Эталонная динамическая модель пример. Эталонная модель ISO OSI. Управление доступом к среде

Эталонная модель под названием "Взаимодействие Открытых Систем" (OSI - Open Systems Interconnection) была выпущена в 1984 году.

Включает в себя:

  • · Поиск приложения, с которым будем обмениваться информацией.
  • · Установление и поддержание связи.
  • · Обработка потерь и помех при обмене.

Модель OSI разделяет задачу сетевого обмена на семь более мелких задач, что упрощает решение. Каждая из подзадач сформулирована таким образом, чтобы для её решения требовался минимум внешней информации.

Каждый уровень модели OSI соответствует своей подзадаче. Из этого следует, что каждый уровень модели в достаточной степени автономен. Поэтому реальные реализации сетей могут использовать не все уровни, а только часть из них.

Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

  • · горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах
  • · вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.

Рисунок 1. Модель OSI

Уровень 1, физический.

Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

  • · Тип кабелей и разъемов.
  • · Разводку контактов в разъемах.
  • · Схему кодирования сигналов для значений 0 и 1.

Уровень 2, канальный.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде.

Уровень 3, сетевой.

Сетевой уровень отвечает за деление пользователей на группы. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Уровень 4, транспортный.

Транспортный уровень делит потоки информации на достаточно малые фрагменты (пакеты) для передачи их на сетевой уровень.

Уровень 5, сеансовый.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью функций трех верхних уровней модели.

Уровень 6, уровень представления.

Уровень представления отвечает за возможность диалога между приложениями на разных машинах. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня. Протоколы уровня представления обычно являются составной частью функций трех верхних уровней модели.

Уровень 7, прикладной.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

В 1978 г. ISO (International Standards Organization) выпустила на­бор спецификаций, описывающих модель взаимодействия открытых систем, т.е. систем, доступных для связи с другими системами. Это был первый шаг к международной стандартизации протоколов. Все системы могли теперь использовать одинаковые протоколы и стан­дарты для обмена информацией.

В 1984 г. ISO выпустила новую версию своей модели, названную эталонной моделью взаимодействия открытых систем ISO. Эта вер­сия стала международным стандартом. Ее спецификации использу­ют производители при разработке сетевых продуктов, ее придержи­ваются при построении сетей. Полностью модель носит название ISO OSI (Open System Interconnection Reference Model). Для краткости будем ее называть модель OSI . Модель OSI не является сетевой архи­тектурой, так как не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каждый уровень. Важно также понимать, что эталонная модель не явля­ется чем-то реальным, таким, что обеспечивает связь. Сама по себе она не заставляет коммуникации функционировать и служит лишь для классификации. Она классифицирует то, что непосредственно работает, а именно - протоколы . Протоколом считается набор спе­цификаций, определяющих реализацию одного или нескольких уров­ней OSI. ISO разработала также стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.

Модель OSI имеет семь уровней . Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы. Появление именно семи уровней было обусловлено функциональными особен­ностями модели.

Модель OSI без физического носителя показана на рис.

Определенные сетевые функции, выполняемые на каждом уров­не, взаимодействуют только с функциями соседних уровней - вы­шестоящего и нижележащего. Например, Сеансовый уровень должен взаимодействовать только с Представительским и Транспортным уров­нями . Все эти функции подробно описаны.

Каждый уровень выполняет несколько операций при подготов­ке данных для доставки по сети на другой компьютер. Уровни отделяются друг от друга границами - интерфейсами . Все запросы от одного уровня к другому передаются через интерфейс. Каждый уро­вень, выполняя свои функции, пользуется услугами нижележащего уровня. Самые нижние уровни - 1-й и 2-й - определяют физичес­кую среду при передаче битов данных через плату СА и кабель. Са­мые верхние уровни определяют, каким способом реализуется дос­туп приложений к услугам связи.

Задача каждого уровня − предоставление услуг вышележащему уровню, маскируя при этом детали реализации этих услуг. Каждый уровень на компьютере-отправителе работает так, как будто он напрямую связан с соответствующим уровнем на компьютере-полу­чателе. Эта виртуальная связь показана на рис. пунктирными ли­ниями. В действительности же связь осуществляется между соседни­ми уровнями одного компьютера. ПО каждого уровня реализует определенные сетевые функции в соответствии с набором прото­колов.

Перед отправкой в сеть данные разбиваются на пакеты , переда­ваемые между устройствами сети как единое целое. Пакет проходит последовательно все уровни ПО от прикладного до физического, при этом на каждом уровне к пакету добавляется форматирующая или адресная информация, необходимая для безошибочной передачи дан­ных по сети.

На принимающей стороне пакет также проходит через все уров­ни, но в обратном порядке. ПО каждого уровня анализирует инфор­мацию пакета, удаляет ту информацию, которая добавлена к пакету на таком же уровне отправителем, и передает пакет следующему уровню. По достижении пакетом Прикладного уровня вся служебная информация будет удалена, и данные примут свой первоначальный вид.

Таким образом, только Физический уровень модели может не­посредственно послать информацию соответствующему уровню дру­гого компьютера. Информация на компьютере-отправителе и ком­пьютере-получателе должна пройти все уровни, начиная с того, с которого она посылается, и заканчивая соответствующим уровнем того компьютера, которым она принимается. Например, если Сете­вой уровень передает информацию с компьютера А, она спускается через Канальный и Физический уровни в сетевой кабель, затем по­падает в компьютер В, где поднимается через Физический и Каналь­ный уровни и достигает Сетевого уровня. В среде клиент-сервер при­мером такой информации служит адрес и результат контроля ошибок, добавленные к пакету.

Взаимодействие смежных уровней осуществляется через интер­фейс. Интерфейс определяет услуги, которые нижний уровень пре­доставляет верхнему, и способ доступа к ним.

Рассмотрим каждый из семи уровней модели OSI и услуги, ко­торые они предоставляют смежным уровням.

Прикладной (Application) уровень . Уровень 7. Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Услуги, которые он обеспечивает, напрямую поддерживают приложения пользователя. Прикладной уровень управляет общим доступом к сети, потоком данных и восстановлением данных после сбоев связи.

Уровень представления (Presentation) . Уровень 6. Представитель­ский уровень определяет формат, используемый для обмена данны­ми между сетевыми компьютерами. Типичный пример работы служб Представительского уровня − кодирование передаваемых данных определенным стандартным образом. Уровень представления отвечает за преобразование протоколов, трансляцию и шифрование данных, смену кодовой таблицы и расширение графических команд. Кроме того, он управляет сжатием данных для уменьшения объема переда­ваемых бит.

Сеансовый уровень (Session) . Уровень 5. Сеансовый уровень позво­ляет двум приложениям разных компьютеров устанавливать, исполь­зовать и завершать соединение, называемое сеансом. Сеанс может предоставлять еще и расширенный набор услуг, полезный для неко­торых приложений. Сеансовый уровень управляет диалогом между взаимодействующими процессами, устанавливая, какая из сторон, когда, как долго и т.д. должна осуществлять передачу.

Транспортный уровень (Transport) . Уровень 4. Основная функция Транспортного уровня − принять данные от Сеансового уровня, раз­бить их при необходимости на небольшие части и передать Сетево­му уровню, гарантируя, что эти части в правильном порядке прибу­дут по назначению. Все это должно быть сделано эффективно и так, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии. Транспортный уровень также следит за созданием и удалением сетевых соединений, управляет потоком со­общений, проверяет ошибки и участвует в решении задач, связан­ных с отправкой и получением пакетов. Примеры протоколов транс­портного уровня - ТСР и SРХ.

Сетевой уровень (Network) . Уровень 3. Сетевой уровень управля­ет операциями подсети. Он отвечает за адресацию сообщений и пе­ревод логических адресов и имен в физические. Сетевой уровень раз­решает также проблемы, связанные с разными способами адресации и разными протоколами при переходе пакетов из одной сети в дру­гую, позволяя объединять разнородные сети. Примеры протоколов сетевого уровня - IP и IPX.

Уровень передачи данных или канальный (Data Link) . Уровень 2. Основная задача Канального уровня - преобразовать способность Физического уровня передавать данные в надежную линию связи, свободную от необнаруженных ошибок с точки зрения вышестоящего Сетевого уровня. Эту задачу Канальный уровень выполняет при по­мощи разбиения входных данных на кадры размером от нескольких сот до нескольких тысяч байтов. Каждый следующий кадр данных передается только после получения и обработки кадра подтвержде­ния, посылаемого обратно получателем. Кадр - это логически организованная структура, в которую можно помещать данные. На рис. представлен простой кадр данных, где идентификатор отправи­теля − адрес компьютера-отправителя, а идентификатор получателя − адрес компьютера-получателя. Управляющая информация исполь­зуется для маршрутизации, указания типа пакета и сегментации. CRC (циклический код) позволяет выявить ошибки и гарантирует правильный прием информации.

Физический уровень (Physical) . Уровень 1. Физический уровень осу­ществляет передачу неструктурированного, сырого, потока бит по физической среде (например, по сетевому кабелю). На этом уровне реализуются электрический, оптический, механический и функцио­нальный интерфейсы с кабелем. Физический уровень также форми­рует сигналы, которые переносят данные, поступившие ото всех вы­шележащих уровней. На этом уровне определяется способ соединения сетевого кабеля с платой СА и способ передачи сигналов по сетевому кабелю. Физический уровень отвечает за кодирование данных и син­хронизацию бит, гарантируя, что переданная единица будет воспри­нята именно как единица, а не как ноль. Уровень устанавливает дли­тельность каждого бита и способ перевода в электрические или оптические импульсы, передаваемые по сетевому кабелю

Сетевая модель OSI (англ.open systems interconnection basic reference model - базовая эталонная модельвзаимодействия открытых систем) -сетевая модельстекасетевых протоколовOSI/ISO.

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, он был разработан ещё до принятия модели OSI и вне связи с ней.

Модель OSI

Тип данных

Уровень (layer)

Функции

7. Прикладной (application)

Доступ к сетевым службам

6. Представительский (presentation)

Представление и шифрование данных

5. Сеансовый (session)

Управление сеансом связи

Сегменты / Дейтаграммы

4. Транспортный (transport)

Прямая связь между конечными пунктами и надежность

3. Сетевой (network)

Определение маршрута и логическая адресация

2. Канальный (data link)

Физическая адресация

1. Физический (physical)

Работа со средой передачи, сигналами и двоичными данными

Уровни модели osi

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

    тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),

    тип модуляции сигнала,

    сигнальные уровни логических дискретных состояний (нуля и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень

Прикладной уровень (уровень приложений) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

    позволяет приложениям использовать сетевые службы:

    • удалённый доступ к файлам и базам данных,

      пересылка электронной почты;

    отвечает за передачу служебной информации;

    предоставляет приложениям информацию об ошибках;

    формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer Protocol), SNMP (Simple Network Management Protocol), POP3 (Post Office Protocol Version 3), FTP (File Transfer Protocol), XMPP, OSCAR,Modbus, SIP,TELNETи другие.

Представительский уровень

Представительский уровень (уровень представления; англ.presentation layer ) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может бытьмейнфреймкомпанииIBM, а другая - американский стандартный код обмена информациейASCII(его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT- формат изображений, применяемый для передачи графики QuickDraw между программами. Другим форматом представлений является тэгированный формат файлов изображенийTIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандартJPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандартMPEG.

Протоколы уровня представления: AFP - Apple Filing Protocol, ICA -Independent Computing Architecture, LPP - Lightweight Presentation Protocol, NCP -NetWare Core Protocol, NDR -Network Data Representation, XDR -eXternal Data Representation, X.25 PAD -Packet Assembler/Disassembler Protocol.

Сеансовый уровень

Сеансовый уровень (англ.session layer ) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP, ASP, H.245, ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS, L2F, L2TP, NetBIOS, PAP (Password Authentication Protocol), PPTP, RPC, RTCP, SMPP, SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..

Транспортный уровень

Транспортный уровень (англ.transport layer ) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDPограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушения порядка получения пакетов данных;TCPобеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и, наоборот, склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP, CUDP, DCCP, FCP, IL, NBF, NCP, RTP, SCTP, SPX, SST, TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сетевой уровень

Сетевой уровень (англ.network layer ) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX, X.25, CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP, OSPF.

Канальный уровень

Канальный уровень (англ.data link layer ) предназначен для обеспечения взаимодействия сетей по физическому уровню и контролем над ошибками, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802разделяет этот уровень на два подуровня:MAC(англ.media access control ) регулирует доступ к разделяемой физической среде, LLC(англ.logical link control ) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы,мостыи другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня- ARCnet,ATMEthernet,Ethernet Automatic Protection Switching(EAPS),IEEE 802.2,IEEE 802.11wireless LAN,LocalTalk, (MPLS),Point-to-Point Protocol(PPP),Point-to-Point Protocol over Ethernet(PPPoE),StarLan,Token ring,Unidirectional Link Detection(UDLD),x.25.

Физический уровень

Физический уровень (англ.physical layer ) - нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

На этом уровне также работают концентраторы,повторителисигнала имедиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно,витая пара,коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются:V.35,RS-232,RS-485, RJ-11,RJ-45, разъемыAUIиBNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth),IRDA,EIARS-232,EIA-422,EIA-423,RS-449,RS-485,DSL,ISDN,SONET/SDH,802.11Wi-Fi,Etherloop,GSMUm radio interface,ITUиITU-T,TransferJet,ARINC 818,G.hn/G.9960.

Семейство TCP/IP

Семейство TCP/IPимеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных;UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмендатаграммамимежду приложениями, не гарантирующий получения данных; иSCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протоколICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами).

Семейство IPX/SPX

В семействе IPX/SPXпорты (называемые сокетами или гнёздами) появляются в протоколе сетевого уровня IPX, обеспечивая обмендатаграммамимежду приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель TCP/IP (5 уровней)

    Прикладной (5) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными уровнями. Например, если пользователь работает с электронными таблицами Excel и решает сохранить рабочий файл в своей директории на сетевом файл-сервере, то прикладной уровень обеспечивает перемещение файла с рабочего компьютера на сетевой диск прозрачно для пользователя.

    Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка на блоки передаваемых данных, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети.

    Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые MAC-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути), по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы.

    Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы.

    Физический (1) уровень (Physical Layer) – это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и репитерные концентраторы.

Модель OSI была предложена Международной организацией стандартов ISO (International Standards Organization) в 1984 году. С тех пор ее используют (более или менее строго) все производители сетевых продуктов. Как и любая универсальная модель, OSI довольно громоздка, избыточна, и не слишком гибка. Поэтому реальные сетевые средства, предлагаемые различными фирмами, не обязательно придерживаются принятого разделения функций. Однако знакомство с моделью OSI позволяет лучше понять, что же происходит в сети.

Все сетевые функции в модели разделены на 7 уровней (рис. 5.1). При этом вышестоящие уровни выполняют более сложные, глобальные задачи, для чего используют в своих целях нижестоящие уровни, а также управляют ими. Цель нижестоящего уровня – предоставление услуг вышестоящему уровню, причем вышестоящему уровню не важны детали выполнения этих услуг. Нижестоящие уровни выполняют более простые и конкретные функции. В идеале каждый уровень взаимодействует только с теми, которые находятся рядом с ним (выше и ниже него). Верхний уровень соответствует прикладной задаче, работающему в данный момент приложению, нижний – непосредственной передаче сигналов по каналу связи.

Рис. 5.1. Семь уровней модели OSI

Модель OSI относится не только к локальным сетям, но и к любым сетям связи между компьютерами или другими абонентами. В частности, функции сети Интернет также можно поделить на уровни в соответствии с моделью OSI. Принципиальные отличия локальных сетей от глобальных, с точки зрения модели OSI, наблюдаются только на нижних уровнях модели.

Функции, входящие в показанные на рис. 5.1 уровни, реализуются каждым абонентом сети. При этом каждый уровень на одном абоненте работает так, как будто он имеет прямую связь с соответствующим уровнем другого абонента. Между одноименными уровнями абонентов сети существует виртуальная (логическая) связь, например, между прикладными уровнями взаимодействующих по сети абонентов. Реальную же, физическую связь (кабель, радиоканал) абоненты одной сети имеют только на самом нижнем, первом, физическом уровне. В передающем абоненте информация проходит все уровни, начиная с верхнего и заканчивая нижним. В принимающем абоненте полученная информация совершает обратный путь: от нижнего уровня к верхнему (рис. 5.2).

Рис. 5.2. Путь информации от абонента к абоненту

Данные, которые необходимо передать по сети, на пути от верхнего (седьмого) уровня до нижнего (первого) проходят процесс инкапсуляции (рис. 4.6). Каждый нижеследующий уровень не только производит обработку данных, приходящих с более высокого уровня, но и снабжает их своим заголовком, а также служебной информацией. Такой процесс обрастания служебной информацией продолжается до последнего (физического) уровня. На физическом уровне вся эта многооболочечная конструкция передается по кабелю приемнику. Там она проделывает обратную процедуру декапсуляции, то есть при передаче на вышестоящий уровень убирается одна из оболочек. Верхнего седьмого уровня достигают уже данные, освобожденные от всех оболочек, то есть от всей служебной информации нижестоящих уровней. При этом каждый уровень принимающего абонента производит обработку данных, полученных с нижеследующего уровня в соответствии с убираемой им служебной информацией.


Если на пути между абонентами в сети включаются некие промежуточные устройства (например, трансиверы, репитеры, концентраторы, коммутаторы, маршрутизаторы), то и они тоже могут выполнять функции, входящие в нижние уровни модели OSI. Чем больше сложность промежуточного устройства, тем больше уровней оно захватывает. Но любое промежуточное устройство должно принимать и возвращать информацию на нижнем, физическом уровне. Все внутренние преобразования данных должны производиться дважды и в противоположных направлениях (рис. 5.3). Промежуточные сетевые устройства в отличие от полноценных абонентов (например, компьютеров) работают только на нижних уровнях и к тому же выполняют двустороннее преобразование.

Рис. 5.3. Включение промежуточных устройств между абонентами сети

Рассмотрим подробнее функции разных уровней.

  • Прикладной (7) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными шестью уровнями. Например, если пользователь работает с электронными таблицами Excel и решает сохранить рабочий файл в своей директории на сетевом файл-сервере, то прикладной уровень обеспечивает перемещение файла с рабочего компьютера на сетевой диск прозрачно для пользователя.
  • Представительский (6) уровень (Presentation Layer) или уровень представления данных определяет и преобразует форматы данных и их синтаксис в форму, удобную для сети, то есть выполняет функцию переводчика. Здесь же производится шифрование и дешифрирование данных, а при необходимости – и их сжатие. Стандартные форматы существуют для текстовых файлов (ASCII, EBCDIC, HTML), звуковых файлов (MIDI, MPEG, WAV), рисунков (JPEG, GIF, TIFF), видео (AVI). Все преобразования форматов делаются на представительском уровне. Если данные передаются в виде двоичного кода, то преобразования формата не требуется.
  • Сеансовый (5) уровень (Session Layer) управляет проведением сеансов связи (то есть устанавливает, поддерживает и прекращает связь). Этот уровень предусматривает три режима установки сеансов: симплексный (передача данных в одном направлении), полудуплексный (передача данных поочередно в двух направлениях) и полнодуплексный (передача данных одновременно в двух направлениях). Сеансовый уровень может также вставлять в поток данных специальные контрольные точки, которые позволяют контролировать процесс передачи при разрыве связи. Этот же уровень распознает логические имена абонентов, контролирует предоставленные им права доступа.
  • Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка передаваемых данных на блоки, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети.
  • Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые MAC-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути), по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы.
  • Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы.
  • Физический (1) уровень (Physical Layer) – это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и репитерные концентраторы.

Большинство функций двух нижних уровней модели (1 и 2) обычно реализуются аппаратно (часть функций уровня 2 – программным драйвером сетевого адаптера). Именно на этих уровнях определяется скорость передачи и топология сети, метод управления обменом и формат пакета, то есть то, что имеет непосредственное отношение к типу сети, например, Ethernet, Token-Ring, FDDI, 100VG-AnyLAN. Более высокие уровни, как правило, не работают напрямую с конкретной аппаратурой, хотя уровни 3, 4 и 5 еще могут учитывать ее особенности. Уровни 6 и 7 никак не связаны с аппаратурой, замены одного типа аппаратуры на другой они не замечают.

Как уже отмечалось, в уровне 2 (канальном) нередко выделяют два подуровня (sublayers) LLC и MAC (рис. 5.4):

  • Верхний подуровень (LLC – Logical Link Control) осуществляет управление логической связью, то есть устанавливает виртуальный канал связи. Строго говоря, эти функции не связаны с конкретным типом сети, но часть из них все же возлагается на аппаратуру сети (сетевой адаптер). Другая часть функций подуровня LLC выполняется программой драйвера сетевого адаптера. Подуровень LLC отвечает за взаимодействие с уровнем 3 (сетевым).
  • Нижний подуровень (MAC – Media Access Control) обеспечивает непосредственный доступ к среде передачи информации (каналу связи). Он напрямую связан с аппаратурой сети. Именно на подуровне MAC осуществляется взаимодействие с физическим уровнем. Здесь производится контроль состояния сети, повторная передача пакетов заданное число раз при коллизиях, прием пакетов и проверка правильности передачи.

Помимо модели OSI существует также модель IEEE Project 802, принятая в феврале 1980 года (отсюда и число 802 в названии), которую можно рассматривать как модификацию, развитие, уточнение модели OSI. Стандарты, определяемые этой моделью (так называемые 802-спецификации) относятся к нижним двум уровням модели OSI и делятся на двенадцать категорий, каждой из которых присвоен свой номер:

Рис. 5.4. Подуровни LLC и MAC канального уровня

802.1 – объединение сетей с помощью мостов и коммутаторов

802.2 – управление логической связью на подуровне LLC.

802.3 – локальная сеть с методом доступа CSMA/CD и топологией шина (Ethernet).

802.4 – локальная сеть с топологией шина и маркерным доступом (Token-Bus).

802.5 – локальная сеть с топологией кольцо и маркерным доступом (Token-Ring).

802.6 – городская сеть (Metropolitan Area Network, MAN) с расстояниями между абонентами более 5 км.

802.7 – широкополосная технология передачи данных.

802.8 – оптоволоконная технология.

802.9 – интегрированные сети с возможностью передачи речи и данных.

802.10 – безопасность сетей, шифрование данных.

802.11 – беспроводная сеть по радиоканалу (WLAN – Wireless LAN).

802.12 – локальная сеть с централизованным управлением доступом по приоритетам запросов и топологией звезда (100VG-AnyLAN).

Обобщенная структура любой программной или информационной системы может быть представлена, как было отмечено выше, двумя взаимодействующими частями:

  • функциональной части , включающей в себя прикладные программы, которые реализуют функции прикладной области;
  • среды или системной части , обеспечивающей исполнение прикладных программ.

С таким разделением и обеспечением взаимосвязи тесно связаны две группы вопросов стандартизации:

  1. стандарты интерфейсов взаимодействия прикладных программ со средой ИС, прикладной программный интерфейс (Application Program Interface - API);
  2. стандарты интерфейсов взаимодействия самой ИС с внешней для нее средой (External Environment Interface - EEI).

Эти две группы интерфейсов определяют спецификации внешнего описания среды ИС - архитектуру, с точки зрения конечного пользователя, проектировщика ИС, прикладного программиста, разрабатывающего функциональные части ИС.

Спецификации внешних интерфейсов среды ИС и интерфейсов взаимодействия между компонентами самой среды - это точные описания всех необходимых функций, служб и форматов определенного интерфейса.

Совокупность таких описаний составляет эталонную модель взаимосвязи открытых систем (Open Systems Interconnection - OSI) . Эта модель используется более 30 лет, она "выросла" из сетевой архитектуры SNA (System Network Architecture), предложенной компанией IBM. Модель взаимосвязи открытых систем используется в качестве основы для разработки многих стандартов ISO в области ИТ. Публикация этого стандарта подвела итог многолетней работы многих известных стандартизующих организаций и производителей телекоммуникационных средств.

В 1984 году модель получила статус международного стандарта ISO 7498, а в 1993 году вышло расширенное и дополненное издание ISO 7498-1-93. Стандарт имеет составной заголовок "Информационно-вычислительные системы - Взаимосвязь (взаимодействие) открытых систем - Эталонная модель". Краткое название - "Эталонная модель взаимосвязи (взаимодействия) открытых систем" (Open Systems Interconnection / Basic Reference Model - OSI/BRM).

Модель основана на разбиении вычислительной среды на семь уровней, взаимодействие между которыми описывается соответствующими стандартами и обеспечивает связь уровней вне зависимости от внутреннего построения уровня в каждой конкретной реализации ( рис. 2.6).


Рис. 2.6.

Основным достоинством этой модели является детальное описание связей в среде с точки зрения технических устройств и коммуникационных взаимодействий. Вместе с тем она не принимает в расчет взаимосвязь с учетом мобильности прикладного программного обеспечения.

Преимущества "слоистой" организации модели взаимодействия заключаются в том, что она обеспечивает независимую разработку уровневых стандартов, модульность разработок аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в этой области.

В стандарте ISO 7498 выделено семь уровней (слоев) информационного взаимодействия, которые отделены друг от друга стандартными интерфейсами:

  1. уровень приложения (прикладной уровень)
  2. уровень представления
  3. сеансовый (уровень сессии)
  4. транспортный
  5. сетевой
  6. канальный
  7. физический.

В соответствии с этим, информационное взаимодействие двух или более систем представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует, как правило, с соответствующим слоем удаленной системы. Взаимодействие осуществляется при помощи соответствующих протоколов связи и интерфейсов. Кроме того, применяя методы инкапсуляции, можно использовать одни и те же программные модули на различных уровнях.

Протоколом является набор алгоритмов (правил) взаимодействия объектов одноименных уровней различных систем.

Интерфейс - это совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного или другого уровня. Стандартный интерфейс в некоторых спецификациях может называться услугой.

Инкапсуляция - это процесс помещения фрагментированных блоков данных одного уровня в блоки данных другого уровня.

При разбиении среды на уровни соблюдались следующие общие принципы:

  • не создавать слишком много мелких разбиений, так как это усложняет описание системы взаимодействий;
  • формировать уровень из легко локализуемых функций это в случае необходимости позволяет быстро перестраивать уровень и существенно изменить его протоколы для использования новых решений в области архитектуры, программно-аппаратных средств, языков программирования, сетевых структур, не изменяя при этом стандартные интерфейсы взаимодействия и доступа;
  • располагать на одном уровне аналогичные функции;
  • создавать отдельные уровни для выполнения таких функций, которые явно различаются по реализующим их действиям или техническим решениям;
  • проводить границу между уровнями в таком месте, где описание услуг является наименьшим, а число операций взаимодействий через границу (пересечение границы) сведено к минимуму;
  • проводить границу между уровнями в таком месте, где в определенный момент должен существовать соответствующий стандартный интерфейс.

Каждый уровень имеет протокольную спецификацию, т.е. набор правил, управляющих взаимодействием равноправных процессов одного и того же уровня, и перечень услуг, которые описывают стандартный интерфейс с расположенным выше уровнем. Каждый уровень использует услуги расположенного ниже уровня, каждый расположенный ниже предоставляет услуги расположенному выше. Приведем краткую характеристику каждого уровня, отметив при этом, что в некоторых описаниях модели OSI нумерация уровней может идти в обратном порядке.

Уровень 1 - уровень приложения или прикладной уровень (Application Layer). Этот уровень связан с прикладными процессами. Протоколы уровня предназначены для обеспечения доступа к ресурсам сети и программам-приложениям пользователя. На данном уровне определяется интерфейс с коммуникационной частью приложений. В качестве примера протоколов прикладного уровня можно привести протокол Telnet, который обеспечивает доступ пользователя к "хосту" (главному вычислительному устройству, одному из основных элементов в многомашинной системе или любому устройству, подключенному к сети и использующему протоколы TCP/IP) в режиме удаленного терминала.

Прикладной уровень выполняет задачу обеспечения различных форм взаимодействия прикладных процессов, расположенных в разнообразных системах информационной сети. Для этого он осуществляет следующие функции:

  • описание форм и методов взаимодействия прикладных процессов;
  • выполнение различных видов работ (управление заданиями, передача файлов, управление системой и т. д.);
  • идентификацию пользователей (партнеров взаимодействия) по их паролям, адресам, электронным подписям;
  • определение функционирующих абонентов;
  • объявление о возможности доступа к новым прикладным процессам;
  • определение достаточности имеющихся ресурсов;
  • посылку запросов на соединение с другими прикладными процессами;
  • подачу заявок представительному уровню на необходимые методы описания информации;
  • выбор процедур планируемого диалога процессов;
  • управление данными, которыми обмениваются прикладные процессы;
  • синхронизацию взаимодействия прикладных процессов;
  • определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок и т. д.);
  • соглашение об исправлении ошибок и определении достоверности данных;
  • согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Прикладной уровень часто делится на два подуровня. Верхний подуровень включает сетевые службы. Нижний - содержит стандартные сервисные элементы, поддерживающие работу сетевых служб.

Уровень 2 - уровень представления (Presentation Layer). На этом уровне информация преобразуется к такому виду, в каком это требуется для выполнения прикладных процессов. Уровень представления обеспечивает кодирование данных, выдаваемых прикладными процессами, и интерпретацию передаваемых данных. Например, выполняются алгоритмы преобразования формата представления данных для печати - ASCII или КОИ-8. Или, если для визуализации данных используется дисплей, то эти данные по заданному алгоритму формируются в виде страницы, которая выводится на экран.

Представительный уровень выполняет следующие основные функции:

  • выбор образа представлений из возможных вариантов;
  • изменение образа представления в заданный виртуальный образ;
  • преобразование синтаксиса данных (кодов, символов) в стандартный;
  • определение формата данных.

Уровень 3 - сеансовый уровень или уровень сессии (Session Layer). На данном уровне устанавливаются, обслуживаются и прекращаются сессии между представительными объектами приложений (прикладными процессами). В качестве примера протокола сеансового уровня можно рассмотреть протокол RPC (Remote Procedure Call). Как следует из названия, данный протокол предназначен для отображения результатов выполнения процедуры на удаленном хосте. В процессе выполнения этой процедуры между приложениями устанавливается сеансовое соединение. Назначением данного соединения является обслуживание запросов, которые возникают, например, при взаимодействии приложения-сервера с приложением-клиентом.

Сеансовый уровень обеспечивает взаимодействие с транспортным уровнем, координирует прием и передачу данных одного сеанса связи, содержит функции управлениями паролями, подсчета платы за использование ресурсов сети и т.д. Этот уровень обеспечивает выполнение следующих функций:

  • установление и завершение на сеансовом уровне соединения между партнерами;
  • выполнение нормального и срочного обмена данными между прикладными процессами;
  • синхронизация работы сеансовых соединений;
  • извещение прикладных процессов об исключительных ситуациях;
  • установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки;
  • прерывание в нужных случаях прикладного процесса и его корректное возобновление;
  • прекращение сеанса без потери данных;
  • передачу особых сообщений о ходе проведения сеанса.

Уровень 4 - транспортный уровень (Transport Layer). Транспортный уровень предназначен для управления потоками сообщений и сигналов. Управление потоком является важной функцией транспортных протоколов, поскольку этот механизм позволяет надёжно обеспечивать передачу данных по сетям с разнородной структурой, при этом в описание маршрута включаются все компоненты коммуникационной системы, обеспечивающие передачу данных на всем пути от устройств отправителя до приемных устройств получателя. Управление потоком заключается в обязательном ожидании передатчиком подтверждения приема обусловленного числа сегментов приемником. Количество сегментов, которое передатчик может отправить без подтверждения их получения от приемника, называется окном.

Существует два типа протоколов транспортного уровня - сегментирующие протоколы и дейтаграммные протоколы. Сегментирующие протоколы транспортного уровня разбивают исходное сообщение на блоки данных транспортного уровня - сегменты. Основной функцией таких протоколов является обеспечение доставки этих сегментов до объекта назначения и восстановление сообщения. Дейтаграммные протоколы не сегментируют сообщение, они отправляют его одним пакетом вместе с адресной информацией. Пакет данных, который называется "дейтаграмма" (Datagram), маршрутизируется в сетях с переключением адресов или передается по локальной сети прикладной программе или пользователю.

На транспортном уровне может выполняться также согласование сетевых уровней различных несовместимых сетей через специальные шлюзы. Рассматриваемый уровень определяет адресацию абонентских систем и административных систем. Главной задачей транспортного уровня является использование виртуальных каналов, проложенных между взаимодействующими абонентскими системами и административными системами, для передачи в пакетах блоков данных. Основные функции, выполняемые транспортным уровнем:

  • управление передачей блоков данных и обеспечение их целостности;
  • обнаружение ошибок, их частичная ликвидация, сообщение о неисправленных ошибках;
  • восстановление передачи после отказов и неисправностей;
  • укрупнение либо разукрупнение блоков данных;
  • предоставление приоритетов при передаче блоков;
  • передача подтверждений о переданных блоках данных;
  • ликвидация блоков при тупиковых ситуациях в сети.

Кроме этого, транспортный уровень может восстанавливать блоки данных, потерянные на нижних уровнях.

Уровень 5 - сетевой уровень (Network Layer). Основной задачей протоколов сетевого уровня является определение пути, который будет использован для доставки пакетов данных при работе протоколов верхних уровней (маршрутизация). Для того чтобы пакет был доставлен до какого-либо заданного хоста, этому хосту должен быть поставлен в соответствие известный передатчику сетевой адрес. Группы хостов, объединенные по территориальному принципу, образуют сети. Для упрощения задачи маршрутизации сетевой адрес хоста составляется из двух частей: адреса сети и адреса хоста. Таким образом, задача маршрутизации распадается на две - поиск сети и поиск хоста в этой сети. На сетевом уровне могут выполняться следующие функции:

  • создание сетевых соединений и идентификация их портов;
  • обнаружение и исправлений ошибок, возникающих при передачи через коммуникационную сеть;
  • управление потоками пакетов;
  • организация (упорядочение) последовательностей пакетов;
  • маршрутизация и коммутация;
  • сегментация и объединение пакетов;
  • возврат в исходное состояние;
  • выбор видов сервиса.

Уровень 6 - канальный уровень или уровень звена данных (Data Link Layer). Назначением протоколов канального уровня является обеспечение передачи данных в среде передачи по физическому носителю. В канале формируется стартовый сигнал передачи данных, организуется начало передачи, производится сама передача, проводится проверка правильности процесса, производится отключение канала при сбоях и восстановление после ликвидации неисправности, формирование сигнала на окончание передачи и перевода канала в ждущий режим.

Таким образом, канальный уровень может выполнять следующие функции:

  • организацию (установление, управление, расторжение) канальных соединений и идентификацию их портов;
  • передачу блоков данных;
  • обнаружение и исправление ошибок;
  • управление потоками данных;
  • обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

На канальном уровне данные передаются в виде блоков, которые называются кадрами. Тип используемой среды передачи и её топология во многом определяют вид кадра протокола транспортного уровня, который должен быть использован. При использовании топологии "общая шина" (Common Bus) и "один-ко-многим" (Point-to-Multipoint) средства протокола канального уровня задают физические адреса, с помощью которых будет производиться обмен данными в среде передачи и процедура доступа к этой среде. Примерами таких протоколов являются протоколы Ethernet (в соответствующей части) и HDLC. Протоколы транспортного уровня, которые предназначены для работы в среде типа "один-к-одному" (Point-to-Point), не определяют физических адресов и имеют упрощенную процедуру доступа. Примером протокола такого типа является протокол PPP.

Уровень 7 - физический уровень (Physical Layer). Протоколы физического уровня обеспечивают непосредственный доступ к среде передачи данных для протоколов канального и последующих уровней. Данные передаются с помощью протоколов данного уровня в виде последовательностей битов (для последовательных протоколов) или групп битов (для параллельных протоколов). На этом уровне определяются набор сигналов, которыми обмениваются системы, параметры этих сигналов (временные и электрические) и последовательность формирования сигналов при выполнении процедуры передачи данных.

Физический уровень выполняет следующие функции:

  • устанавливает и разъединяет физические соединения;
  • передает последовательность сигналов;
  • "прослушивает" в нужных случаях каналы;
  • выполняет идентификацию каналов;
  • оповещает о появлении неисправностей и отказов.

Кроме того, на данном уровне формулируются требования к электрическим, физическим и механическим характеристикам среды передачи, передающих и соединительных устройств.

Сетезависимые и сетенезависимые уровни. Указанные выше функции всех уровней можно отнести к одной из двух групп: либо к функциям, ориентированным на работу с приложениями вне зависимости от устройства сети, либо к функциям, зависящим от конкретной технической реализации сети.

Три верхних уровня - прикладной, представительный и сеансовый ориентированы на приложения и практически не зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие-либо изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.


Рис. 2.9.

Стандартизация интерфейсов обеспечивает полную прозрачность взаимодействия вне зависимости от того, каким образом устроены уровни в конкретных реализациях (службах) модели.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: