Интервал, содержащий точкуa R, называют окрестностью этой точки. Интервал(a − δ, a + δ) ,δ > 0 , называют δ -окрестностью точкиa и обозначаютU a (δ) илиV a (δ) (часто пишут короче:U a илиV a ).

Определение 2.3. Числоa R называют пределом числовой последовательности{x n } , если для любой окрестности точкиa существует номерN N такой, что все элементыx n последовательности, номера которых большеN, содержатся вU a . При этом пишут

n lim→∞ xn = aили lim xn = aили xn → aпри n → ∞.

В логической символике определение 2.3 имеет вид:

a R. a = lim xn Ua N = N(Ua ) N: n > N xn Ua .

Поскольку Ua (ε) = (a − ε, a + ε) = {x R: |x − a| < ε}, то часто употребляют следующую равносильную формулировку определения2.3

Определение 2.4. Числоa называют пределом числовой последовательности{x n } , если для любого положительного числаε найдется номерN = N(ε) такой, что все члены последовательности с номерамиn > N удовлетворяют неравенству|x n − a| < ε .

Соответственно, в логической символике это определение имеет вид: a R, a = lim xn ε > 0 N = N(ε) N: n > N |xn − a| < ε

Замечание. Первые члены последовательности не влияют на существование и величину предела в случае его существования.

Иногда полезна следующая геометрическая интерпретация определения 2.3 предела последовательности:

Число a называется пределом последовательности{x n } , если вне любой окрестности точкиa находится не более конечного числа членов последовательности{x n } .

Ясно, что если вне некоторой окрестности точки a находится бесконечное число членов {xn }, то a не является пределом {xn }.

Рассмотрим несколько примеров.

Пример 2.1. Если {xn } : xn = c, то lim xn = c, так как все члены последовательности, начиная с первого, принадлежат любой окрестности

Пример 2.2. Покажем, что последовательность {xn } : xn =

имеет предел и lim xn = 0.

Зафиксируем ε > 0. Так как

≤ n

< ε для n >

То, полагая N = max{1, }, получим:

|xn | ≤

Следовательно, ε > 0 N = max{1, } N: n > N |xn | < ε.

Замечание. Одновременно мы доказали, что lim

Пример 2.3. Покажем, что lim

0, если q > 1.

Поскольку q > 1, то q = 1 + α, где α > 0. Поэтому n > 1 по формуле бинома Ньютона

qn = 1 + nα +n(n − 1) α2 + · · · + αn > nα.

Отсюда следует, что

N > 1. Зафиксируем ε > 0, положим

N = max{1, } и получим, что

Итак, ε > 0 N = max{1, } N: n > N |1/qn | < ε.

Пример 2.4. Покажем, что последовательность {xn } : xn = (−1)n , не имеет предела.

Для любого числа a укажем такую окрестность, вне которой расположено бесконечное множество членов данной последовательности. Для этого зафиксируем точку a R и рассмотрим ee единичную окрестность Ua (1) = (a − 1, a + 1). Поскольку x2k = 1, x2k+1 = −1, k N, и хотя бы одно из чисел +1 или −1 не принадлежит Ua (1), то вне Ua (1) находится бесконечное множество членов последовательности {xn }. Следовательно, число a не является её пределом. В силу произвольности числа a заключаем, что @ lim xn .

Определение 2.5. Числовая последовательность, имеющая пределом число, называется сходящейся. Все остальные последовательности называются расходящимися.

В логической символике определение 2.5 имеет вид: {xn } сходится a R: lim xn = a.

дящимися, а последовательность {(−1)n } - расходящейся.

2.1.2 Свойства сходящихся последовательностей

Теорема 2.1. Последовательность не может иметь двух различных пределов.

Пусть числовая последовательность {xn } имеет два различных предела a и b. Для определенности будем считать, что a < b. Положим

ε = b − 2 a . По определению2.4 предела последовательности найдем N1 и

n −

такие, что

n > N , то есть

| n −

Тогда n > N = max{N1 , N2 }

< xn <

Чего быть не может.

Определение 2.6. Числовая последовательность {x n } называется ограниченной сверху (соответственно, снизу или ограниченной), если множество X = {x n | n N} является ограниченным сверху (снизу или ограниченным). Если X - неограниченное множество, то {x n } называется неограниченной последовательностью.

C учетом определений 2.1 и2.2 имеем:

{xn } ограничена сверху M R: n N xn ≤ M, {xn } ограничена снизу M R: n N xn ≥ M, {xn } ограничена M > 0: n N |xn | ≤ M,

{xn } не ограничена M > 0 n N: |xn | > M.

Теорема 2.2. Сходящаяся последовательность ограничена.

Пусть последовательность {xn } сходится и lim xn = d. Полагая в определении2.4 ε = 1, найдем номер N такой, что |xn − d| < 1, n > N, то есть d − 1 < xn < d + 1, n > N. Введем обозначения:

a = min{x1 , x2 , . . . , xN , d − 1}, b = max{x1 , x2 , . . . , xN , d + 1}.

Тогда a ≤ xn ≤ b, n N.

Замечание. Ограниченность последовательности - необходимое, но недостаточное условие сходимости (см.пример 4) .

Теорема 2.3. Если числовая последовательность {x n } сходится и lim x n = a , то последовательность {|x n |} сходится и lim |x n | = |a|.

Так как a = lim xn , то ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Отсюда следует, что n > N ||xn | − |a|| ≤ |xn − a| < ε.

Замечание 1. Из теоремы2.3 и примера3 следует, что при |q| > 1

lim q n = 0.

Замечание 2. Обратное утверждение к теореме2.3 не имеет места.

Астрономы могут похвастаться очередной значительной находкой. На этот раз они напали на след двух звёздных скоплений, в каждом из которых есть массивные звёзды. Открытие в мгновение перечеркнуло ранее принятый теоретический предел массы космических гигантов. Масса одной из найденных звёзд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс.

Астрономы могут похвастаться очередной существенной находкой. На этот раз они напали на след 2-х звёздных скоплений, в каждом из которых есть массивные звезды. Открытие в мгновение перечеркнуло раньше принятый гипотетический предел многих космических гигантов. Масса одной из найденных кинозвезд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс. Благодаря открытию скопления космических монстров, исследователи смогут вычислить предел многих кинозвезд.
Кинозвезды-великаны были обнаружены в молодых скоплениях NGC 3603 и RMC 136. Исследованиями занимались исследователи из Университета Шеффилда. Группа под руководством проф. астрофизики Пола Кроутера (Paul Crowther) наблюдала за объектами с помощью инфракрасного аппарата 8-метрового телескопа VLT ESO. За исключением этого в наблюдениях были использованы архивные данные телескопа Хаббл.
В звёздном скоплении NGC 3603 случается непрерывный процесс рождения новых кинозвезд. Они образовываются в протяженных газово-пылевых облаках. В отличие от RMC 136 скопление NGC 3603 располагается в системе Млечный путь, на расстоянии от Солнца всего в 22 000 световых лет. II-е звёздное скопление, тоже небезызвестное как R136 располагается на ещё более значительном расстоянии от Солнца-165 000 световых лет (туманность Тарантул, галактика Большое Магелланово Облако). И, соответственно, выходит за пределы нашей Галактики. Объекты там отличаются возрастом, гигантской массой и весьма высокой температурой.
Проводимые раньше исследования указывали, что в скоплениях весьма вероятно присутствие кинозвезд-гигантов. Однако лишь теперь астрономам удалось отыскать объекты в десятки раз ярче и массивнее Солнца. Температура поверхности кинозвезд превышает температуру поверхности Солнца в 7раз (около 40 000 градусов). Модельные расчёты указывают на то, что гипергиганты сформировались и имели первоначальную массу более 150 солнечных масс. Самой огромной оказалась R136a1. Теперь масса светила может достигать 265 солнечных масс. Если её сравнить со Звездой Эта Киля (90-100 масс Солнца), то превосходство R136a1 понятно. Это по праву наиболее большая кинозвезда из всех раньше открытых.
Тоже в звёздном скоплении R136 были обнаружены ещё 3 гигантских светила. Их многих составляют 135 и 194 масс Солнца. Есть вероятность, что 1 из них в скором времени увеличится в два раза. Наподобие того, как в скоплении NGC 3603 увеличились многих 2-х кинозвезд. Великаны входили в двойную систему, при формировании их масса составляла примерно 150 солнечных.
От многих светила зависит сила звёздного ветра. Чем массивнее она, тем сильнее порывы ветра с её поверхности. Это к тому же оказывает влияние на продолжительность существования кинозвезды: из-за постоянного ветра, кинозвезда теряет собственную массу. Так около млн. лет тому назад, при собственном рождении, кинозвезда R136a1 обладала массой около 320 солнечных. Каждые 20 тыс. лет она теряла около 1 массу Солнца. Вот и получается, что с того момента она утратила 1/5 собственной первоначальной многих. Суперзвезда R136a1 уже близка к тому моменту, когда она станет сверхновой. До взрыва гиганту остался примерно 1 миллион лет, а это ещё 1/2 отмеренного срока.
Если сопоставить яркость Солнца и кинозвезды R136a1, то получится следующее. В первую очередь, соотношение яркости возможно сравнить с полной Луной. Во столько раз R136a1 будет ярче Солнца. Если кинозвезды поменять местами, то перемены в Солнечной системе произойдут незамедлительно. Масса гиганта повлияет на продолжительность г. на Земле: он сократится до 3-х недель. Сильное ультрафиолетовое облучение испепелит поверхность Земли и, соответственно, жизнь на нашей планете окажется невозможной.
Сверхмассивные кинозвезды- редкое явление. Они рождаются только в плотных звёздных скоплениях, что замедляет процесс исследований. Вся сложность заключается в том, что обнаружить их посреди крупного числа кинозвезд может лишь инфракрасная камера. Её разрешающая способность обязана быть весьма высокой.
Группа ученых из Университета Шеффилда постаралась оценить максимальную массу кинозвезд в скоплениях NGC 3603 и RMC 136. Тоже они старались подсчитать наиболее крупные кинозвезды. Дело в том, что массу одиночной кинозвезды вычислить почти нереально. Требуется, хотя бы, выяснить её температуру и скорость утраты многих. Нижний предел кинозвезд составляет не менее 80 масс Юпитера. Всё, что менее этого размера- бурые лилипуты. Но еще и верхняя планка звездных масс также есть. В виду последних открытий, учёным пришлось серьезно увеличить массовый предел. Сейчас цифра достигает 300 солнечных масс, а это почти вдвое более прошлого массового значения.
Стало известно, что в звёздном скоплении R136 массу более 150 масс Солнца (на миг рождения) имеют лишь 4 кинозвезды. 1 из них, а именно R136a1, создаёт ветер мощностью в 50 раз более, который, к примеру, исходит от туманности Орион. Это максимально близкая к нашей планете область образования кинозвезд. 4 гиганта серьезно влияют на общую картину скопления. Их излучения- уже 1/2 вклада в сильный звёздный ветер скопления R136. II-ая 1/2 принадлежит остальным 100 000 кинозвезд.
Процесс образования гигантских кинозвезд пока не понятен. Узнать это довольно непросто, ведь исследованиям мешают 2 фактора: недолгий срок существования крупных кинозвезд и мощный ветер, который беспрерывно привносит большое число изменений в массу кинозвезд. Потому учёным трудно до окончания разобраться с такими непростыми объектами как R136a1. Непонятен даже путь их образования. Версия о слиянии кинозвезд в одну к тому же остаётся возможной.
Кинозвезды, имеющие от 8 до 150 масс Солнца, живут недолго и взрываются как сверхновые. После себя они оставляют не только лишь нейронные кинозвезды, но еще и вороные дырки. Находка исследователей из Университета Шеффилда лишь увеличивает шанс на существовании теории о экстремально ярких сверхновых. Кинозвезды массой от 150 до 300 солнечных масс появляются из-за неустойчивости, которую вызывают пары частица-античастица. Кинозвезды-великаны взрываются ещё до коллапса в их ядрах. Особенным считается то, что после взрыва подобных мощных кинозвезд не остаётся ничего. При этом они выбрасывают в космос вещество в виде железа с массой до 10 солнечных масс. Существование кинозвезд-гигантов разрешает проблему максимального значения многих светил. За последнее время взрывоопасные объекты уже были обнаружены. Использованы материалы сайта Гомел-сат.

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: