Токи при замыкании и размыкании в сети. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).



находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Взаимная индукция

Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I 1 , то магнитный поток, со­здаваемый этим током (поле, создающее этот поток, на рисунке изображено сплош­ными линиями), пропорционален I 1 . Обоз
начим через Ф 21 ту часть потока, которая пронизывает контур 2. Тогда

Ф 21 =L 21 /I 1 , (128.1)

где L 21 - коэффициент пропорциональ­ности.

Если ток I 1 изменяется, то в конту­ре 2 индуцируется э.д.с. ξ i 2 , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости из­менения магнитного потока Ф 21 , созданно­го током в первом контуре и пронизываю­щего второй:

Аналогично, при протекании в конту­ре 2 тока I 2 магнитный поток (его поле изображено на рис. 184 штриховой линией) пронизывает первый контур. Если Ф 12 - часть этого потока, пронизывающего кон­тур 1 , то

Ф 12 =L 12 I 2 .

Если ток I 2 изменяется, то в контуре 1 ин­дуцируется э.д.с. ξ i 1 , которая равна и противоположна по знаку скорости из­менения магнитного потока Ф 12 , созданно­го током во втором контуре и пронизываю­щего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивно­стью контуров. Расчеты, подтверждаемые опытом, показывают, что l 21 и L 12 равны друг другу, т. е.

L I 2 = L 2 I . (128.2)

Коэффициенты L 12 и L 21 зависят от гео­метрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры сре­ды. Единица взаимной индуктивности та же, что и для индуктивности,- ген­ри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий торо­идальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, со­здаваемого первой катушкой с числом вит­ков N 1 , током I 1 и магнитной проницаемо­стью m, сердечника, согласно (119.2),

B=m 0 mN 1 I 1 /l, где l - длина сердечника

по средней линии. Магнитный поток через один виток второй катушки Ф 2 =BS=m 0 m(N 1 I 1 /l )S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмот­ку, содержащую N2 витков,

Поток yсоздается током I 1 , поэтому, со­гласно (128.1), получаем

Если вычислить магнитный поток, создава­емый катушкой 2 сквозь катушку 1 , то для L 12 получим выражение в соответст­вии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сер­дечник,

Трансформаторы

Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электро­техником П. Н. Яблочковым (1847-1894) и русским физиком И. Ф. Усагиным (1855-1919). Принципиальная схема трансформатора показана на рис. 186.

Первичная и вторичная катушки (обмот­ки), имеющие соответственно n 1 и N 2 вит­ков, укреплены на замкнутом железном сердечнике. Так как концы первичной об­мотки присоединены к источнику перемен­ного напряжения с э.д.с. ξ 1 , то в ней возникает переменный ток I 1 , создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сер­дечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вто­ричной обмотке появление э.д.с. взаим­ной индукции, а в первичной - э.д.с. самоиндукции.

Ток I 1 первичной обмотки определяется согласно закону Ома:

где R 1 - сопротивление первичной обмот­ки. Падение напряжения I 1 R 1 на сопро­тивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому

Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

Сравнивая выражения (129.1) и (129.2), получим, что э.д.с. , возникающая во вто­ричной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N 2 /N 1 , по­казывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора боль­ше (или меньше), чем в первичной, на­зывается коэффициентом трансформации.

Пренебрегая потерями энергии, кото­рые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теп­лоты и появлением вихревых токов, и при­меняя закон сохранения энергии, можем записать, что мощности тока в обеих об­мотках трансформатора практически оди­наковы:

ξ 2 I 2 »ξ 1 I 1 , откуда, учитывая соотношение (129.3), найдем

ξ 2 /ξ 1 =I 1 /I 2 = N 2 /N 1 ,

т. е. токи в обмотках обратно пропорцио­нальны числу витков в этих обмотках.

Если N 2 /N 1 >1, то имеем дело с повы­шающим трансформатором, увеличиваю­щим переменную э.д.с. и понижающим ток (применяются, например, для переда­чи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N 2 /N 1 <1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, на­пример, при электросварке, так как для нее требуется большой ток при низком напряжении).

Мы рассматривали трансформаторы, имеющие только две обмотки. Однако

трансформаторы, используемые в радио­устройствах, имеют 4-5 обмоток, обла­дающих разными рабочими напряжениями. Трансформатор, состоящий из одной об­мотки, называется автотрансформатором. В случае повышающего автотрансформа­тора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей об­мотки. В понижающем автотрансформато­ре напряжение сети подается на всю об­мотку, а вторичная э.д.с. снимается с части обмотки.

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0 отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0 отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Конец работы -

Эта тема принадлежит разделу:

Закон сохранения электрического заряда

Рассмотрим связь между векторами е и d на границе раздела двух однород ных изотропных диэлектриков диэлектри ческие проницаемости которых e и e.. откуда..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон сохранения электрического заряда
Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легк

Закон Кулона
Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутиль­ных весов, подобных тем, которые (см. §22) использовались Г.Кавендишем для

Электростатическое поле. Напряженность электростатического поля
Если в пространство, окружающее элек­трический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружаю­щем электрические заряды, существует

Принцип суперпозиции электростатических полей
Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвиж­ных зарядов q1

Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме
Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (

Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
1. Поле равномерно заряженной бесконечной плоскости.Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью+ s (s=dQ/dS-заряд, приходящийс

Работа электрического поля. Циркуляция вектора напряженности электростатического поля
Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q0, то сила, при

Потенциал электростатического поля. Разность потенциалов.
Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. §12). Как из­вест

Напряженность как градиент потенциала. Эквипотенциальные поверхности
Найдем взаимосвязь между напряженно­стью электростатического поля, являю­щейся его силовой характеристикой, и по­тенциалом - энергетической характери­стикой поля. Работа по п

Вычисление разности потенциалов по напряженности поля
Установленная выше связь между напря­женностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя про­извольными точками этого поля.

Типы диэлектриков. Виды поляризации
Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех ядер молекулы ра­вен суммарному заряду электронов, то молекула в целом электрически нейтраль­на. Е

Поляризованность. Напряженность поля в диэлектрике. Свободные и связанные заряды. Диэлектрическая проницаемость среды
При помещении диэлектрика во внешнее электростатическое поле он поляризуется, т. е. приобретает отличный от нуля дипольный момент

Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряжен­ность поля Е обратно пропорциональна e. Вектор напряженности

Проводники в электростатическом поле
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­

Электрическая емкость уединенного проводника
Рассмотрим уединенный проводник,т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, согласно (84.5), прямо пропорциона­лен заряду проводника. Из о

Конденсаторы
Как видно из § 93, для того чтобы про­водник обладал большой емкостью, он дол­жен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых раз­мера

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
1. Энергия системы неподвижных точеч­ных зарядов.Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает потенциальной эне

Энергия электростатического поля.
Преобразуем формулу (95.4), выражаю­щую энергию плоского конденсатора по­средством зарядов и потенциалов, вос­пользовавшись выражением для емкости плоского конденсатора (C = e0e/d) и раз

Электрический ток, сила и плотность тока
В электродинамике- разделе учения об электричестве, в котором рассматривают­ся явлени

Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от то­чек с большим потенциалом к точкам с меньш

Закон Ома. Сопротивление проводников
Немецкий физик Г. Ом (1787-1854) эк­спериментально установил, что сила то­ка I, текущего по однородному металличе­скому проводнику (т. е. проводнику, в ко­тором не действуют сторонние силы),

Закон Ома для неоднородного участка цепи
Рассмот­рим неоднородный участок цепи,где дей­ствующую э.д.с. на участке 1-2 обозна­чим через ξ12, а приложенную на концах участка разность пот

Работа и мощность тока. Закон Джоуля - Ленца
Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время At через сечение проводника перено­сится заряд dq = Idt. Так как ток пред­ставляет собой пе

Правила Кирхгофа для разветвленных цепей
Обобщенный закон Ома (см. (100.3)) по­зволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут и

Работа выхода электронов из металла
Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препят

Эмиссионные явления и их применение
Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или

Ионизация газов. Несамостоятельный газовый разряд
Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воз­дух заряженный электрометр с хорошей изоляц

Самостоятельный газовый разряд и его типы
Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным. Рассмотрим условия возникновения са­мостоятельного разряда. Как уж

Плазма и ее свойства
Плазмойназывается сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательных зарядов практи­чески одинаковы. Различают высокотемпе­ратурную плазму,

Магнитное поле и его характеристики
Опыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электростатиче­ское поле, так в пространстве, окружаю­щем токи и постоянные магниты, возника­ет с

Закон Био - Савара - Лапласа и его применение к расчету магнитного поля
Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774-1862) и Ф. Саваром (1791 -1841). Результаты этих опытов бы­ли обобщены выдающимся французским математик

Закон Ампера. Взаимодействие параллельных токов
Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая

Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
Если два параллельных проводника с то­ком находятся в вакууме (m=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна

Магнитное поле движущегося заряда
Каждый проводник с током создает в ок­ружающем пространстве магнитное поле. Электрический же ток предс

Действие магнитного поля на движущийся заряд
Опыт показывает, что магнитное поле дей­ствует не только на проводники с током (см. §111), но и на отдельные заряды, движущиеся в магнитном поле. Сила, дей­ствующая на электрический заряд Q,

Движение заряженных частиц в магнитном поле
Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной ч

Ускорители заряженных частиц
Ускорителямизаряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (э

Эффект Холла
Эффект Холла (1879) - это возникнове­ние в металле (или полупроводнике) с то­ком плотностью j, помещенном в магнит­ное поле В, электрического поля в направ­лении,

Циркуляция вектора В для магнитного поля в вакууме
Аналогично циркуляции вектора напря­женности электростатического поля (см. § 83) введем циркуляцию вектора магнитной индукции. Циркуляцией векто­ра Впо заданному замкнутому контуру

Магнитное поле соленоида и тороида
Рассчитаем, применяя теорему о циркуля­ции, индукцию магнитного поля внутри соленоида.Рассмотрим соленоид длиной l,

Поток вектора магнитной индукции. Теорема Гаусса для поля В
Потоком вектора магнитной индукции (магнитным потоком)через площадку dS называется скалярная физическая величи­на, равная dФB=B

Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник не закреплен (например, одна из сторон кон­тура изготовлена в виде подвижной пере­мычки,

Магнитные моменты электронов и атомов
Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнит

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Намагниченность. Магнитное поле в веществе
Подобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину -

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва - ферромагнетики

Природа ферромагнетизма
Рассматривая магнитные свойства ферро­магнетиков, мы не вскрывали физическую природу этого явления. Описательная тео­рия ферромагнетизма была разработана французским физиком П. Вейссом (1865-1940).

Закон Фарадея и его вывод из закона сохранения энергии
Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром ма

Взаимная индукция
Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I1, то магнитный поток, со­з

Трансформаторы
Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в

Энергия магнитного поля
Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно э

Вихревое электрическое поле
Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследст

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Экспериментальное получение электромагнитных волн
Существование электромагнитных волн - переменного электромагнитного поля, рас­пространяющегося в пространстве с ко­нечной скоростью,- вытекает из уравне­ний Максвелла (см.

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Энергия электромагнитных волн. Импульс электромагнитного поля
Возможность обнаружения электромаг­нитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей wэл

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

Опр. Индукционные токи, возникающие в массивных проводинах при их движении в магнитном поле или под влиянием переменного магнитного поля, называются вихревыми токами или токами Фуко.

Сила вихревого тока удовлетворяет соотношению , где потокосцепление замкнутого контура вихревого тока. электрическое сопротивление цепи этого тока. Сопротивление тем меньше, чем больше удельная проводимость материала проводника и чем больше его размеры. В массивных проводниках мало и вихревые токи могут достигать большой силы даже в не очень быстро меняющихся магнитных полях.

В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает.

Вихревые токи вызывают сильное нагревание проводников. Поэтому в индукционных печах, служащих для плавки металлов при помощи вихревых токов, магнитное поле создается переменным током высокой частоты. Печь - катушка, питаемая высокочастотным током большой силы. Если поместить внутрь катушки проводящее тело, то в нем возникнут интенсивные вихревые токи, кот могут разогреть тело до плавления. Таким способом осуществляют плавление металла в вакууме, что позволяет получать материалы исключительно высокой частоты.

В электрических машинах и трансформаторах вихревые токи приводят к значительным потерям энергии. Ввиду этого магнитные цепи электрических машин и сердечники трансформаторов делают не сплошными, а собирают из отдельных тонких листов железа, изолированных друг от друга специальным лаком или окалиной. Вихревые токи образуются в плоскостях, перпендикулярных линиям магнитной индукции (тока «охватывают» линии индукции). Поэтому плоскости пластин, из которых собирают магнитные цепи, следует располагать параллельно линиям магнитной индукции.

Токи Фуко используются в индукционных печах, при вакуумной плавке, для получения тепла в различных нагревательных устройствах.

На заводе Электросталь есть вакуумные индукционные печи (от 30 кг до тонны), в институте 150 кг

Токи Фуко, возникающие в проводах, по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. При прохождении по проводнику быстропеременных токов они вытесняются на поверхность проводника, а внутри проводника ток практически отсутствует. Это явление называют скин-эффектом (от английскогоskin-кожа) или поверхностным эффектом . В таких случаях проводники можно делать полыми. Этот эффект можно использовать для термической закалки проводников и отжига поверхностных дефектов.

2. Явление самоиндукции . При изменении магнитного поля тока, идущего по проводнику, э.д.с. индукции возникает не только в соседних проводниках, но и в нем самом, поскольку этот проводник находится в том же магнитном поле. Возникновение э.д.с. в каком – либо проводнике при изменении силы тока в нем же самом наз. самоиндукцией , а ток, индуцируемый в этом проводнике – током самоиндукции . Вследствие самоиндукции при замыкании цепи сила тока не сразу достигает своего установившегося значения, а через некоторый промежуток времени; при размыкании цепи э.д.с. исчезает не сразу, вследствие чего в месте размыкания появляется искра, а если есть другой замкнутый контур, то в нем продолжает идти слабый ток.



Магнитный поток, создаваемый током в контуре с индуктивностью : . Индуктивность зависит от геометрических свойств (формы и размеров) контура и магнитных свойств (магнитной проницаемости) окружающей среды. Единицы индуктивности: генри .

1Гн – индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1А равен 1Вб. 1Гн=1Вб/А=1В*с/А.

Потокосцепление пропорционально силе тока, протекающего по контуру: .Линейная зависимость от наблюдается только в том случае, если среды, которой окружен контур, не зависит от напряженности поля , т.е. в отсутствие ферромагнетиков. Иначе зависит от и зависимостьот будет сложной. В этом случае , но индуктивность считается функцией от .

Электродвижущая сила самоиндукции . в замкнутом контуре (контур не деформируется и не меняется) при изменении силы тока в нем, пропорциональна скорости изменения силы тока со временем: , где индуктивность (коэффициент самоиндукции) контура. Знак минус показывает, что наличие индуктивности в контуре приводи к замедлению тока в нем.

Индуктивность соленоида (тороида) , где число витков контура, длина, объем.

Индуктивность бесконечно длинного соленоида : при протекании по соленоиду тока внутри соленоида возбуждается однородное поле, индукция которого . Поток через каждый из витков равен , а полный магнитный поток, сцепленный с соленоидом , где длина соленоида, которая предполагается очень большой, площадь поперечного сечения, число витков на единицу длины, - полное число витков. Т.к. или , где объем соленоида. В общем случае индуктивность контура зависит только от геометрической формы контура, его размеров и . Магнитная проницаемость соленоида (тороида) зависит от . Во всех случаях вычисления индуктивности соленоида (тороида) с сердечником для определения магнитной проницаемости следует пользоваться графиком зависимости от , а затем формулой . Индуктивность – аналог электрической емкости уединенного проводника.

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи (направлены противоположно току, создаваемому источником). При выключении источника тока экстратоки имеют то же направление, сто и ослабевающий ток – наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока цепи.

Мгновенное значение силы тока в цепи, обладающей сопротивлением и индуктивностью

· после замыкания цепи: , где э.д.с. источника тока, время, прошедшее после замыкания цепи. Величина постоянная, называемая временем релаксации.

· после размыкания цепи:, где значение силы тока в цепи при , время, прошедшее с момента размыкания цепи.

3. Взаимная индукция. Изменение магнитного потока может достигаться также изменением тока в соседнем контуре (явление взаимной индукции ). Возьмем два контура 1 и 2, расположенные близко друг к другу. Если в контуре 1 течет ток силой , он создает через контур 2 пропорциональный полный магнитный поток . При изменении тока в контуре 2 индуцируется э.д.с. , где индуктивность (коэффициент самоиндукции) контура. Аналогично, при протекании в контуре 2 тока силы возникает сцепленный с контуром 1 поток и . Контуры 1 и 2 наз. связанными . В отсутствии ферромагнетиков . Их величина зависит от формы, размеров и взаимного расположения контуров, а также от магнитной проницаемости окружающей среды.

По правилу Ленца дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменениям тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь с не зависящей от индуктивностью L и сопротивлением R включен источник тока э.д.с. (рис. 65.1).

В цепи будет течь постоянный ток

(сопротивление источника тока считаем пренебрежимо малым). В момент времени отключим источник тока, замкнув одновременно цепь накоротко переключателем П. Как только сила тока в цепи начнет убывать, возникнет э. д. с. самоиндукции, противодействующая этому убыванию. Сила тока в цепи будет удовлетворять уравнению

Уравнение (65.2) представляет собой линейное однородное дифференциальное уравнение первого порядка. Разделив переменные, получим

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ). Потенцирование этого соотношения дает

(65.3)

Выражение (65.3) является общим решением уравнения (65.2). Значение найдем из начальных условий. При сила тока имела значение (65.1). Следовательно,

Подставив это значение в (65.3), придем к выражению

Итак, после отключения источника э. д. с. сила тока в цепи не обращается мгновенно в нуль, а убывает по экспоненциальному закону (65.4). График убывания дан на рис. 65.2 (кривая ).

Скорость убывания определяется имеющей размерность времени величиной

которую называют постоянной времени цепи. Заменив в (65.4) через получим

В соответствии с этой формулой есть время, в течение которого сила тока уменьшается в раз. Из (65.5) видно, что чем больше индуктивность цепи L и меньше ее сопротивление R, тем больше постоянная времени и тем медленнее спадает ток в цепи.

Для упрощения расчетов мы считали, что цепь в момент отключения источника тока замыкается накоротко. Если просто разорвать цепь с большой индуктивностью, возникающее высокое индуцированное напряжение создает искру или дугу в месте разрыва.

Теперь рассмотрим случай замыкания цепи. После подключения источника э. д. с., до тех пор пока сила тока не достигнет установившегося значения (65.1), в цепи кроме э. д. с. будет действовать э. д. с. самоиндукции. Следовательно, в соответствии с законом Ома

Мы пришли к линейному неоднородному дифференциальному уравнению, которое отличается от уравнения (65.2) лишь тем, что в правой части вместо нуля в нем стоит постоянная величина Из теории дифференциальных уравнений известно, что общее решение линейного неоднородного уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения (см. § 52 1-го тома). Общее решение однородного уравнения имеет вид (65.3). Легко убедиться в том, что является частным решением уравнения (65.7).

Следовательно, общим решением уравнения (65.7) будет функция

В начальный момент сила тока I равна нулю. Отсюда Таким образом,

Эта функция описывает нарастание тока в цепи после подключения к ней источника э. д. с. График функции (65.8) дан на рис. 65.2 (кривая 2).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: