Какая разница в ядрах процессора. Двухъядерный или четырехъядерный процессор – в чем разница

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.


Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

01.02.2013

Споры о необходимости многоядерных процессоров давно улеглись. Но вопрос востребованности большого количества ядер все еще насущен. Ведь значительная часть приложений, в том числе игр, до сих пор не умеет использовать большое количество параллельных. В этом тесте мы решили выяснить, как влияет количество ядер в процессоре на игровую производительность.

С появлением многоядерных процессоров ситуация с их выбором осложнилась, ведь кроме привычного показателя производительности, коим всегда была тактовая частота, добавился и еще один – количество ядер. Их Intel и AMD начали наращивать стремительно, но потом успокоились, хотя аналитики прогнозировали дальнейшее количество ядер. Фактически, в данный момент максимальным количеством ядер можно считать четыре. И не нужно кивать в сторону процессоров AMD FX, которые сам производитель называет “восьмиядерными”. По факту, они также имеют четыре ядра, если не учитывать удвоенное количество блоков ALU. Просто ядра AMD называет модулями. По общему мнению, это количество ядер и является оптимальным для игр.


Но общее мнение не всегда отражает реальное положение дел. А по факту, многие игры до сих пор не умеют использовать больше двух ядер. И вовсе не потому, что программисты, в компаниях которые их создали, не ратуют за многоядерность, а просто потому, что большинству игровых проектов большая вычислительная мощь не нужна. Причем это относится как к достаточно скромным играм, так и ко многим блокбастерам. Особенно четко данная тенденция стала прослеживаться с появлением DirectX 11. Последний API от Microsoft принес значительное количество изменений связанных с распределением нагрузки, в результате чего значительная часть работы по предварительному обсчету данных и их подготовке перешла от центрального процессора к видеокарте. Нагрузка на графическую подсистему возросла, а вот на CPU наоборот упала.

Эту информацию недооценили многие покупатели, продолжая искать для игрового компьютера самый мощный процессор, кивая на многочисленные игровые тесты, в которых процессоры демонстрируют огромную разницу в производительности. И большинство не задумывается о том, что для игровых тестов процессоров выбираются особые настройки, которые должны выявить разницу в производительности разных моделей, и продемонстрировать ее максимально явно. В реальной жизни такие настройки никто не использует, тем, более имея достаточно производительную систему. Ведь, согласитесь, довольно глупо играть в разрешении 1280 на 720 и минимальных настройках графики в новый шедевр, имея отменную видеокарту вроде Radeon HD 7970, или GeForce GTX 680.

Чтобы адекватно оценить разницу в производительности, которую демонстрируют процессоры с разным количеством ядер, причем в максимально приближенных к реальности условиях, мы пошли другим путем. В наш традиционный тестовый стенд, оснащенный процессором Core i7-2700K, мы установили мощную видеокарту Radeon HD 7950, и прогнали тесты в гораздо более приближенных к реальным режимам настройках. То есть в разрешении Full HD, на максимальных настройках, и с активированной анизотропной фильтрацией. Единственное от чего отказались, так это от сглаживания, которое очень сильно повышает нагрузку на видеокарту, еще больше нивелируя разницу в производительности процессоров.


А процессоров в тесте сразу четыре. Хотя физически это все тот же Core i7 на ядре Sandy Bridge, но мы будем использовать его с одним, двумя, тремя, и четырьмя активными ядрами, и оценивать влияние их количества на производительность. Для того, чтобы результаты были более четными, мы отключили HyperThreading, который может оказывать влияние на результаты, улучшая ситуацию для конфигураций имеющих меньшее количество ядер. Также был отключен автоматический разгон, а частота процессора зафиксирована на уровне 3,5 гигагерца, которая является для него стандартной.

Для тестирования мы используем пять игр из нашего постоянного набора для тестов видеокарт. Это Metro 2033, Crysis 2, Battlefield 3, F1 2011, и ArmA 2. Четыре из них будут протестированы в поддерживаемом ими режиме DirectX 11. А ArmA 2, которая не поддерживает самый новый API выступит в качестве контрольного образца. На основе поведения этой игры мы будем делать выводы о влиянии количества ядер в процессоре на игры, работающие через DirectX 10, который (равно как и предыдущие) значительно больше нагружает центральный процессор. Кроме того, среди фанатов ArmA 2 ходят легенда о том, что данная игра является одной из самых процессорозависимых. Проверим.

Перед тем как переходить к тестам, оговоримся, что наш тест будет полезен только обладателям, или тем, кто планирует купить процессор Intel Core пары последних поколений. То есть на ядрах Sandy Bridge и Ivy Bridge. Так как в силу высокой эффективности этих процессоров, они могут в значительной степени компенсировать меньшее количество ядер, относительно менее эффективных процессоров, вроде AMD Athlon/Phenom, и Core 2 Duo/Core 2 Quad. Для таких процессоров зависимость от количества ядер может быть более выраженной. В то же время нужно помнить и о влиянии частоты процессора на производительность, независимо от количества ядер, и вносить поправку те результаты, которые продемонстрирует наш подопытный. Все точки над “i” вроде расставлены, можно переходить к исследованию результатов тестов.

Первым в бой традиционно отправляется синтетический пакет 3DMark 11. Синтетика вообще очень чувствительна к производительности компонентов, и наверняка хорошо отреагировала бы на изменение количества ядер, если бы нашей целью было бы исследование чистой производительности с помощью теста физики. Но нас интересует графический тест, и в нем результаты оказались отнюдь не самыми ожидаемыми. Как видно на графике, разница между 2,3 и 4 ядрами оказалась фактически нулевой, в пределах погрешности. И только когда активным осталось только одно (!) ядро, 3DMark хоть как-то отреагировал на снижение количества вычислительных ресурсов. Но отреагировал очень вяло. Как видно, нагрузка на процессор в графическом тесте пакета столь мала, что с ней отлично справляется всего одно быстрое и эффективное ядро Sandy Bridge. Фактически в данном тесте больше двух ядер не нужно, а потому быстрый Pentium здесь покажет не худшие результаты, чем Core i5 и Core i7, которые стоят в разы дороже.

Metro 2033

Одна из самых тяжелых и красивых игр для PC, весьма бодро “идет” на видеокарте Radeon HD 7950. А вот к количеству ядер относится весьма скептически. Разница между 2,3 и 4 ядрами достаточно скромная, хотя и более выраженная, чем в 3DMark. А вот при одном активном ядре видна заметная просадка, хотя стоит признать, что и на одном ядре играть можно, пусть и претерпевая некоторые неприятные подергивания, так как минимальный фреймрейт также снизился. Зато двуядерника Metro 2033 хватит за глаза, и только перфекционистам можно порекомендовать приобретать четырехядерник, так как он даст в среднем, лишь на один с небольшим кадр в секунду больше. Pentium вновь выглядит неплохим игровым процессором. Не говоря уже про работающие на более высоких частотах Core i3.

Crysis 2

Мы уже начали предполагать, что и дальше все пойдет по той же схеме, но, как оказалось, у Crysis 2 свой взгляд на количество ядер и их использование. Как видно по графику, CryEngine 3, вполне адекватно реагирует на прибавление количества вычислительных ядер процессора. И даже четыре ядра он знает куда применить. Но с другой стороны, и два ядра выдают вполне приемлемый результат, обеспечивая плавную картинку и отсутствие подергиваний. Да и на одном ядре можно играть, но уже не так комфортно, все же потеряв среднем 24 кадров в секунду весьма ощутима. К тому же если это одно ядро будет меньше частоты (у нас, напоминаем, 3,5 гигагерца), то результат может быть еще хуже. В принципе, как и в предыдущих тестах, вновь отметим, что двух быстрых ядер для Crysis 2 будет вполне достаточно, несмотря на то, что и три и четыре ядра обеспечат небольшой прирост.

Battlefield 3

Гениальнейшая графическая часть, судя по результатам теста, абсолютно независима от количества ядер. График для двух, трех, и четырех ядер практически линеен, и вновь укладывается в пределы погрешности. Как видно, больше двух ядер Battlefield 3 не использует. Но и меньше тоже. При одном активном ядре игра пыталась запуститься, но это ей не удавалось, так что результата данного теста просто нет. Видимо, движок игры в обязательном порядке требует как минимум двух потоков, которые одноядерный процессор предоставить не может. Вывод вновь безрадостный для обладателей мощных четырехядерников – в этой игре они совсем не у дел. Ту же производительность обеспечит процессор с двумя ядрами. Скорее всего, данная игра будет более адекватно реагировать на изменение тактовой частоты, что мы постараемся проверить в будущем. Пока же констатируем, что Core i3 здесь будет лучшим выбором.

Гоночный симулятор, которому приходится просчитывать множество физических данных, в отличие от шутеров должен демонстрировать гораздо более яркую зависимость от количества ядер. И F1 2011 не подвела. Вот где 4 ядра используются на полную катушку, а отключение каждого ядра дает реальный эффект. Отключение всего одного ядра уже уменьшает фреймрейт в два раза! С двумя активными ядрами ситуация еще более усугубляется. А с одним ядром… и вовсе не поиграешь, потому что игра просто отказывается запускаться, сообщая о том, что конфигурация компьютера не отвечает минимальным системным требованиям. Хотя, опять же можно отметить, что и двух ядер будет достаточно для вполне комфортной игры, но в данном случае мы можем признать полностью обоснованными использование четырехядерных Core i5 и Core i7.

Контрольный пациент, в лице ArmA 2 также очень позитивно оценивал прибавление новых ядер. На одном ядре игра, конечно, запускается, но впечатления от нее не самые положительные – бесконечные тормоза не позволяют играть. С двумя ядрами ситуация становится куда лучше – ArmA 2 идет вполне гладко. Ну а три или четыре ядра делают ситуацию практически идеальной, хотя разница в производительности между ними не очень заметна. По данному факту можно сделать вывод, что для ArmA 2 будет идеальным использование Core i5 или Core i7, но вполне достойную производительность обеспечат быстрые двуядерники, вроде Pentium или Core i3.

Выводы

Подводить итоги, и как-то суммировать результаты тестов довольно сложно. Но попробуем. Прежде всего, нужно отметить, что четырехядерники вовсе не бесполезны, и в некоторых играх они имеют значительное преимущество перед процессорами располагающими лишь двумя ядрами. Но многие игры, среди которых и такие хиты, как Battlefield 3, до сих пор вполне довольствуются двухядерниками, и совершенно спокойно относятся к появлению третьего и четвертого ядра. Заранее предсказать, как та или иная игра покажет себя в работе с разным количеством процессорных ядер предсказать практически невозможно, хотя, некоторые общие черты все же есть. В частности, в использование вычислительной мощности процессора в значительной мере зависит от жанра игры. Шутерам не требуются значительные вычислительные ресурсы процессора, в то время как разнообразные симуляторы, а также стратегии, которым нужно обсчитывать большие объемы данных связанных с проработкой физических аспектов игры, или интеллекта множества персонажей, гораздо более требовательны к процессору.

С другой стороны, все игры в нашем тесте показали вполне приемлемый результат даже на двух ядрах. То есть, если вы не гонитесь за рекордами и хотите просто комфортно играть, то вам будет вполне достаточно быстрого двуядерника, такого как, например Core i3, или даже Pentium. При этом вы не будете чувствовать никаких сложностей в 99 процентах игр, ведь пользователю совершенно не критично, выдает игра 40 кадров в секунду, или 200. Тем не менее, в будущем ситуация может измениться, и после появления нового поколения консолей

Инструкция

Если у вас установлена операционная система Windows, узнать, какое количество ядер в вашем процессоре, можно через свойства . Для этого выберите на рабочем столе значок «Компьютер», нажмите Alt+Enter или правую кнопку мыши и в контекстном меню «Свойства».

Откроется окно с информацией об операционной системе, процессоре, оперативной памяти и имени компьютера. Справа будут ссылки, среди которых нужно найти «Диспетчер устройств».

В диспетчере будет указано оборудование, которое у вас установлено. В списке найдите пункт «Процессор» и нажмите на стрелочку рядом с ним. Развернется столбик, в котором будет указано количество ваших процессоров.

Можно запустить диспетчер задач с помощью комбинации Ctrl+Shift+Esc. Откройте вкладку под названием «Быстродействие». Количество окон в разделе «Хронология загрузки ЦП» соответствует количеству ядер вашего процессора.

Если на компьютере включена имитация работы многоядерного процессора, тогда диспетчер задач будет показывать число сымитированных ядер. Это можно определить, если все ядра показывают совершенно одинаковую нагрузку. Тогда вам может пригодиться бесплатная утилита CPU-Z. На вкладке CPU показана вся информация о процессоре. Внизу есть окно Core, где указано количество ядер.

Можно воспользоваться еще одной бесплатной программой PC Wizard. Ее можно скачать с сайта разработчика. Установите программу на компьютер. Запустите файл PC Wizard.exe, нажмите вкладку «Железо», затем «Процессор». Справа найдите раздел «Элемент», а в нем пункт Number of core. В разделе «Описание» отображено количество ядер.

Нельзя разобраться с этим вопросом, не зная, что собой представляет 4-х ядерный процессор. С одно-, двух- и трехъядерными процессорами все просто: они имеют одно, два или три ядра соответственно. А что касается 4-х ядерного, то тут не все так, как кажется на первый взгляд.

2-х или 4-х ядерный процессор?

Большинство людей ошибаются, думая, что частота каждого ядра складывается. Раз 2.5 Ггц частота ядер, а ядра 4, то значит 2.5*4= 10Ггц. Но это не так: частота всегда одна — 2.5 Ггц. Почему же частота не складывается? Потому, что с этой частотой параллельно работает каждый процессор.

Порция — это часть времени, на вычисление которой процессор выделяет ресурсы всем потокам, попавшим в процессор. Это как 4-ре магистрали с предельной скоростью 60 км/час (2.5 Ггц): у нас есть грузовики, которые должны доставить нам товары (это наши кусочки программы или порции программы), и чтобы нам повысить скорость доставки (повысить работоспособность системы), нам нужно использовать все 4-ре магистрали или повысить предельную скорость (3.0 Ггц). Но для большинства программ невозможно работать в несколько потоков, так как они работают в один поток и способны использовать лишь одну магистраль (а значит нашей программе будет выделено лишь 25% общей мощности процессора) потому, что в программе логика должна выполняться последовательно (поточно), и если нарушить последовательность, нарушится логика, а это приведет к сбоям. Новые программы стараются использовать мультипрограммирование — возможность работать в несколько потоков (наших магистралей), а не в одну, как большинство программ сейчас. Игры, по большей части тоже оптимизированы под многопоточность, но основной поток обычно работает в один. Хоть сейчас и пытаются разделить его на несколько, чтобы облегчить и ускорить. Поэтому для игр или приложений, которые обычно работают в один или два потока, лучше взять 2-ух ядерный процессор.

Если частота у двухъядерного такая же, как у четырехъядерного, то лучше конечно взять четырехъядерный, ведь у нас же одновременно работает огромное количество программ, пускай и слабых по нагрузке. Мы выиграем производительность системы за счет того, что все другие процессы могут быть вытеснены на другое ядро при полной загрузке одного из них. Но обычно частота у новых двухъядерных выше, чем у новых четырехъядерных. Именно поэтому при тестах в играх побеждают 2-ух ядерные с большей частотой, чем 4-ех ядерные с меньшей.

Теперь об очередях:

Теперь поймем, что при переходе от одноядерного к двуядерному, скорость возрастает быстрее не только за счет одновременной обработки ядрами, но и за счет ожидания и очереди на процессоре.

Частота у одноядерного процессора и двухъядерного одна и та же, но работает компьютер быстрее с 2-я ядрами. Дело в мультипрограммировании, когда осуществляется переход с одноядерного на двухъядерный, то скорость возрастает в разы. А мультипрограммирование — это работа с потоками. Представим себе 2 потока, например, работа Windows и запущенная компьютерная игра. Если у нас имеется одно ядро, то обрабатывается последовательно то игра (порция), то работа Windows (порция). Процессам приходиться ждать очереди, т. е. когда «кусочек» игры обрабатывается, то Windows приходится ждать конца обработки игры (порции игры). Когда мы перешли на 2 ядра, то даже с той же частотой, как у одноядерного, компьютер начинает более быструю обработку, так как очередь уменьшается в 2 раза.

Объясню подробнее на примере 100 приложений, если у нас 1 ядро, то 1 приложение обрабатывается, остальные 99 ждут своей очереди. И чем длиннее очередь, тем дольше идет обновления, и тогда мы чувствуем, что у нас тормозит система. А когда у нас 2 ядра, то очередь делится наполовину, т. е. 50 приложений на одном и 50 на другом, следовательно, их проще и быстрее обновлять. Важно знать, что очередь становится меньше и наши приложения быстрее обновляются.

Для теста потока запустите winrar, чтобы сжимать большой файл, и посмотрите в диспетчере (он сжимает в один поток), сколько ресурсов процессора он будет использовать (25%- на 4-ех ядерном и 50% на 2-ух). Из этого следует, что нашей игре, если она работает в один поток в четырехъядерном процессоре, будет выделено 25 % мощности процессора, 50%, если в двухъядерном. В играх у нас многопоточность присутствует, но главный поток в игре все равно будет обрабатываться на четверть процессора (в четырехъядерном).

Все рассматривалось упрощенно, 2-х ядерный с большей частотой подходит лучше для игр, так как больше частоты выделяется одному потоку, а 4-х ядерный подходит для много-поточных данных, например, множество запущенных одновременно приложений.

У 2-ух ядерного процессора i5 есть технология позволяющая имитировать работу системы, как с 4-х ядерным процессором. Фактически есть только 2 ядра, но для Windows имитируется работа 4-х ядер. 4 очереди (потока) по 2 очереди (потока) на ядро обрабатываются по очереди. Каждое ядро берет по порции каждого из потоков, то есть он способен быть четырехъядерным.

Доброго времени суток, уважаемый посетитель. Сегодня поговорим о том, что такое ядра процессора и какую функцию они выполняют. Сразу хотим сказать, что не собираемся лезть в дебри, которые не каждый техногик осилит. Все будет доступно, понятно и непринужденно, а потому тащите бутеры.

Начать хочется с того, что процессор — центральный модуль в компьютере, который отвечает за все математические вычисления, логические операции и обработку данных. Фактически вся его мощь сосредоточена, как ни странно, в ядре. Их количество определяет скорость, интенсивность и качество переработки полученной информации. А потому рассмотрим компонент более пристально.

Основные характеристики ядер ЦП

Ядро — физический элемент процессора (не путать с логическими ядрами — ), который влияет на производительность системы в целом.

Каждое изделие построено на определенной архитектуре, что говорит об определенном наборе свойств и возможностей, присущих линейке выпускаемых чипов.

Основная отличительная особенность — , т. е. размер транзисторов, используемых в производстве чипа. Показатель измеряется в нанометрах. Именно транзисторы являются базой для ЦП: чем больше их размещено на кремниевой подложке — тем мощнее конкретный экземпляр чипа.

Возьмем к примеру 2 модели устройств от Intel — Core i7 2600k и Core i7 7700k. Оба имеют 4 ядра в процессоре, однако техпроцесс существенно отличается: 32 нм против 14 нм соответственно при одинаковой площади кристалла. На что это влияет? У последнего можно наблюдать такие показатели:

  • базовая частота — выше;
  • тепловыделение — ниже;
  • набор исполняемых инструкций — шире;
  • максимальная пропускная способность памяти — больше;
  • поддержка большего числа функций.

Иными словами, снижение техпроцесса = рост производительности. Это аксиома.

Функции ядер

Центральное ядро процессора выполняет 2 основных типа задач:

  • внутрисистемные;
  • пользовательские.

Во вторую же попадают функции поддержки приложений путем использования программной среды. Собственно, прикладное программирование как раз и построено на том, чтобы нагрузить ЦП задачами, которые он будет выполнять. Цель разработчика — настроить приоритеты выполнения той или иной процедуры.

Современные ОС позволяют грамотно задействовать все ядра процессора, что дает максимальную продуктивность системы. Из этого стоит отметить банальный, но логичный факт: чем больше физических ядер на процессоре, тем быстрее и стабильней будет работать ваш ПК.

Как включить все ядра в работу

Некоторые пользователи в погоне за максимальной производительностью хотят задействовать всю вычислительную мощь ЦП. Для этого существует несколько способов, которые можно использовать по отдельности, или объединить несколько пунктов:

  • разблокировка скрытых и незадействованных ядер (подходит далеко не для всех процессоров — необходимо подробно изучать инструкцию в интернете и проверять свою модель);
  • активация режима для повышения частоты на краткосрочный период;
  • ручной разгон процессора.

Самый простой метод запустить сразу все активные ядра, выглядит следующим образом:

  • открываете меню «Пуск» соответствующей кнопкой;
  • прописываете в строке поиска команду «msconfig.exe» (только без кавычек);
  • открываете пункт «дополнительные параметры» и задаете необходимые значения в графе «число процессоров», предварительно активировав флажок напротив строки.

Как в Windows 10 включить все ядра?

Теперь при запуске ОС Windows будут работать сразу все вычислительные физические ядра (не путать с потоками).

Обладателям старых процессоров AMD

Следующая информация будет полезна обладателям старых процессоров AMD. Если вы до сих пользуетесь следующими чипами, то будете приятно удивлены:
Технология разблокировки дополнительных ядер называется ACC (Advanced Clock Calibration). Она поддерживается в следующих чипсетах:
Утилита, позволяющая раскрыть дополнительные ядра у каждого производителя называется по-разному:
Таким несложным способом можно превратить 2-ядерную систему в 4-ядерную. Большинство из вас даже не догадывались о подобном, верно? Будем надеяться, что я вам помог бесплатно добиться повышения производительности.

В данной статье я попытался вам максимально подробно объяснить, что такое ядро, из чего оно состоит, какие функции выполняет и каким потенциалом обладает.

В следующих ликбезах вас ждет еще много интересного, а потому не материал. Пока, пока.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: