Метод вынесения общего множителя за скобки. " вынесение общего множителя за скобки"

\(5x+xy\) можно представить как \(x(5+y)\). Это и в самом деле одинаковые выражения, мы можем в этом убедиться если раскроем скобки: \(x(5+y)=x \cdot 5+x \cdot y=5x+xy\). Как видите, в результате мы получаем исходное выражение. Значит, \(5x+xy\) действительно равно \(x(5+y)\). Кстати, это надежный способ проверки правильности вынесения общих множителей – раскрыть полученную скобку и сравнить результат с исходным выражением.


Главное правило вынесения за скобку:

К примеру, в выражении \(3ab+5bc-abc\) за скобку можно вынести только \(b\), потому что лишь оно есть во всех трех слагаемых. Процесс вынесения общих множителей за скобку представлен на схеме ниже:

Правила вынесения за скобки

    В математике принято выносить сразу все общие множители.

    Пример: \(3xy-3xz=3x(y-z)\)
    Обратите внимание, здесь мы могли бы разложить и вот так: \(3(xy-xz)\) или так: \(x(3y-3z)\). Однако это были бы неполные разложения. Выносить надо и тройку, и икс.

    Иногда общие члены сразу не видны.

    Пример: \(10x-15y=2·5·x-3·5·y=5(2x-3y)\)
    В этом случае общий член (пятерка) была скрыта. Однако разложив \(10\) как \(2\) умножить на \(5\), а \(15\) как \(3\) умножить на \(5\) – мы «вытащили пятерку на свет Божий», после чего легко смогли вынести ее за скобку.

    Если одночлен выносится полностью – от него остается единица.

    Пример : \(5xy+axy-x=x(5y+ay-1)\)
    Мы за скобку выносим \(x\), а третий одночлен и состоит только из икса. Почему же от него остается единица? Потому что если любое выражение умножить на единицу – оно не изменится. То есть этот самый \(x\) можно представить как \(1\cdot x\). Тогда имеем следующую цепочку преобразований:

    \(5xy+axy-\)\(x\) \(=5xy+axy-\)\(1 \cdot x\) \(=\)\(x\) \((5y+ay-\)\(1\) \()\)

    Более того – это единственно правильный способ вынесения, потому что если мы единицу не оставим, то при раскрытии скобок мы не вернемся к исходному выражению. Действительно, если сделать вынесение вот так \(5xy+axy-x=x(5y+ay)\), то при раскрытии мы получим \(x(5y+ay)=5xy+axy\). Третий член – пропал. Значит, такое вынесение некорректно.

    За скобку можно выносить знак «минус», при этом знаки членов с скобке меняются на противоположные.

    Пример: \(x-y=-(-x+y)=-(y-x)\)
    По сути здесь мы выносим за скобку «минус единицу», которая может быть «выделена» перед любым одночленом, даже если минуса перед ним не было. Мы здесь используем тот факт, что единицу можно записать как \((-1) \cdot (-1)\). Вот тот же пример, расписанный подробно:

    \(x-y=\)
    \(=1·x+(-1)·y=\)
    \(=(-1)·(-1)·x+(-1)·y=\)
    \(=(-1)·((-1)·x+y)=\)
    \(=-(-x+y)=\)
    \(-(y-x)\)

    Скобка тоже может быть общим множителем.

    Пример: \(3m(n-5)+2(n-5)=(n-5)(3m+2)\)
    С такой ситуацией (вынесением за скобку скобки) чаще всего мы сталкиваемся при разложении на множители методом группировки или

Определение 1

Сначала давайте вспомним правила умножения одночлена на одночлен:

Для умножения одночлен на одночлен необходимо сначала перемножить коэффициенты одночленов, затем воспользовавшись правилом умножения степеней с одинаковым основанием умножить переменные входящие в состав одночленов.

Пример 1

Найти произведение одночленов ${2x}^3y^2z$ и ${\frac{3}{4}x}^2y^4$

Решение:

Сначала вычислим проиведение коэффициентов

$2\cdot\frac{3}{4} =\frac{2\cdot 3}{4}$ в этом задании мы использовали правило умножения числа на дробь - чтобы умножить целое число на дробь надо умножить число на числитель дроби, а знаменатель ставить без изменений

Теперь воспользуемся основным свойством дроби - числитель и знаменатель дроби можно разделить на одно и то же число, отличное от $0$. Разделим числитель и знаменте6ль этой дроби на $2$, т. е сократим на $2$ данную дробь $2\cdot\frac{3}{4}$ =$\frac{2\cdot 3}{4}=\ \frac{3}{2}$

Получившийся результат оказался неправильной дробью, т. е такой, у которой числитель больше знаменателя.

Преобразуем эту дробь по средствам выделения целой части. Вспомним, что для выделения целой части необходимо неполное частное, получившиеся при делении числителя на знаменатель записать, как целую часть, остаток от деления в числитель дробной части, делитель в знаменатель.

Мы нашли коэффициент будущего произведения.

Теперь последовательно будем перемножать переменные $x^3\cdot x^2=x^5$,

$y^2\cdot y^4 =y^6$. Тут мы воспользовались правилом умножения степеней с одинаковым основанием: $a^m\cdot a^n=a^{m+n}$

Тогда итогом умножения одночленов будет:

${2x}^3y^2z \cdot {\frac{3}{4}x}^2y^4=1\frac{1}{2}x^5y^6$.

Тогда исходя из данного правила можно выполнить следующее задание:

Пример 2

Представить заданный многочлен в виде произведения многочлена и одночлена ${4x}^3y+8x^2$

Преставим каждый из одночленов,входящих в состав многолена как прозведение двух одночленов для того, чтобы выделить общий одночлен, который будет являться множителем и в первом и во втором одночлене.

Сначала начнем с первого одночлена ${4x}^3у$. Разложим его коэффициент на простые множители: $4=2\cdot 2$. Аналогично поступим с коэффициентом второго одночлена $8=2\cdot 2 \cdot 2$. Зметим, что два множителя $2\cdot 2$ входят в состав и первого и второго коэффициентов, значит $2\cdot 2=4$--это чило войдет в общий одночлен как коэффициент

Теперь обратим внимание, что в первом одночлене $x^3$ ,а во втором та же переменная в степени $2:x^2$. Значит, переменную $x^3$ удобно представить так:

Переменная $y$ входит в состав только одного слагаемого многочлена, значит, не может входить в общий одночлен.

Представим первый и второй одночлен, входящий в многочлен как произведение:

${4x}^3y=4x^2\cdot xy$

$8x^2=4x^2\cdot 2$

Заметим, что общий одночлен, который будет являться множителем и в первом и во втором одночлене это $4x^2$.

${4x}^3y+8x^2=4x^2\cdot xy + 4x^2\cdot 2$

Теперь применим распределительный закон умножения, тогда полученное выражение можно представить в виде произведения двух множителей. Одним из множителей будет являться общий множитель: $4x^2$ а другой -- сумма оставшихся множителей: $xy + 2$. Значит:

${4x}^3y+8х^2 = 4x^2\cdot xy + 4x^2\cdot 2 = 4x^2(xy+2)$

Этот метод называется разложением на множители с помощью вынесения общего множителя.

Общим множителем в данном случае выступал одночлен $4x^2$ .

Алгоритм

Замечание 1

    Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен - он будет коэффициентом общего множителя-одночлена, который мы вынесем за скобки

    Одночлен, состящий из коэффициента, найденного в п.2, переменных, найденных в п.3 будет общим множителем. который можно вынести за скобки как общий множитель.

Пример 3

Вынести общий множитель $3a^3-{15a}^2b+4{5ab}^2$

Решение:

    Найдем НОД коэффициентов для этого разложим коэффициенты на простые множители

    $45=3\cdot 3\cdot 5$

    И найдем произведение тех, которые входят в разложение каждого:

    Выявить переменные, которые входят в состав каждого одночлена, и выбрать переменную с наименьшим показателем степени

    $a^3=a^2\cdot a$

    Переменная $b$ входит только во второй и третий одночлен, значит, в общий множитель не войдет.

    Составим одночлен, состоящий из коэффициента, найденного в п.2, переменных, найденных в п.3, получим: $3a$- это и будет общий множитель. тогда:

    $3a^3-{15a}^2b+4{5ab}^2=3a(a^2-5ab+15b^2)$

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Чичаева Дарина 8в класс

В работе ученица 8 класса расписала правило разложения многочлена на множители путём вынесения общего множителя за скобки с подробным ходом решения множества примеровм по данной теме. На каждый разобранный пример предложено по 2 примера для самостоятельного решения, к которым есть ответы. Работа поможет изучить данную тему тем ученикам, которые по каким-то причинам её не усвоил при прохождении программного материала 7 класса и (или) при повторении курса алгебры в 8 классе после летних каникул.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №32

«Ассоциированная школа ЮНЕСКО «Эврика-развитие»

г. Волжского Волгоградской области

Работу выполнила:

Ученица 8В класса

Чичаева Дарина

г. Волжский

2014

Вынесение общего множителя за скобки

  • - Одним из способов разложения многочлена на множители является вынесение общего множителя за скобки;
  • - При вынесении общего множителя за скобки применяется распределительное свойство ;
  • - Если все члены многочлена содержат общий множитель , то этот множитель можно вынести за скобки .

При решении уравнений, в вычислениях и ряде других задач бывает полезно заменить многочлен произведением нескольких многочленов (среди которых могут быть и одночлены). Представление многочлена в виде произведения двух или нескольких многочленов называют разложение многочлена на множители.

Рассмотрим многочлен 6a 2 b+15b 2 . Каждый его член можно заменить произведением двух множителей, один из которых равен 3b: →6a 2 b = 3b*2a 2 , + 15b 2 = 3b*5b →из этого мы получим: 6a 2 b+15b 2 =3b*2a 2 +3b*5b.

Полученное выражение на основе распределительного свойства умножения можно представить в виде произведения двух множителей. Один из них – общий множитель 3b , а другой – сумма 2а 2 и 5b→ 3b*2a 2 +3b*5b=3b(2a 2 +5b) →Таким образом, мы разложили многочлен: 6a 2 b+15b 2 на множители, представив его в виде произведения одночлена 3b и многочлена 2a 2 +5b. Данный способ разложения многочлена на множители называют вынесение общего множителя за скобки.

Примеры:

Разложите на множители:

А) kx-px.

Множитель х х выносим за скобки.

kx:x=k; px:x=p.

Получим: kx-px=x*(k-p).

б) 4a-4b.

Множитель 4 есть и в 1 слагаемом и во 2 слагаемом. Поэтому 4 выносим за скобки.

4а:4=а; 4b:4=b.

Получим: 4a-4b=4*(a-b).

в) -9m-27n.

9m и -27n делятся на -9 . Поэтому выносим за скобки числовой множитель -9.

9m: (-9)=m; -27n: (-9)=3n.

Имеем: -9m-27n=-9*(m+3n).

г) 5y 2 -15y.

5 и 15 делятся на 5; y 2 и у делятся на у.

Поэтому выносим за скобки общий множитель 5у .

5y 2 : 5у=у; -15y: 5у=-3.

Итак: 5y 2 -15y=5у*(у-3).

Замечание: Из двух степеней с одинаковым основанием выносим степень с меньшим показателем.

д) 16у 3 +12у 2 .

16 и 12 делятся на 4; y 3 и y 2 делятся на y 2 .

Значит, общий множитель 4y 2 .

16y 3 : 4y 2 =4y; 12y 2 : 4y 2 =3.

В результате мы получим: 16y 3 +12y 2 =4y 2 *(4у+3).

е) Разложите на множители многочлен 8b(7y+a)+n(7y+a).

В данном выражении мы видим, присутствует один и тот же множитель (7y+a) , который можно вынести за скобки. Итак, получим: 8b(7y+a)+n(7y+a)=(8b+n)*(7y+a).

ж) a(b-c)+d(c-b).

Выражения b-c и c-b являются противоположными. Поэтому, чтобы сделать их одинаковыми, перед d меняем знак «+» на «-»:

a(b-c)+d(c-b)=a(b-c)-d(b-c).

a(b-c)+d(c-b)=a(b-c)-d(b-c)=(b-c)*(a-d).

Примеры для самостоятельного решения:

  1. mx+my;
  2. ах+ау;
  3. 5x+5y ;
  4. 12x+48y;
  5. 7ax+7bx;
  6. 14x+21y;
  7. –ma-a ;
  8. 8mn-4m 2 ;
  9. -12y 4 -16y;
  10. 15y 3 -30y 2 ;
  11. 5c(y-2c)+y 2 (y-2c);
  12. 8m(a-3)+n(a-3);
  13. x(y-5)-y(5-y);
  14. 3a(2x-7)+5b(7-2x);

Ответы.

1) m(х+у); 2) а(х+у); 3) 5(х+у); 4) 12(х+4у); 5) 7х(a+b); 6) 7(2х+3у); 7) -а(m+1); 8) 4m(2n-m);

9) -4y(3y 3 +4); 10) 15у 2 (у-2); 11) (y-2c)(5с+у 2 ); 12) (a-3)(8m+n); 13) (y-5)(x+y); 14) (2x-7)(3a-5b).

§ 10. Разложение многочленов на множители способом вынесения общего множителя за скобки

В 6 классе мы раскладывали составные числа на простые множители, то есть подавали натуральные числа в виде произведения. Например, 12 = 2 2 ∙ 3; 105 = 3 ∙5 ∙ 7 др.

Представить в виде произведения можно и некоторые многочлены. Это означает, что эти многочлены можно раскладывать па множители. Например, 5а: - 5у - 5(х - y); а 3 и 3а 2 = а 2 (а + 3) и тому подобное.

Рассмотрим один из способов разложения многочленов на множители - вынесение общего множителя за скобки. Одним из известных нам примеров такого разложения является распределительная свойство умножения a(b + с) = ab + ас, если его записать в обратном порядке: аb + ас - a(b + с). Это означает, что многочлен аb + ас разложили на два множителя а и b + с.

Во время разложения на множители многочленов с целыми коэффициентами множителем, который выносят за скобки, выбирают так, чтобы члены многочлена, который останется в скобках, не имели общего буквенного множителя, а модули их коэффициентов не имели общих делителей.

Рассмотрим несколько примеров.

Пример 1. Разложить выражение на множители:

3) 15а 3 b - 10а 2 b 2 .

Р а з в’ я з а н н я.

1) Общим множителем является число 4, поэтому

8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).

2) Общим множителем является переменная а, поэтому

at + 7ap = a(t + 7p).

3) В данном случае общим числовым множителем есть наибольший общий делитель чисел 10 и 15 - число 5, а общим буквенным множителем является одночлен а 2 b. Итак,

15а 3 b - 10а 2 b 2 = 5а 2 b ∙ 3а - 5a 2 b ∙ b = 5а 2 b(3а - 2b).

Пример 2. Разложить па множители:

1) 2m(b - с) + 3р(b - с);

2) х(у - t) + c(t - в).

Р а з в ’ я з а н н я.

1) В данном случае общим множителем является двочлен b = c.

Следовательно, 2m(b - с ) + 3р(b - c ) = (b - с)(2m + 3р).

2) Слагаемые имеют множители в - t и t - в, которые являются противоположными выражениями. Поэтому во втором слагаемого вынесем за скобки множитель -1, получим: c(t - в) = -с(у - t).

Следовательно, х(у - t) + c(t - в) = х(у - t) - с(у - t) = (у - t) (х - с).

Для проверки правильности разложения на множители следует перемножить полученные множители. Результат должен равняться данном многочлена.

Разложение многочленов на множители часто упрощает процесс решения уравнения.

Пример 3. Найти корни уравнения 5х 2 - 7х = 0.

Р а з в ’ я з а н н я. Разложим левую часть уравнения на множители вынесением общего множителя за скобки: х(5х - 7) = 0. Учитывая, что произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, будем иметь: х = 0 или 5х - 7 = 0, откуда х = 0 или х = 1,4.

Ответ: 0; 1,4.

Какое преобразование называют разложением многочлена на множители? На примере многочлена ab + ас объясните, как выполняется разложение на множители вынесением общего множителя за скобки.

  1. (Устно) Найдите общий множитель в выражении:
  1. (Устно) Разложите на множители:
  1. Вынесите за скобки общий множитель:
  1. (Устно) правильно выполнило разложения на множители:

1) 7а + 7 = 7а;

2) 5m - 5 = 5(m - 5);

3) 2а - 2 = 2(а - 1);

4) 7ху - 14х = 7х - (у - 2);

5) 5mn + bn = 5m(n + 3);

6) 7ab + 8cb = 15b(a + c)?

  1. Запишите сумму в виде произведения:
  1. Разложите на множители:
  1. Разложите на множители:

4) 7а + 21ау;

5) 9х 2 - 27х;

6) 3а - 9а 2 ;

8) 12ах - 4а 2 ;

9) -18ху + 24в 2 ;

10) а 2 b - ab 2 ;

11) рм - р 2 m;

12) -х 2 y 2 - ху.

  1. Вынесите за скобки общий множитель:

4) 15ху + 5х;

6) 15m - 30m 2 ;

7) 9xy + 6х 2 ;

9) -p 2 q - рq 2 .

  1. Разложите на множители:

5) 3b 2 - 9b 3 ;

7) 4y 2 + 12y 4 ;

8) 5m 5 + 15m 2 ;

9) -16a 4 - 20a.

  1. Разложите на множители:

4) 18p 3 - 12p 2 ;

5) 14b 3 + 7b 4 ;

6) -25m 3 - 20m.

  1. Запишите сумму 6x 2 в + 15x в виде произведения и найдите его значение, если х = -0,5, у = 5.
  2. Запишите выражение 12а 2 b - 8а в виде произведения и найдите его значение, если а = 2, 6 = .
  3. Вынесите за скобки общий множитель:

1) а 4 + а 3 - а 2 ;

2) m 9 - m 2 + m 7 ;

3) b 6 + b 5 - b 9 ;

4) -в 7 - в 12 - в 3 .

  1. Представьте в виде произведения:

1) р 7 + р 3 - р 4 ;

2) а 10 - a 5 + а 8 ;

3) b 7 - b 5 - b 2 ;

4) -m 8 - m 2 - m 4 .

  1. Вычислите удобным способом:

1) 132 ∙ 27 + 132 ∙ 73;

2) 119 ∙ 37 - 19 ∙ 37.

  1. Решите уравнение:

1) x 2 - 2x = 0;

2) x 2 + 4х = 0.

  1. Найдите корни уравнения:

1) х 2 + 3x = 0;

2) х 2 -7х = 0.

1) 4а 3 + 2а 2 - 8а;

2) 9b 3 - 3b 2 - 27b 6 ;

3) 16m 2 - 24m 6 - 22m 3 ;

4) -5b 3 - 20b 2 - 25b 5 .

  1. Вынесите за скобки общий множитель:

1) 5с 8 - 5с 7 + 10с 4 ;

2) 9m 4 + 27m 3 - 81m;

3) 8р 7 - 4р 5 + 10р 3 ;

4) 21b - 28b 4 - 14b 3 .

  1. Вынесите за скобки общий множитель:

1) 7m 4 - 21m 2 n 2 + 14m 3 ;

2) 12а 2 b - 18аb 2 + 30аb 3 ;

3) 8х 2 у 2 - 4х 3 в 5 + 12x 4 в 3 ;

4) 5p 4 q 2 - 10p 2 q 4 + 15рq 3 .

  1. Разложите многочлен на множители:

1) 12а - 6а 2 х 2 - 9а 3 ;

2) 12b 2 в - 18b 3 - 30b 4 в;

3) 16bx 2 - 8b 2 х 3 + 24b 3 х;

4) 60m 4 n 3 - 45m 2 n 4 + 30m 3 n 5 .

  1. Вычислите удобным способом:

1) 843 ∙ 743 - 743 2 ;

2) 1103 2 - 1103 ∙ 100 - 1103 ∙ 3.

  1. Найдите значение выражения:

1) 4,23 а - а 2 , если а = 5,23;

2) х 2 у + х 3 , если х = 2,51, в = -2,51;

3) ам 5 - m 6 , если = -1, а = -5;

4) -ху - х 2 , если х = 2,7, в = 7,3.

  1. Найдите значение выражения:

1) 9,11 а + а 2 , если а = -10,11;

2) 5х 2 + 5a 2 х, если а = ; х = .

  1. Разложите многочлен на множители:

1) 2р(х - у) + q(x - у);

2) а(х + у) - (х + у);

3) (а - 7) - b(а - 7);

4) 5(а + 1) + (а + 1) 2 ;

5) (х + 2) 2 - х(х + 2);

6) -5m(m - 2) + 4(m - 2) 2 .

  1. Представьте выражение в виде произведения:

1) а(х - у) + b(у - х);

2) г(b - 5) - n(5 - b);

3) 7х - (2b - 3) + 5у(3 - 2b);

4) (х - y) 2 - а(у - х);

5) 5(х - 3) 2 - (3 - х);

6) (а + 1)(2b - 3) - (а + 3)(3 - 2b).

  1. Разложите на множители:

1) 3х(b - 2) + у(b - 2);

2) (m 2 - 3) - х(m 2 - 3);

3) а(b - 9) + с(9 - b);

4) 7(а + 2) + (а + 2) 2 ;

5) (с - m) 2 - 5(m - с);

6) -(х + 2у) - 5(х + 2y) 2 .

  1. Найдите корни уравнения:

1) 4x 2 - х = 0;

2) 7х 2 + 28х = 0;

3) х 2 + х = 0;

4)х 2 - х = 0.

  1. Решите уравнение:

1) 12х 2 + х = 0;

2) 0,2 x 2 - 2х = 0;

3) х 2 - х = 0;

4) 1 - х 2 + - х = 0.

  1. Решите уравнение:

1) х(3х + 2) - 5(3х + 2) = 0;

2) 2х(х - 2) - 5(2 - х) = 0.

  1. Решите уравнение:

1) х(4х + 5) - 7(4х + 5) = 0;

2) 7(х - 3) - 2х(3 - х) = 0.

1) 17 3 + 17 2 кратное числу 18;

2) 9 14 - 81 6 кратное числу 80.

  1. Докажите, что значение выражения:

1) 39 9 - 39 8 делится на 38;

2) 49 5 - 7 8 делится на 48.

  1. Вынесите за скобки общий множитель:

1) (5m - 10) 2 ;

2) (18а + 27b) 2 .

  1. Найдите корни уравнения:

1) х(х - 3) = 7х - 21;

2) 2х(х - 5) = 20 - 4х.

  1. Решите уравнение:

1) х(х - 2) = 4х - 8;

2) 3х(х - 4) = 28 - 7х.

  1. Докажите, что число:

1) 10 4 + 5 3 делится на 9;

2) 4 15 - 4 14 + 4 13 делится на 13;

3) 27 3 - 3 7 + 9 3 делится на 25;

4) 21 3 + 14 а - 7 3 делится на 34.

Упражнения для повторения

  1. Упростите выражение и найдите его значение:

1) -3x 2 + 7x 3 – 4х 2 + 3x 2 , если х = 0,1;

2) 8m + 5n - 7m + 15n, если m = 7, n = -1.

  1. Запишите вместо звездочек такие коэффициенты одночлен, чтобы равенство превратилось в тождество:

1) 2m 2 - 4mn + n 2 + (*m 2 - *m - *n 2) = 3m 2 - 9mn - 5n 2 ;

2) 7х 2 - 10у 2 - ху - (*х 2 - *ху + * 2) = -х 2 + 3у 2 + ху.

  1. Длина прямоугольника втрое больше его ширины. Если длину прямоугольника уменьшить на 5 см, то его площадь уменьшится на 40 см 2 . Найдите длину и ширину прямоугольника.

Интересные задачи для учеников ленивых

Известно, что а < b < с. Могут ли одновременно выполняться неравенства |а| > |с| и |b| < |с|?



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: