Схема усилителя на трех транзисторах. Две схемы унч на транзисторах


Всем Привет! В этой статье я буду подробно описывать как изготовить классный усилитель для дома или авто . Усилитель несложный в сборке и настройке, и имеет хорошее качество звучания. Ниже вашему вниманию представлена принципиальная схема самого усилителя.


Схема выполнена на транзисторах и не имеет дефицитных деталей. Питание усилителя двуполярное +/- 35 вольт, при сопротивлении нагрузки в 4 Ома. При подключении 8-ми Омной нагрузки, питание можно увеличить до +/- 42 вольт.

Резисторы R7, R8, R10, R11, R14 - 0,5 Вт; R12, R13 - 5 Вт; остальные 0.25 Вт.
R15 подстроечный 2-3 кОм.
Транзисторы: Vt1, Vt2, Vt3, Vt5 - 2sc945 (на корпусе пишется обычно c945).
Vt4, Vt7 - BD140 (Vt4 можно заменить нашим Кт814).
Vt6 - BD139.
Vt8 - 2SA1943.
Vt9 - 2SC5200.

ВНИМАНИЕ! У транзисторов c945 есть разная цоколевка: ЭКБ и ЭБК. Поэтому перед впайкой нужно проверять мультиметром.
Светодиод обычный, зеленого цвета, именно ЗЕЛЕНОГО! Он здесь не для красоты! И НЕ должен быть сверхъярким. Ну а остальные детали видно на схеме.

И так, Погнали!

Для изготовления усилителя нам понадобятся инструменты :
-паяльник
-олово
-канифоль (желательно жидкий), но можно обойтись и обычным
-ножницы по металлу
-кусачки
-шило
-медицинский шприц, любой
-сверло 0.8-1 мм
-сверло 1.5 мм
-дрель (лучше какую-нибудь мини дрель)
-наждачная бумага
-и мультиметр.

Материалы:
-односторонняя текстолитовая плата размером 10х6 см
-лист тетрадной бумаги
-ручка
-лак для дерева (желательно темного цвета)
-небольшой контейнер
-пищевая сода
-лимонная кислота
-соль.

Список радиодеталей я перечислять не буду, их видно на схеме.
Шаг 1 Готовим плату
И так, нам нужно изготовить плату. Так как лазерного принтера у меня нет (вообще нет ни каково), плату мы будем изготавливать «по старинке»!
Для начала нужно просверлить отверстия на плате для будущих деталей. У кого есть принтер, просто распечатайте эту картинку:


если нет, то тогда нам надо перенести на бумагу разметку для сверловки. Как это сделать вы поймете на фото ниже:


когда будете переводить, не забудьте про размер платы! (10 на 6 см)



вот как то так!
Отрезаем ножницами по металлу нужный нам размер платы.


Теперь прикладываем листок к вырезанной плате и фиксируем скотчем, чтобы не съехала. Далее берем шило и намечаем (по точкам) где будем сверлить.


Можно конечно обойтись без шила и сверлить сразу, но сверло может съехать!


Теперь можно и начать сверловку. Сверлим дырки 0.8 - 1 мм.Как я говорил выше: лучше использовать мини дрель, так как сверло очень тонкое и легко ломается. Я например использую моторчик от шуруповерта.



Дырки под транзисторы Vt8, Vt9 и под провода сверлим сверлом 1.5 мм. Теперь надо зачистить наждачкой нашу плату.


Вот теперь можно и начать рисовать наши дорожки. Берем шприц, стачиваем иголку, чтоб была не острой, набираем лак и вперед!


Подравнивать косяки лучше когда лак уже застынет.


Шаг 2 Травим плату
Для травления плат я использую самый простой и самый дешевый метод:
100 мл перекиси, 4 ч ложки лимонной кислоты и 2 ч ложки соли.


Размешиваем и погружаем нашу плату.



Далее счищаем лак и получается вот так!


Желательно сразу все дорожки покрыть оловом для удобства пайки деталей.


Шаг 3 Пайка и настройка
Паять удобно будет по этой картинке (вид со стороны деталей)


Для удобства с начало впаиваем все мелкие детали, резисторы и прочее.


А потом уже все остальное.


После пайки плату нужно отмыть от канифоли. Отмыть можно спиртом или ацетоном. На крайняк можно даже бензином.


Теперь можно и пробовать включать! При правильной сборке усилитель работает сразу. При первом включении резистор R15 надо вывернуть в сторону максимального сопротивления (меряем прибором). Колонку не подключать! Выходные транзисторы ОБЯЗАТЕЛЬНО на радиатор, через изолирующие прокладки.

И так: включили усилитель, светодиод должен гореть, меряем мультиметром напряжение на выходе. Постоянки нет, значит все хорошо.
Далее нужно установить ток покоя (75-90mA): для этого замкните вход на землю, нагрузку не подключать! На мультиметре поставьте режим 200mV и подсоедините щупы к коллекторам выходных транзисторов. (на фото отмечено красными точками)


Далее медленным вращением резистора R15 нужно установить 40-45 mV.


Выставили, теперь можно подключить динамик и погонять усилитель на небольшой громкости 10-15 мин. Потом опять нужно будет подкорректировать ток покоя.
Ну вот и все, можно наслаждаться!

Вот видео работы усилителя:

С целью увеличения силы сигнала, особенно в звуковом диапазоне, применяются усилители низких частот (УНЧ). Преобразование, осуществляемое при помощи таких устройств, позволяет легче улавливать и воспринимать звук, поступающий от излучателя.

Усилители, обеспечивающие изменение частоты до 10-100 МГц, комплектуются по сходному принципу, и основным отличием их схем является уровень ёмкости используемого конденсатора, которая рассчитывается исходя из соотношения сигналов поставляемой низкой и производимой высокой частот. То есть, чем сильнее становится сигнал, тем меньше должна быть ёмкость конденсатора.

Использование именно транзисторных усилителей оправдано тем, что они не нуждаются в предварительном прогреве до начала работы (по сравнению, например, с DIY-ламповыми усилителями) и отличаются долговечностью, безопасностью, доступностью.

Чтобы обеспечить достаточную громкость воспроизведения звука понадобится усилитель с двумя-тремя каскадами. При этом один из них – выходной (оконечный), а другой (другие) – каскады предварительного усиления. Выходной каскад как раз и выдаёт окончательный результат усиления сигнала. С точки зрения экономии может быть довольно простым (особенно подходит для нестационарных конструкций). На схемах транзисторы в усилительных каскадах обозначаются как V1 (V2, V3…) в соответствии с очерёдностью каскада. В двухкаскадной конструкции между транзисторами находится месторасположение разделительного конденсатора. Однокаскадный и двухкаскадный усилитель функционируют практически одинаково, кроме того момента, что на предварительный каскад нагрузка идёт от резистора, а на выходной – от динамика.Питает оба каскада один источник (его роль могут выполнять как батареи, так и выпрямители).

В зависимости от структуры используемых транзисторов (n-p-n или p-n-p) понадобится в одном случае подключение к положительной полярности батареи, а в другом – к отрицательной. Включающая полярность соответственно так же будет различаться.

При сборке усилителя следует в первую очередь смонтировать только один каскад и соединить его с конденсатором. После подсоединить к выводу конденсатора и заземлённому источнику питания динамик. Потом попробовать подать на вход усилителя слабый сигнал. Настроить резистор (путём подбора сопротивления) так, чтобы громкость была наибольшей. Если сигнал, который пошёл на динамик, вас устраивает, то можно продолжить сборку. Наиболее подходящий уровень питающего напряжения этой схемы – 4,5 Вольт.

Когда выходной каскад будет готов, то необходимо включить динамик в коллекторную цепь.

Сборка усилителя НЧ на транзисторах для наушников

Работа подобной схемы не отличается сложностью, но очень зависит от качества и характеристик входящих в неё элементов. К тому же, возможно, что она не покажется достаточно компактной.

Обычно для наушников усилитель собирается по самой простой двухкаскадной схеме с двумя транзисторами (подойдёт КТ315 или его аналоги). Самым слабым местом этого устройства является точность подбора напряжения питающего эмиттер, базу и коллектор. Мало того, на базу поступает напряжение двух разновидностей: положительное и отрицательное. Если выбранные для конструкции резисторы будут обеспечивать наименьшее требуемое для базы напряжение, то усилитель будет работать нормально.

Для бесперебойной работы такого устройства потребуется напряжение более 5 Вольт. При дополнении конструкции микросхемой (например, TDA 2822) на выходе получится:

  • Уровень питающего напряжения: 1,8 – 15 Вольт;
  • Значение мощности: не превысит 1,5 Ватт;
  • Размер конструкции будет соответствовать площади небольшой печатной платы;
  • Размер корпуса: чуть больше питающего блока из двух пальчиковых батареек.

Для сборки усилителя будет достаточно:

  • Микросхемы (TDA 2822 или аналогичной);
  • Переменного резистора на 10 000 Ом;
  • Двух постоянных резисторов на 4 700 Ом и один на 10 000 Ом;
  • Двух электролитических конденсаторов на 10 микрофарад;
  • Трёх неполярных плёночных конденсаторов на 100 нанофарад;
  • Двух гнёзд на 3,5 мм;
  • Двух пальчиковых батареек;
  • Кусочка фольги;
  • Подходящего по размеру корпуса.

Когда все материалы подготовлены, следует наметить, как будут расположены детали относительно поверхности платы, и обозначить дорожки(на них следует нанести лак или воспользоваться лазерным принтером для нанесения схемы).

Главной задачей при сборке усилителя будет изготовление печатной платы. Это совсем нетрудно при наличии специальной программы для оформления плат. При отсутствии таковой можно воспользоваться обычным графическим редактором с соблюдением всех замеров и обозначением расположения соединений и выводов. Результат при помощи принтера переносится на глянцевую бумагу. Жирность печати – максимальная. Схема плотно скрепляется с фольгой. После нужно несколько раз пройтись горячим утюгом по плате, пока красящий компонент с бумаги не перейдёт на фольгу (не забудьте предварительно обезжирить плату). Бумага аккуратно смачивается тёплой водой и снимается. Схема остаётся на фольге. Далее нужно будет потравить печатную плату в растворе хлорного железа до полного уничтожения меди. Потом останется только вмонтировать все компоненты в соответствии со схемой. Питание можно подключить только после того, как будет проверена правильность установки всех элементов.

Для желающих осуществить сборку усилителя звука на транзисторах своими руками существует ряд нехитрых рекомендаций:

  • Следует применять транзисторы для КВ-диапазона;
  • Нагрузка, приходящаяся на транзисторы выходного каскада, не должна превышать половинного значения их номинальной мощности;
  • Подбор выходных транзисторов обусловлен коэффициентом передачи тока;
  • Не следует жалеть пространства для радиатора;
  • Работа предварительных каскадов должна обязательно соответствовать А-классу;
  • Радиоэлементы должны иметь максимально короткие выводы;
  • Обязательно следует приобретать качественные блокировочные конденсаторы;
  • Установка осуществляется при помощи коротких жёстких проводников.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.

Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.

Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.

Принципиальная схема УМЗЧ Holton


Усилитель Холтон на MOSFET — схема

Схема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.

Печатная плата


Печатная плата УНЧ — готовый вид

Вот архив с PDF файлами печатной платы — .

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).


Самодельный транзисторный УНЧ на МОСФЕТ

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Источник питания для УМЗЧ

Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.


Усилитель Холтон на плате с деталями

Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе .

Страница 1 из 2

Принцип работы транзисторного усилителя основан на том, что с помощью небольших изменений напряжения или тока во входной цепи транзистора можно получить значительно большие изменения напряжения или тока в его выходной цепи.
Изменение напряжения эмиттерного перехода вызывает изменение токов транзистора. Это свойство транзистора используется для усиления электрических сигналов.
Для преобразования изменений коллекторного тока, возникающих под действием входных сигналов, в изменяющееся напряжение в коллекторную цепь транзистора включают нагрузку. Нагрузкой чаще всего служит резистор или колебательный контур. Кроме того, при усилении переменных электрических сигналов между базой и эмиттером транзистора нужно включить источник постоянного напряжения, называемый обычно источником смещения, с помощью которого устанавливается режим работы транзистора. Этот режим характеризуется протеканием через его электроды при отсутствии входного электрического сигнала некоторых постоянных токов эмиттера, коллектора и базы. С применением дополнительного источника увеличиваются размеры всего устройства, его масса, усложняется конструкция, да и стоят два источника дороже, чем один. В то же время можно обойтись одним источником, употребляемым для питания коллекторной цепи транзистора. Одна из таких схем усилителя показана на рисунке.

В этой схеме нагрузкой усилителя является резистор R K , а используя резистор R б, задают необходимый ток базы транзистора. Если режим работы транзистора задан (при этом часто говорят, что задана рабочая точка на характеристиках транзистора), становятся известными ток базы и напряжение U БЭ, а сопротивление резистора R б, обеспечивающего этот ток, можно определить по формуле:
R б =(G K -U БЭ)/I Б.
Так как U БЭ обычно составляет не более 0,2...0,3В для германиевых транзисторов и 0,6...0,8 В — для кремниевых, а напряжение G K измеряется единицами или даже десятками вольт, то U БЭ < и можно записать:
R б ≈G K /I Б.
Из выражений следует, что независимо от типа транзистора VT ток его базы будет постоянным: I Б = G K /R б. Поэтому такая схема получила название схемы с общим эмиттером (ОЭ) и фиксированным током базы.
Режим работы транзистора в усилительном каскаде при постоянных токах и напряжениях его электродов называют исходным, или режимом покоя.
Включение нагрузки в коллекторную цепь транзистора приводит к падению напряжения на сопротивлении нагрузки, равному произведению I K R K .
В результате напряжение, действующее между коллектором и эмиттером Uкэ транзистора, оказывается меньше, чем напряжение G K источника питания на величину падения напряжения на сопротивлении нагрузки, т. е.:
U КЭ =G K -I K R K .
Если эту зависимость отобразить графически на семействе статических выходных характеристик транзистора, то она будет иметь вид прямой линии. Для ее построения достаточно определить всего две принадлежащие ей точки (так как через две точки можно провести только одну прямую). Каждая точка должна быть задана двумя координатами: I K и U КЭ.
Задавшись конкретным значением одной из координат, определяют вторую координату, решая уравнение U КЭ =G K -I K R K . Прямая, построенная в соответствии с уравнением на семействе статических выходных характеристик, транзистора, называется нагрузочной прямой.
Нагрузочная прямая, показанная на рисунке (а), построена для случая, когда G K =10В и R К =200 Ом.

1-я точка: =0;U КЭ =G K —0R K =G K =10 В;
2-я точка: I K =30 мА; U КЭ =10—30-10^3-200=10—6=4 В.



Если в исходном режиме (режиме покоя) ток базы равен 2 мА, этот режим будет определяться точкой A, лежащей на нагрузочной прямой в месте пересечения ее со статической выходной характеристикой, полученной при I БО =2 мА. При этом I КО =20 мА; U КЭO =5,8 В. Если перенести точку A на семейство входных характеристик (рис., б), можно найти U БЭО. Оно равно 0,25 В.
При подаче на вход усилителя переменного напряжения с амплитудой 50 мВ (0,05 В) на оси напряжений входных характеристик относительно напряжения U БЭО =0,25 В откладывают по обе стороны отрезки, соответствующие напряжению 0,05 В, и из их концов восстанавливают перпендикуляры к оси U БЭ до пересечения со статической характеристикой, на которой расположена точка А, обозначающая режим покоя усилителя. В точках пересечения перпендикуляров с характеристикой проставляют буквы В и С. Таким образом, при поступлении на вход переменного напряжения режим работы будет уже определяться не точкой А, а ее перемещениями между точками В и С. При этом ток базы изменяется от 1 до 3 мА. Другими словами, переменное напряжение на входе усилителя приводит к появлению переменной составляющей в его входном токе — токе базы. В данном примере амплитуда переменной составляющей тока базы, как видно из рисунка, равна 1 мА.
Точки B и С можно перенести на семейство выходных характеристик. Они будут находиться в местах пересечения нагрузочной характеристики со статическими, полученными при токах базы, равных 1 и 3 мА. Из этого рисунка, видно, что в режиме с нагрузкой появилась переменная составляющая коллекторного напряжения. Иначе, коллекторное напряжение теперь не остается постоянным, а изменяется синхронно
с изменениями входного напряжения. Причем изменение коллекторного напряжения ΔU КЭ =7,5—4,3=3,2В оказывается больше изменения входного напряжения ΔU БЭ =0,3—0,2=0,1В в 32 раза; т. е. получено усиление входного напряжения в 32 раза.
Поскольку напряжение источника питания G K постоянное, изменение коллекторного напряжения равно изменению напряжения на резисторе коллекторной нагрузки, т. е.ΔU КЭ = ΔI К R К. Из этого выражения видно, что чем больше сопротивление резистора R К, тем сильнее изменяется на нем напряжение и тем больше будет усиление. Однако увеличивать сопротивление резистора R K можно лишь до некоторого предела, превышение которого может привести даже к снижению усиления и появлению больших искажений усиливаемого сигнала.
В усилителе, схема которого приведена на верхнем рисунке, режим работы транзистора определяется током базы, который устанавливается резистором R б. Режим работы транзистора можно также установить, подав на его эмиттерный переход напряжение с делителя R1R2.



Ток делителя I Д, протекающий через резисторы R1 и R2, вызывает на сопротивлении резистора R2 падение напряжения, которое подается на эмиттерный переход транзистора и смещает его в прямом направлении. Это напряжение определяется в основном соотношением сопротивлений резисторов R1,R2 и протекающим через них током I Д и почти не зависит от типа транзистора. Поэтому такую схему иногда называют схемой с фиксированным напряжением смещения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: